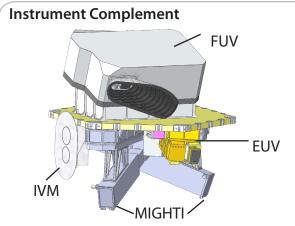
The Ionospheric Connection Explorer (ICON)


Where Earth's weather meets space weather.

What is ICON going to achieve?

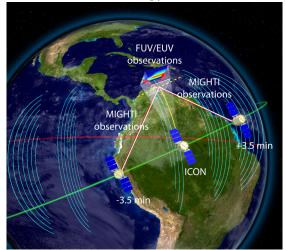
ICON will explore the space environment near Earth to discover the source of its remarkable variability. ICON makes the complete set of measurements needed to describe the fundamental coupling processes occurring in the ionosphere, Earth's natural plasma laboratory. This comprehensive approach is critical to understanding recent findings that tell us the weather in our atmosphere strongly affects the dynamic conditions in the space plasma surrounding us. ICON's observations at the edge of space will bring us the key physical insights needed for predictions of conditions in near-Earth space, and for understanding the connection between our weather and space weather.

ICON's Science Goals are to Understand:

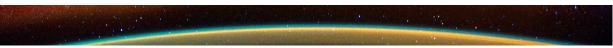
- 1) the source of strong ionospheric variability; What physics lies beneath the unpredictability of our space environment?
- 2) the coupling of energy and momentum from our atmosphere into space; *Why does our space environment reflect the tropical rainy seasons?*
- 3) how solar wind and magnetospheric effects modify the internally driven atmosphere-space system. *How does the plasma around Earth grow so dense during magnetic storms?*

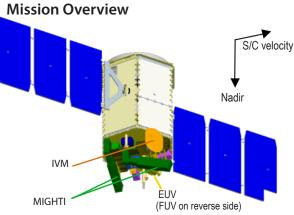
ICON's payload of four sensitive instruments: Michelson Interferometer for Global High-Resolution Thermospheric Imaging (MIGHTI): Remotely measuring the neutral wind field and temperatures - Heritage from SHIMMER flown on STPSat-1.

Extreme Ultra-Violet (EUV): Measuring the height and density of the daytime ionosphere - Heritage from SPEAR flown on the Korean STSAT-1.


Far Ultra-Violet (FUV): Measuring the daytime atmospheric composition and the ionosphere at night - Heritage from FUV flown on IMAGE.

Ion Velocity Meter (IVM): Measuring the electric fields detected at the satellite - Heritage from IVM flown on C/NOFS CINDI.


Relevance to NASA Science Goals


- ICON fulfills the 2009 Heliophysics Roadmap goal to 'understand the coupling between planetary ionospheres and their upper atmospheres mediated by strong ionneutral interactions'.
- The 2010 Science Plan for NASA's SMD describes a mission whose stated goal is to '*understand how neutral winds control ionospheric variability*.' ICON is specifically designed to address this goal with a novel Explorer-class mission.

Observational Strategy

ICON travels eastward and continuously images the thermosphere and ionosphere. Fore- and aft-viewing Michelson interferometers (MIGHTI) measure the vector components of the wind. FUV and EUV instruments make coordinated measurements of the atmosphere and ionosphere near the footpoint of ICON's magnetic field-line. An in situ drift meter measures the ion velocity as a response to electric field on the same field-line.

- The observatory features a single interface between • science payload and spacecraft.
- ICON uses a high-heritage Orbital LEOStar-2 bus • (SORCE, AIM, OCO(-2), NuSTAR).
- Launch is via NLS Option B from ETR, launchready November 2016, with a two-year mission.
- The payload is heavily based upon previously flown • instrumentation.
- Orbit is 550 km circular at 27° inclination.
- ICON downlinks 3.3 Gbits / day through stations • at Berkeley, Wallops and Santiago.
- MOC and SOC located at Berkeley SSL. ٠
- E/PO lead by UCB, Student Experiment E/PO • element built by U. Illinois.

Key Spacecraft Characteristics

Mission Management				
Principal Investigator	Thomas Immel, UCB			
Deputy PI	Stephen Mende, UCB			
Project Manager	Bill Craig, UCB			
Spacecraft Manager	Ann Cox, Orbital			
Project Systems Engineer	Ellen Taylor, UCB			
Payload Manager	Stuart Harris, UCB			
Business Manager	Trish Dobson, UCB			
Mission Operations Manager	Manfred Bester, UCB			
MIGHTI Instrument	Christoph Englert, NRL			
FUV Instrument	Stephen Mende, UCB			
EUV Instrument	Jerry Edelstein, UCB			
IVM Instrument	Rod Heelis, UTD			
Student Collaboration	Gary Swenson, U. IL			
Education Public Outreach	Claire Raftery, UCB			

Participating Organizations				
UC Berkeley	PI institution, Project management, Science & Mission ops., Payload I&T, EUV & FUV instruments			
NRL	MIGHTI instrument, science			
UT Dallas	IVM instrument			
U. Illinois	Student instrument, science			
U.Colorado, Astra, NCAR, JHU-APL	Science analyses and modeling			
Orbital	Spacecraft bus, Observatory I&T, Launch operations			

Parameter	Requirement	Capability	Margin
Observatory Mass	276.1 kg (240.9 kg CBE)	355.0 kg (Option B)	28.6 % w/ 14.6% contingency
Solar Array Power	414 W	538.3 W	30.0 % w/ 12.2% contingency*
Daily Science Data Storage	3.3 Gbit	16 Gbit	385 %
Pointing Knowledge 3o	0.01º	0.0078°	28%
Pointing Control 30	0.2°	0.0086°	23x
Pointing Stability 30	0.03º for 60s	0.0008° for 60s	36x
Downlink Margin	>3 dB	12.7 dB	9.7 dB**
Uplink Margin	>3 dB	6.1 dB	3.1 dB

Margin for the worst case power generation at beta 50° Margin for worst impairment case slant angle

Instrument	ment Primary Quantity Measured Requirement Performance		Margin	
MIGHTI	Horizontal wind vector	8.7 m/s	6 m/s	45 %
EUV	EUV Ion density		6 %	67 %
FUV	0/N, ratio	8.7 %	3 %	190 %
IVM lon velocity vector		5 m/s	3 m/s	67 %

Schedule Summary

	_	Phase A 80 wks	Bridge+Phas 48 wks (+4 re		ase C s (+7 res.) (Phase D 31.5 wks (+13 re		se E wks	Phase F 48 wks	
	CY2011	2012	2013	2014	2015	2016	2017	2018	2019]
ATP PDR CDR Launch En				End C	Ops. End Anal	ysis				