
RHESSI Data Analysis Software: Rationale and Methods

R. A. Schwartz1, A. Csillaghy2,3, A. K. Tolbert1, G. J. Hurford2, J. McTiernan2, and D. Zarro4

1. NASA Goddard Space Flight Center/SSAI

2. Space Sciences Laboratory, University of California, Berkeley

3. University of Applied Sciences Northwestern Switzerland at Windisch

4. NASA Goddard Space Flight Center/L3 Corp.

Abstract: We review the rationale used to develop the RHESSI data analysis software, and explain the
underlying structure of the software tools. The RHESSI software needed to meet a requirements set in the
proposal and Project Data Management Plan. Among these are the need for any member of the scientific
community to be able to analyze the large and problematic data set within days of the observation, and for
the tools and data to be deployed shortly after launch. This paper describes these requirements more fully,
explores our decisions to use the SolarSoftWare, the IDL programming language, to support both Windows
and Unix platforms, and the decision to use object-oriented programming . We also describe how the data
are rapidly disseminated and how ancillary data sets are used to enhance the the RHESSI science. Finally,
we give a schematic overview of some of the data flow through the high-level analysis tools. More
information on the data and analysis procedures can be found at the RHESSI Data Center website,
http://hesperia.gsfc.nasa.gov/rhessidatacenter.

Keywords: data analysis, object-orientation

1. Introduction

The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) is a NASA Small Explorer
(SMEX) mission to study the acceleration and transport of high energy particles in solar flares (Lin et al.,
2002). Observationally this is accomplished by high resolution imaging spectroscopy of x-rays and gamma
rays from 3 keV through 17 MeV. This energy range requires the use of indirect imaging techniques. In
this case a set of rotating modulation collimators encodes the imaging information into a time-modulated
lightcurve (Hurford et al 2002). A primary function of the data analysis software is to decode this
modulated waveform back to a quantitative estimate of the original image. An additional challenge is the
recovery of high resolution spectra that require background subtraction and the deconvolution of the
instrument response to yield the incident spectrum as a function of time with ~1 keV resolution up to 100
keV (increasing to 5 keV resolution at 17 MeV). Additional data products include the generation of
conventional light curves (parameterized by energy), and imaging spectroscopy in the form of feature-
based light curves and spectra.

This type of imaging spectrometer poses several distinct challenges and opportunities in the design of a
data analysis system. The first challenge arises from the large volume of information that must be
processed to make either the basic images or spectra. The imaging and spectroscopy both start from a
Level-0 database of 4-byte ‘photon-tagged events’, which encode the detector ID, arrival time, and energy
for each detector count, as well as some live-time bits (Curtis et al., 2002). (We refer to these events as
photon events in this paper, although they include particle events as well.) The data set for some flares
consists of hundreds of millions of these photon-tagged events, with rates up to a half million per second.
Once calibrated using the aspect solution, the modulated count rates contain information that is equivalent

http://hesperia.gsfc.nasa.gov/rhessidatacenter

to a set of Fourier components of the source distribution. From that stage, the image reconstruction task is
comparable to that in radio interferometry. One helpful factor is that (unlike the case of radio
interferometry) the RHESSI instrument response is does not vary significantly with time. However,
imaging spectroscopy, achieved by the interpretation of data cubes resolved into spatial, energy, and
temporal coordinates, does place stringent requirements on the photometric accuracy of the resulting
images.

A second challenge is posed by supporting the substantial fraction of the RHESSI user community not
familiar with either indirect imaging techniques or with many of the instrumental issues associated with X-
ray or gamma-ray spectroscopy. This is particularly important since the RHESSI data are made freely
available online within a few days of observation and it is imperative that interested users be able to
analyze the data without waiting for secondary databases to be generated. They should at a minimum be
able to obtain lightcurves and to reconstruct images and photon spectra with minimum knowledge about the
inner workings of the software. Therefore, it is essential that the user interface provide the option of
performing the image reconstruction or spectral acquisition in a manner that does not burden such users
with the details of those processes.

A third challenge is that the RHESSI mission relies on data obtained in other wavelength regimes by other
instruments to provide the context information on which much of the RHESSI science is dependent.
Therefore, special emphasis is placed on enabling convenient comparisons with external data sets. This
latter task is eased somewhat by the intrinsic absolute accuracy and stability of RHESSI image locations to
~1 arcsecond and times to one millisecond.

A unique opportunity is also afforded by the photon-tagged nature of the RHESSI data set. In most
imaging-spectroscopy instruments, difficult tradeoffs must be made during the instrument design phase or
during operations to optimize the allocation of finite telemetry resources in order to meet the conflicting
requirements of imaging field-of-view and resolution, energy range and resolution, temporal coverage and
cadence, etc. Since the RHESSI telemetry includes the arrival time, detector, and energy for each detected
photon, all of these spectrometer choices can be made during the data analysis phase. Therefore, such
decisions can be made iteratively and on a case-by-case basis in response to the unique characteristics of
the solar event under study and in response to the user’s particular scientific objectives. This unique
capability greatly enhances the scientific return from the observations. Therefore a key driver of our data
analysis approach is the preservation of this flexibility for use by the data analyst.

A further opportunity arises because the RHESSI imaging data are self-calibrating to a significant extent.
Because of this and the expectation that the calibrations and imaging algorithms will become more refined
over time, we anticipate significant improvements to the RHESSI image reconstruction during the course of
the mission. The photon-tagged nature of the data set then permits these improvements to be applied
retroactively to the entire mission data set.

To maintain the flexibility to choose time, energy, and imaging parameters and to conveniently exploit the
anticipated improvements in calibration and algorithms, the generation of extensive secondary databases is
minimized. Instead, most scientific analysis begins with the primary database with the most current
calibration information. The software applies such calibration data to yield images and spectra with the
most appropriate time, spatial, and spectral resolution and spectral range.

Other factors that define the data analysis approach are that the user interface and analysis kernel should
support both interactive analysis and multi-event batch processing. It was also deemed a requirement to
support both Unix and Windows platforms. Finally, event-driven science, such as flare observations,
places an additional premium on the rapid dissemination of both data and software.

2. Meeting the Science Requirements

2.1 Database Preparation

Before we discuss the top-level and underlying structure of the RHESSI software, we briefly describe the
data products that we archive online to facilitate scientific study. These data products provide the entry
point to any scientific study, and help guide the more detailed analyses required by most users. Another
category of data products is created dynamically according to the needs of the analyst and we will describe
them together with the software architecture in the sections that follow.

The first component of the archived data products is a database of observations and calibrations that can be
used to meet the scientific objectives. The primary database includes the following principal elements:
packed photon-tagged event lists; Solar Aspect System (SAS) and Roll Aspect System (RAS) data;
Monitor Rates; Fast Rate Counter output (when appropriate); and housekeeping data. The Monitor Rates
consist of one second readouts of various detector events that give the operators a picture of the detector
status and environment. The Fast Rate Counters contain broad energy-band event rates suitable for
imaging during the largest solar flares that might paralyze the normal detector electronics. The SAS and
RAS packets contain the aspect sensor data that allow us to know the modulation response at any location
on the Sun as a function of time (Zehnder et al., 2002). All of these data are included within our Level-0
data files. Except for some header information to make the primary database appear as a sequence of time-
ordered, non-duplicated, and quality-flagged data, the primary database has no "value-added" content over
the raw telemetered data. To ensure prompt preparation, the primary database is generated without routine
operator intervention in the Mission Operations Center and Science Operations Center (MOC/SOC). The
Level-0 packets are organized into FITS files up to ~110 Mbytes in length covering no more than a single
orbit between local midnights. During flares, with their higher data rate, there are often multiple files per
orbit. The FITS format, for which there is a large and well-tested library of low and high level routines, is
used to facilitate the documentation and the addition of useful tables within FITS extensions and
completely preserves the telemetry packets. The first extension is a table of the packet headers, containing
the packet number, packet type, and time range included. As each FITS file is completed by the
MOC/SOC, the file is copied to the archive centers at Goddard Space Flight Center and the Swiss Federal
Institute of Technology in Zurich, Switzerland (ETHZ) over the Internet and made available there for
anyone to download.

Another archival component is the “quicklook products” (QLP). These allow a quick survey via low
resolution lightcurves, spectra, and images. These are the Level-1 data products created by the MOC/SOC
autonomously using the same software used for higher level analyses. These are also referred to as catalog
or summary data. Summary quantities describing the instrument status and spacecraft position, flare
positions, flare meta-data, and data quality are included, too. All QLPs are created both as FITS files (or
extensions) and browser-viewable image formats such as GIF, PNG, and text files. The SOC posts the most
recent QLPs on the RHESSI web pages as they are created. On the web page, any user can easily access
the entire QLP archive for either the graphic format or FITS format files. Additionally, a simple summary
event catalog will be available for browsing and for searching via a web page. The browser-viewable
products are well suited to public access, since no special analysis skills or RHESSI-specific software are
required. We have also developed a software interface to the QLPs for use during analysis sessions. (As of
August 2002, the QLPs are included with the Level-0 data, but in the near future the QLPs will only be
written to separate files and not to the Level-0 files. This difference should be transparent to anyone using
the summary data on the Web or through the analysis software.)

2.2 Software to Meet the Science Requirements

Conceptually the solar x-ray and gamma-ray input to RHESSI is in the form of a data cube dimensioned
along four axes: two spatial, one for energy, and the other for time. The action of the instrument transforms
this incident data cube of real photons into a time-ordered list of photon-tagged events. In this list, the
spatial (more accurately angular) dimensions have been convolved into a temporal modulation, and the true
photon energy distribution has been convolved with the detector response. Although some of the spatial
structure of the true data cube can be read off by an examination of the temporal modulation, without the
use of high-level software it basically appears only as a temporal modulation. In contrast to this, much of
the spectral information can readily be seen in the photon-event lists binned in time and energy. This

contrast suggests that the requirement for complete flexibility in the energy dimension for building images
makes the data management task even more difficult for imaging. Thus, it is the full imaging spectroscopy
task that has driven much of the structure of the data analysis software in order to meet our goal of a robust
system capable of producing results for the general scientific user.

One of the first decisions the software team made was to build our system around SolarSoftWare (SSW)
(Freeland and Handy, 1998) and the Interactive Data Language (IDL). Both SSW and IDL have a long
heritage for solar data analysis, both are used extensively throughout Solar Maximum Mission (SMM),
Yohkoh, and Solar Heliospheric Observatory (SOHO). SSW is a package of IDL programming utilities
and libraries to facilitate the data input/output, manipulations, and comparisons needed for a data set
obtained with a solar instrument. Moreover, most of the scientific software team for RHESSI had
extensive experience with both the IDL language and the programming environment created using standard
SSW setup procedures. SSW includes installation and update procedures to ensure that users will have the
correct and current software environment for RHESSI analysis. Also, because of the wide usage of IDL for
other missions, we believe that the commercial license required for IDL imposes a mild constraint on the
community compared with the effort that would be required by the team and the scientific community to
use any alternative. IDL provides tools to build Graphical User Interfaces (GUIs) which we believe are
critical to creating a wide community of users. These are simpler to operate and do not have the burden of
syntactic structures. From the beginning we decided to fully support two of the operating systems
supported by IDL, Unix/Linux and Windows, for several reasons. There has been and continues to be a
large installed base of Unix servers, there is an increasing number of institutions deploying personal
computers using Linux, and there is a large and growing base of users analyzing data on personal
computers, in particular laptops, using all variants of Windows since Windows95. At the time we started,
there was minimal support for Windows within SSW. The RHESSI team has been a dominant contributor
in making the joint utilization of SSW, IDL, and Windows routine and seamless since then. We have found
that personal computers running either Windows or Linux make the most cost-effective platform for
RHESSI analysis. At present we do not provide explicit support for the Macintosh operating system
because it lacks the environment variables relied on by SSW. We expect that RHESSI software will work
on the newest Macintosh operating systems (very Unix-like) supported by IDL version 5.6 and beyond.

The approach of the RHESSI data analysis scheme is to create a robust system that allows the routine
production of Level-2 photon-calibrated images and spectra by any scientist given the Level-0 FITS files,
the QLPs, the calibration database, and the software installation. The RHESSI team members interact with
the data set in the same way. Recalling our incident data cube of solar photons, the software’s task is to
take the analyst’s specification of the resolution and range for the component desired, i.e. spectrally
resolved image, spectrum, or lightcurve, and complete the processing required for the associated data
product. Here we list the specific requirements of our software:

1. The software must deal with large volumes of data, potentially processing nearly four Gigabytes
of photon-tagged events to obtain a spectrogram covering a large flare, and do this with the
relatively modest resources found on common notebook computers.

2. The software must unerringly guide the user through the various processes needed to complete a
task based only on the properties of the result such as range and resolution along the data cube
axes.

3. The software must be efficient. Some operations are very costly in time and other resources. The
results of costly operations should be saved and reused wherever possible.

4. The software must allow the recovery of intermediate data products to facilitate testing and
debugging. This feature also allows building complex chains of processing from smaller and
simpler elements.

5. The action of the software must be highly configurable by user-selected parameters and
algorithms, yet require only a few changes from its default configuration to produce meaningful
results.

6. The software must be callable from a command line interface (CLI) to facilitate scripting of
repetitive actions.

7. There must be a graphical user interface (GUI) to reduce the need for an analyst to learn our
programming syntax.

3. Object-orientation in the RHESSI Data Analysis Software

The architecture of the RHESSI data analysis software is based on object-oriented design concepts. In this
section we explain what we mean by object-orientation, show how we implement this design technique in
the RHESSI software, and show why we believe that the object-oriented approach helps us meet our
software requirements.

3.1 Object-Oriented Software

Object-oriented programming describes a standard way of designing software in which the software is
divided into independent parts – the objects – that communicate through well-defined interfaces. Object-
oriented design can be seen as a realization of the “divide and conquer” rule that has been driving software
development for the past two decades: complex problems are easier to solve by first dividing them into
smaller, isolated problems. We refer to Booch (2002) for a discussion of object-orientation, or to Schach
(2001) for a software engineering approach to the topic. An online resource on object-orientation is given
by the Usenet Frequently Asked Questions (2002).

Object-oriented design has been used successfully in numerous programs, from operating systems to text
editors. Today, it is the main support for the deployment of Web applications. Surprisingly, object-oriented
design has been used little for developing data analysis systems in solar physics, even though this field has
traditionally been in the lead for innovative computer technologies. We see three reasons for this: (1)
Scientific data analysis systems are complex, and object-oriented code is harder to develop than
“procedural” code. These two characteristics collide. The rewards of object-oriented code come in the long
term, but short-term considerations often prevail in scientific software development. (2) The vendor of IDL,
the main data analysis programming language in solar physics, only recently introduced the object-oriented
software syntax, delaying the build-up of experience in this domain. (3) There is a large amount of legacy,
non-object-oriented software, available. There is a (false) tendency to think that object-orientation prevents
the reuse of this existing code.

Object-orientation does not replace procedural programming, it extends it. Objects are containers for the
data types used in an application and for the operations – also called methods – that apply to them (Gamma
et al., 1995). The data within an object can only be accessed through a limited number of access methods,
which define the interface for that object. This is the principle of encapsulation: all operations on a data
type are associated with the object that contains this data type. Furthermore, new objects can extend already
existing objects. This is the principle of inheritance: an object that extends another object inherits all its
definitions, i.e. the extended object can use all data types and methods defined in the basis object.

3.2 Object-Oriented Design Applied to RHESSI

The RHESSI software was built to take advantage of the many strengths of object-oriented programming.
One drawback is the current unfamiliarity of the syntax to many members of the user community..
However, subsequent experience has shown that this is quickly overcome and of course it does not appy at
all to those using the RHESSI graphical user interface. Other drawbacks for developers unfamiliar with the
programming techniques are discussed in Section 6.

richard schwartz
Andre, please change this reference.

The advantages gained include minimizing the amount of processing required by keeping track of and
reusing intermediate products, shielding the user from internal data analysis details (although all
intermediate products are available), reusing of code for generic object-handling functions, and supporting
both interactive and batch processes easily. The next section describes these advantages more fully. All of
these features could be implemented with standard procedure-driven code, but it would be clumsier, require
more coding and testing, and would probably burden the analyst with keeping track of parameter changes
and how that affects the reuse of intermediate products.

Now we discuss how we apply the concepts of objects to accomplish the goals of the RHESSI software.
Dennis (2002a and 2002b) and Johns-Krull (2002) provide extended introductions to RHESSI imaging and
spectroscopy software.

There are three top-level objects to handle the three primary RHESSI data products – images, spectra, and
lightcurves. These three objects employ a set of intermediate data products for each step of the processing
cycle: data retrieval, accumulation, time binning, energy binning, aspect calculation, image reconstruction,
etc. These data products are listed in Table 1. Each data product is associated with an object. Thus, there
is a packet object, an event list object, etc. These intermediate objects are created when necessary and
stored within the three primary objects. The RHESSI data analysis software can be considered as a chain
of objects. To arrive at the final product, a chain of transformation of data products occurs.

Table 1: A list of the main RHESSI data products

Type Object Name Product
hsi_image Images
hsi_lightcurve Lightcurves Main RHESSI data products
hsi_spectrum Spectra
hsi_clean Images processed by the CLEAN algorithm
hsi_forwardfit Images processed by the Forward Fitting

algorithm
hsi_pixon Images processed by the Pixon algorithm
hsi_mem_sato Images processed by the Maximum Entropy

algorithm (MEM SATO)
hsi_memvis Images processed by the Maximum Entropy

algorithm using visibilities

Data products associated with a
specific image algorithm

hsi_bproj Back projection images
hsi_psf Point spread function
hsi_modul_profile Modulation profiles
hsi_modul_pattern Modulation patterns
hsi_calib_eventlist Calibrated event lists
hsi_binned_eventlist Binned event lists
hsi_eventlist Event lists

Intermediate data products

hsi_packet Telemetry packets

Every object in the chain has identical access methods: a Set method for setting parameters in the object, a
Get method for extracting parameters from the object, and a GetData method for processing and retrieving
the primary data of the object. A standard interface object called Framework was written to handle these
methods so that access to every object (and hence data product) is the same. The framework object is
reused (i.e. inherited) by each individual data product object to handle the generic parts of the access
methods. The data product-dependent code (the transformation algorithm itself) is embedded into the
process method of the specific object.

First, we will outline the steps an analyst would take to create an object and retrieve data from it, and then
we will discuss the operation of the objects. We will use image reconstruction as an example (lightcurve
and spectrum generation are similar). We proceed as follows:

1. An instance of an image object is created. This creates a reference (a variable name) to an object
and initializes all of the control parameters in the object to default values. At the SSW IDL
command prompt, the command used is:

 obj = hsi_image()
2. Parameters that need to be changed from the default are set via the Set method. We will usually

want to set values for the time interval, energy range, spatial resolution, and position of the field-
of-view on the Sun. For example to set the position of the field-of-view, the command used is:

 obj -> Set, xyoffset = [-900., -250.]

3. The image that corresponds to the current setting of the parameters is retrieved using the GetData
method. If necessary, the image is processed, following the data transformation chain mentioned
above.

 data = obj -> GetData()
4. Parameters that give information about what happened during image generation can be retrieved

using the Get method:

 params = obj -> Get()
The parameters that apply to each data object are tabulated in Tolbert (2002a). There are two general
classes of parameters – control parameters that the user sets to specify the data requested, and information
parameters that are set by the object to show what happened during the processing of the data. Any of
these parameters can be retrieved using the Get method. An important feature of getting and setting
parameter values in RHESSI objects is that because objects are chained together with framework, the
parameters can be set and retrieved from any object in the chain. For instance, we can set the image
dimension (associated with the modulation pattern object) in the same way that we set the time range
(associated with the event list object), both with the Set method of the image object.

Now we return to the chain of transformations of data products initiated by the GetData method. In this
chain, telemetry packets are transformed into event lists, which are transformed into binned event lists,
which are transformed into calibrated event lists, back projections after including the modulation patterns,
and finally images. This chain is shown in Figure 1.

When an image is requested, the image object checks whether it already contains an image corresponding
to the current parameter setting. If it does, this image is returned to the user without any further processing.
If it does not, the object needs to process a new image. To do this, it relies on several intermediate data
objects. One way an image can be processed is by summing up back projection maps, the basis of the
RHESSI image reconstruction method (Hurford et al., 2002). Thus, the image object relies on a back-
projection object, which is responsible for building back-projection maps. Other objects of interest for the
image object include those implementing the different image algorithms (Forward Fit, MEM, Pixon, Clean,
MemVIS), as shown in Figure 1.

The back-projection object now proceeds in a similar fashion. It first checks whether it contains back-
projection maps corresponding to the parameter settings. If it does, these data are returned to the image
object without further processing. If it does not, the object needs to process new back projection maps.
Back projection maps are processed by building a set of modulation patterns weighted by the binned
photon counts. Thus, the back projection object relies on a modulation pattern object, which is responsible
for processing the modulation patterns specific to a spatial and spectral resolution.

This process continues along the chain of objects, from the image to the Level-0 data files, with each object
returning either previously-processed or newly-processed data products as required.

As for the access interface, the framework in which these transformations occur is the same for all steps in
the chain. It is “only” the data product in consideration that changes. Thus, the Framework object

Kim Tolbert
why the quotes?

implements the generic part of the software (therefore, the name Framework). Extensions of the
Framework implement the data product-dependent code.

3.3 Benefits of Object-Oriented Design for RHESSI

We believe that the data analysis software is more structured, efficient, maintainable, and extendable by
using object-oriented techniques than it would be with traditional procedural software for the following
reasons:

Minimized Reprocessing: The framework object also implements the reprocessing policy. Whenever a
parameter is set, the framework checks the parameter value passed. According to the reprocessing policy,
the Framework decides whether the data already generated in the object is consistent with the parameter
settings. If not, the Framework sets a flag to regenerate the data at the time of the next request. This
strategy allows not only for updating the data only when it is necessary, but also for waiting until a request
comes to generate any new data product.

Shielded Details: Shielding the user from the burdensome details of data analysis is accomplished by
enabling the user to access data in a simple and obvious way. Access to a data product should involve as
few commands as possible and the analyst should not have to be concerned about the intermediate data
products. Objects provide the necessary tools by allowing the simplest user interface one can imagine. Not
only are the Set, Get and GetData access methods available in all objects, all objects use the same
implementation of those methods. This technique allows a straightforward access to virtually any byte in
the data, while keeping the interface in its simplest form. And though the data analyst is shielded from
many of the specific details, every detail of every process can be examined. All of the intermediate data
products can be examined, and due to the interactive nature of IDL any line in any procedure can be found
and examined during processing.

Support of Interactive and Batch Processing: Using objects also allows us to accomplish our goal to
support both interactive and batch processing easily. The access interface described above can clearly be
used for interactive processing in IDL's command-line interface (CLI) and in batch processing through the
use of scripts. In addition, we have built a graphical user interface as a layer over the CLI. GUI
development was significantly simplified because of the object design of the underlying software. With
objects, parameter values and data products are accessed through a single object reference. Within the GUI,
the object reference is used to pass parameters and data to individual widgets. Thus, widgets specialize in
presenting options for the data analysis task, and delegate data and parameter management to the objects.
This architecture allows a clear separation between the widget-based event processing and the data
processing. This on the one hand avoids duplicating parts of the software, and, on the other hand, makes the
localization of software bugs easier; hence, it contributes significantly to the robustness of the system. It
also contributes to the power of the GUI by giving every widget access to the entire functionality of the
data analysis software.

In addition to the support of our primary objectives, objects also provide support for further development
and management of the software during the mission. The object-oriented design is an adequate response to
issues in reuse, maintenance, extensions, and combination with other software packages.

Software reuse: The definition of a single interface for accessing any data product provides a strong
potential for reusing code. The management of data products (getting and setting parameters, reuse policy)
is written only once, in the Framework object.

Software maintenance: The principle of encapsulation allows us to locate bugs efficiently and correct the
software with minimal effort. Furthermore, since changes remain localized, bug corrections in one area
will not generate an avalanche of other changes in the software. Finally, specific objects can be assigned to
specific programmers and the interactions in developing software are considerably easier to manage. This is
an important consideration when a software team is spread around the world.

richard schwartz
I’ve added these lines as a defense against the comments of Hugh Hudson who was so confused by the meaning of HIDING DETAILS.

Software extension: Here again, encapsulation helps. New functionality for specific data products can be
added by adding new methods to the objects. In addition, completely new objects can be added with
relatively few changes in other parts of the software.

Combination with other software packages: Object-oriented software and procedural software are
compatible. The RHESSI Graphical User Interface (GUI) is an example; the GUI is not object-oriented
itself, but relies on object-oriented software. Conversely, an object-oriented interface can be built on top of
legacy (procedural) software. This allows the definition of higher-level objects that can be designed to
combine data from several instruments. Software development using this approach includes the Map
Objects (Zarro, 2000) and is being considered for new projects such as the Virtual Solar Observatory (Hill
et al., 2002).

4. Using the RHESSI Data Analysis Software

Analysts use the RHESSI software either by typing commands through IDL's command-line-interface
(CLI), or by entering the RHESSI GUI. Using the CLI, analysts create and manipulate the RHESSI objects
directly. The CLI offers the full power of the objects, but requires the analyst to be familiar with IDL
syntax and RHESSI procedure and parameter names. The GUI shields the analyst from those kinds of
details and makes it easy to use most of the functionality available in the objects, but has its own
limitations.

4.1 Using the RHESSI Objects from the CLI

As mentioned above, there are three main RHESSI objects that provide access to the main RHESSI data
products – images, spectra, and lightcurves. They are listed along with their intermediate data products in
Table 1 (Section 3.2), and are discussed more fully in Sections 5.1 and 5.2. A diagram showing the
interconnections among these objects is shown in Csillaghy (2002).

Another object is provided to access the observing summary and quicklook data. This object and its
underlying objects are listed in Table 2, and discussed in more detail in Section 5.3.

Because of the structure of the RHESSI objects, every object in either list can be used directly or as an
invisible part of the chain of objects needed to produce a data product. To use an object directly it can be
created interactively by the user as a stand-alone object, or it can be extracted from a higher-level object.
The discussion that follows demonstrates the types of operations that can be used on any of these objects.

4.1.1 Initialization and Methods

Every object is created with the command obj = hsi_objectname() and has a Set, Get, and GetData method
as discussed earlier. Many objects have additional methods that are specific to the object. For example,
most of the top-level objects, and some of the underlying objects have a Plot method. Csillaghy (2002)
provides a complete list.

4.1.2 Object Parameters

Every object has control and information parameters that are specific to it, see Tolbert (2002a). As
mentioned earlier, the user sets control parameters to specify the data requested; the object sets information
parameters to show what happened during the processing of the data. During initialization of the object, all
control parameters are set to default values. Users only need to set parameters they want to be different
from their default value. When using objects that are part of a chain of objects, users do not need to be
concerned about which particular object a parameter applies to. The Framework manages setting the
parameter in or getting the parameter from the correct object in the chain. Any number of parameters may
be set or retrieved in one command. Some examples of setting and getting parameters follow:

obj -> set, obs_time_interval=['29-mar-02 21:20','29-mar-02 21:30'], energy_band=[6.,12.]

params = obj -> get(/time_range, /energy_band, /pixel_size)

Setting parameters can be combined with initialization of the object, or with GetData, Plot, or other
method calls. When any method is called, it first calls the Set method to set any object parameters that
were passed in the call, then retrieves whatever data is necessary to accomplish the function of the call.

4.1.3 Keywords

In addition to control parameters, control over the objects is implemented by using keywords in the method
calls. Keywords allow us to refine the method calls. It is important to note the distinction between
keywords and control parameters, because they are syntactically similar. Keywords apply only to the
immediate method call – they do not persist in the object; control parameters are stored in the object and
once set, persist until changed. Some keywords are data product-specific, others are generic. Refer to
Csillaghy (2002) for a complete description of available keywords. For instance to retrieve all of the
information parameters from an object, we use the INFO_ONLY keyword:

 all_info_parameters = obj -> get(/info_only)

or to retrieve a specific parameter, we can specify that parameter as a keyword. For example, to retrieve
the control parameter specifying the image dimensions we want in our reconstructed image, we type:

image_dim = obj -> get(/image_dim)

4.2 Graphical User Interface

We have constructed a graphical user interface (GUI) as a layer on top of the objects. The GUI provides an
easy way to use the RHESSI software without requiring any knowledge of the RHESSI data objects, or the
IDL command names and syntax. To start the GUI, we simply type hessi at the SSW IDL command
prompt. The main GUI window is essentially a control panel - it provides entry points into more
specialized widget interfaces to access the various forms of RHESSI data, while managing the storage,
display, and user interaction with plots of retrieved data. It also provides access to the Synoptic Data
Archive (see Section 5.4), and manages overlaying those data with RHESSI data.

Because the GUI is built around the RHESSI objects, it has access to the entire functionality of the data
analysis software. The GUI manages the user input to the objects, and the data extraction from the objects,
but all of the data processing takes place within the objects. Therefore, there is no duplication of code, and
there should be no difference in results obtained through the GUI and command line.

There are some limitations of the GUI: (1) While the GUI can potentially access all the functionality of the
objects, it is limited in practice to the options programmed into each widget interface. All of the primary
options are currently available, and with time, as we learn which additional options analysts use most
frequently, we will add new features. (2) There is currently no scripting capability available in the GUI.
Analysts must enter repeated sequences by clicking buttons every time.

A powerful feature of the GUI that allows the GUI and command line to share objects mitigates the first
limitation. A combined approach of using the GUI for operations most easily done through the GUI and
using the command line for purposes that are more esoteric offers endless possibilities. We will address the
second limitation in the future.

The GUI employs a Plot Manager object (Tolbert, 2001) written for the RHESSI project that has potential
for general usage. The Plot Manager object provides most of the generic plot-handling features of the GUI.
All of the different data types retrieved in the GUI (spectra, time plots, images, contours, etc) are registered

Kim Tolbert
Or perhaps get rid of this next paragraph entirely.

richard schwartz
Do we believe this is complete? I don’t.

Andre Csillaghy
I would mention hat the real advantage of the GUI is that the semantics of the image analysis process is included in the arrangement of the widgets, which is in principle an added level of information that is not available in the cl RS: While true, we’ll not be putting this comment in.

in the Plot Manager object, which then uses the same code, regardless of the origin of the data, to allow the
user to interactively manipulate the plot, print it, save it in a plot file, etc. This code is not RHESSI
specific, and could be applied to data from other missions.

5. Elements of RHESSI Data Analysis Software

Analysts can access all of the data elements discussed below through the IDL CLI or through the RHESSI
GUI. Refer to the table of object parameters in Tolbert (2002a) for the parameters that apply to each object
and to Csillaghy (2002) for the methods that apply to each object.

5.1 Images and Imaging Spectroscopy

Dennis (2002a) and Johns-Krull (2002) provide step-by-step guides to RHESSI imaging. There are six
image reconstruction algorithms available: Back Projection, Clean, Forward Fit, Maximum Entropy,
Maximum Entropy with Visibilities, and Pixon. Hurford et al (2002) discusses these algorithms in detail.
Figure 1 shows the chain of transformations required to produce an image with each algorithm starting with
the Level-0 data files or a user simulation.

We recall the example given in Section 3.2 to generate an image. Here in addition we set the time range
and use the plot method to display the result:

obj = hsi_image()

obj -> set, time_range=['2002/7/23 00:30:00','2002/7/23 00:30:04'], xyoffset=[-900, -250]

image = obj -> getdata()

obj -> plot

As shown in this example, setting just two parameters - the time range and the position of the field-of-view
on the Sun - and leaving all other parameters at their default setting, will produce a reasonable image.
Many other parameters can be set however, such as image dimensions, pixel size, detectors, energy range,
and image algorithm.

There is an important feature of the objects that we can take advantage of in imaging. Since the different
algorithms are each implemented as their own strategy in the same object, the results from each algorithm
are stored simultaneously in the object and can be retrieved easily or processed further. This allows us to
compare images using different algorithms with full confidence that all other parameters in the object are
identical.

There are several tools for performing feature-based imaging spectroscopy. The GUI has options to specify
multiple time and energy bins and produce a 4-dimensional image cube FITS file. Once we have created
the image cube file, there are several options for examining it: (1) The GUI has an interface for selecting
regions of interest and computing quantities such as the flux, centroid, and peak through the image cube.
(2) The GUI has an option to show the image cube as a movie either in the time or energy dimension. (3)
There is a standalone program called IMSPEC, which computes spectra through the cube for regions of
interest. Imaging spectroscopy capabilities within the RHESSI objects are under development.

Andre Csillaghy
this was alredy given much earlier

richard schwartz
Andre, please provide a succint definition of strategy that is not circular. If I define it, I’ll say that it allows us to accomplish what we just stated.

IMAGE CREATION DIAGRAM

Simulated Data File
(hsi_sim_flare) Level-0 Data Files User Simulation

Find and Read Data
(hsi_packet)

Unpack Data into Photon-tagged
Event List

 (hsi_eventlist)

Bin Data by Energy, Time, and
Detector

(hsi_spectrogram,
hsi_binned_eventlist)

Calculate Aspect
Solution

(hsi_aspect)

Combine Aspect Solution with
Binned Data

(hsi_calib_eventlist)

Build Universal Modulation
Patterns for Selected FOV

(hsi_modul_pattern)

Calculate Visibilities
(hsi_modul_profile_

vismod)
(hsi_bproj_vismod)

Compute
MEMVIS Image

(hsi_memvis)

Compute Expected Time
Profiles

(hsi_modul_profile)

Compute Back
Projection Image

(hsi_bproj)

Compute Point
Spread Function

(hsi_psf)

Compute Forward
Fit Image

(hsi_forwardfit)

Compute MEM
Image

(hsi_mem_sato)

Compute PIXON
Image

(hsi_pixon)

Compute
CLEAN Image

(hsi_clean)

Figure 1. The chain of transformations for an image reconstruction. The name of the object (or in some
cases, program) corresponding to each task is shown in parentheses. The final products are in the darker

gray boxes.

5.2 Spectra and Lightcurves

Smith et al. (2002) discusses RHESSI spectroscopy in detail. Figure 2 shows the chain of transformations
required to produce a spectrum or lightcurve starting with the Level-0 data files or a user simulation.

The lightcurve object is based on the same objects and methods as the spectrum object, in fact the
lightcurve object inherits the spectrum object. The main difference is that the data returned by the
GetData method is ordered by time rather than energy.

The RHESSI software offers complete flexibility in selecting energy and time bins for spectra and
lightcurves. The bins can be of fixed or arbitrary size.

An important feature of the RHESSI software is that an event list of any size can be processed; the
computer should not run out of memory. This means the user can select any duration, even during periods
of high photon counts, for accumulating spectra. This is accomplished by reading the data in bunches (a
fixed number of data packets), and reusing the memory after processing a bunch. The only limitations are
therefore the final size of the spectrum array (which depends on the number of energy and time bins) and
the amount of time it takes to read and process the data (which can be considerable).

Normally the spectrum object returns a count rate spectrum. There is also an option to return a “semi-
calibrated” spectrum. A semi-calibrated spectrum does not include a background subtraction and uses only
the diagonal elements of the response matrix. It is not a complete solution, but gives a first-order
approximation below 100 keV. Another element is needed for complete analysis of the spectra - the
spectral response matrix (SRM). There is an SRM object incorporated into the spectrum object that offers
varying levels of complexity in computing the SRM, ranging from just the diagonal elements to the full
response matrix include all off-diagonal elements.

Using the FileWrite method in the spectrum object, we can export the accumulated spectra and the SRM to
FITS files. This serves two purposes – it saves results that may have taken a long time to accumulate, and
it is the first step in performing complete spectral analysis. Currently we do not fully analyze spectra in the
RHESSI object software (and hence the GUI). After exporting the data to FITS files, we proceed with
external spectral analysis software to produce more accurate photon spectra and compute best-fit function
parameters to the spectral data. Implementing spectral analysis within the object environment (and hence
the GUI) is under development.

The external packages we use to analyze spectra are SPEX (see Smith et al., (2002) for a description of the
process) and XSPEC (Arnaud et al., xxxx). SPEX is a multi-mission SSW/IDL tool written by Schwartz 8
years prior to the RHESSI mission; XSPEC is a FORTRAN-based package written by the Laboratory for
High Energy Astrophysics at GSFC. Both packages provide an interface suitable for X-ray spectral
analysis of data from a number of astronomical instruments. The RHESSI spectra and SRM are imported
into SPEX via FITS files we create from the RHESSI objects. We have not yet built the software to
complete the conversion of the spectrum and response-matrix files to XSPEC formats, but this is
straightforward using the tools in SSW and could be done on demand. Dennis (2002b) provides a guide to
getting started with SPEX.

An example of accumulating a spectrum and writing spectrum and SRM FITS files follows:

obj = hsi_spectrum()

obj -> set, obs_time_interval=’23-jul-2002’+[’ 00:10:00’,’ 01:20:00’]

obj -> set, sp_energy_binning=14, sp_time_interval=10.

obj -> filewrite, /buildsrm

Kim Tolbert
Needs a time for a good spectrum.

SPECTRUM AND LIGHTCURVE CREATION DIAGRAM

Simulated Data File
(hsi_sim_flare)

User Simulation Level-0 Data
Files

Find and Read Data
(hsi_packet)

Calculate Aspect
Solution

(hsi_aspect)

Unpack Data into Photon-tagged Event
List

(hsi_eventlist)

Calculate Spectral Response
Matrix

(hsi_srm)

Produce Spectrum or Lightcurve by
Binning Data by Energy, Time, and

Detector
(hsi_spectrogram, hsi_spectrum)

Spectral Analysis
(SPEX , XSPEC)

Figure 2. The chain of transformations for calculating a spectrum or lightcurve.

5.3 Observing Summary including Quicklook Products

The observing summary consists of the Level-1 data products listed in Table 2. Each type of data in the
observing summary is stored in a separate binary extension of a FITS file (originally the Level-0 FITS files,
but as of September 2002, a separate daily catalog file). Refer to McTiernan (xxx) for a complete
description of the contents of each observing summary data type, and Tolbert (2002b) for documentation
on using the hsi_obs_summary object.

Table 2. A list of the Observing Summary and Quicklook Data Products

Type Object Name Product
Main object hsi_obs_summary All Obs. Summ. Data

hsi_obs_summ_rate Observing Summary Rates
hsi_mod_variance Modulation Variance
hsi_ephemeris Spacecraft Position
hsi_qlook_pointing Quicklook pointing
hsi_qlook_roll_angle Roll angle

Individual Data Products

hsi_qlook_roll_period Roll period

Kim Tolbert
I just put online a new document describing the hsi_obs_summary object and how to use it, so I suggest just referring to that, and deleting the specific information here, as I've done. The table is in that Web document, so we could get rid of it here, but it seems kind of parallel to the other table, and nice for an overview of what the obs summ data is all about.

richard schwartz
Do we really need this table? Can’t we site Jim’s pages for this?

hsi_obs_summ_flag Obs. Summ. flags
hsi_flare_list Flare list
hsi_qlook_image Quicklook images
hsi_qlook_spectra Quicklook spectra
hsi_qlook_summary_page Summary page
hsi_qlook_monitor_rate Quicklook monitor rates
hsi_qlook_packet_rate Quicklook packet rates

hsi_qlook_soh Quicklook state of health data

5.4 RHESSI Synoptic Data Archive

The RHESSI Synoptic Data Archive (hereafter referred to as the Synoptic archive) has its origins in the
SOHO Synoptic Archive that was constructed to meet the planning and joint observation requirements of
experiments onboard the SOHO mission. The SOHO archive is a central database of selected datasets from
cooperating space- and ground-based observatories. The database is updated daily and is accessible via
Web and IDL interfaces developed and maintained at the Solar Data Analysis Center (SDAC). The
RHESSI Synoptic archive is an extension of the SOHO archive to include concurrent observations of
RHESSI-observed solar flares at different wavelengths. (Zarro, 2002)

5.4.1 The Synoptic Archive

The purpose of the Synoptic archive is to complement RHESSI observations by providing additional
context information (e.g. magnetic morphology and geometry) and physical parameters (e.g. temperature,
density, velocity, etc) that cannot be obtained directly from RHESSI observations. Synoptic archive
datasets are selected according to the following requirements. They must

• overlap spatially and temporally with RHESSI-observed flares

• include different datatypes (image, spectra, lightcurves, spectroheliograms)

• cover a wide range of wavelengths (optical, radio, EUV, soft X-ray)

• be in a standard data format (e.g. FITS)

• be available online for easy access

Table 3 lists datasets and their corresponding sources that have been identified to meet the above
requirements.

Table 3. Synoptic archive datasets that complement RHESSI observations. SXI observations are
expected to become available January 2003.

Datasets Source
Magnetogram (including vector) Mees, NSO, BBSO, MSFC, SOHO/MDI
H-alpha imaging/spectroheliogram/polarization Mees, Meudon
Optical imaging/spectra Mees, Meudon, NSO, BBSO, Kanzelhohe,

Kiepenheuer
Radio imaging/spectra/lightcurves OVSA, Nobeyama, Phoenix, Nancay
Soft/Hard X-ray/EUV imaging Soft X-ray Imager (SXI), SOHO/EIT, TRACE
Soft/Hard X-ray lightcurves GOES, HXRS (Czech)

The task of obtaining and disseminating Synoptic datasets is performed by mirroring data files from remote
sites around the world to a central server at the SDAC where they are made available for searching,
browsing, and download (via ftp or http) to individual user systems. In order to facilitate the mirroring of
datasets, each site is required to store its data in FITS-compliant files using date-based naming conventions.
For example, a Big Bear Observatory H-alpha image file with an observation start date of 01:00 UT on 12-
December-2002 would have the filename: bbso_halph_20021202_00100.fts. To facilitate mirroring, remote
files are stored on an anonymous FTP server in directories that are organized by date.

5.4.2 The Synoptic Archive Software

The bulk of the original IDL software that supports the Synoptic archive was written several years prior to
the launch of RHESSI. The software is fully integrated into SSW and has been tested on current versions of
Unix and Windows operating systems using the most recent version of IDL. The software consists of
general routines to read FITS files, specific readers for particular instruments (e.g. SOHO/ Extreme
Ultraviolet Telescope [EIT]), and tools for coaligning and displaying images.

The task of integrating the Synoptic and RHESSI data analysis software systems has been guided by the
requirement that the two systems be capable of passing data and relevant parameter information in a
seamless fashion. Why is this requirement important? Consider the typical task of overlaying a
reconstructed RHESSI image on a ground-based H-alpha image or magnetogram to identify sites of thick-
target electron precipitation. This task is accomplished by first creating a RHESSI image using available
techniques, finding the relevant H-alpha or magnetic dataset that is nearest in time and spatial location to
the RHESSI event, and finally reading and plotting the two images on a common spatial scale.

A typical user cannot be expected to know all the details of module names and procedure calls for different
Synoptic datasets in order to perform the above overlay task easily. The solution that we have adopted is to
develop object-oriented IDL wrappers for each different dataset stored in the Synoptic archive. For
example, the SOHO/EIT data reader is embodied as a read method of an object class named 'EIT', while a
SOHO/MDI data reader is embodied as a read method of an object class 'MDI'. The advantage of this
formalism is that different synoptic data types can be read into memory using the same Read method name.
To enhance the utility of synoptic data objects further, we have developed Set, Get, and GetData interface
methods analogous to those of RHESSI objects. With these methods, one can retrieve the underlying image
data and associated parameter information such as solar pointing, observation time, etc. In addition to
image datasets, we have developed corresponding object-oriented wrappers to lightcurve datasets such
GOES soft X-ray, and Phoenix, OVSA, and RSTN radio observations. The lightcurve objects use the same
interface method names as RHESSI and, accordingly, can be used to overlay with RHESSI lightcurve
observations.

The development of IDL object wrappers for Synoptic archive datasets and software has resulted in several
benefits. First, it has minimized the development of new software. Existing procedural code that has
already been written and debugged for particular synoptic datasets can be reused as methods of the
corresponding object. Second, because they share similar interface method names, synoptic data objects
have the same “look and feel” as RHESSI data objects. Consequently, RHESSI analysis software such as
the GUI can conveniently operate on different synoptic datasets using the same method calls as RHESSI
objects.

6. Discussion

In the previous sections we have described the RHESSI data analysis software in terms of its successes.
Real software development projects encounter problems, especially when new software methods are
employed. In this section we discuss some of these problems in an effort to help development teams for
other projects plan their strategies, as well as to preview some of the improvements we are bringing to our
own software.

6.1 Management of the Software Development

To meet the software challenges posed in sections 1 and 2.2, we employed object-oriented design methods.
Nevertheless, this solution had its own costs, most of which were related to IDL's meager support for
objects, and the software team's lack of expertise with objects.

IDL’s support for objects is mainly syntactic, so many utilities were needed for our chain of RHESSI
objects to function optimally. Consequently, the Framework and other management objects were being
developed and enhanced throughout the software development period, sometimes hindering progress in
other areas.

Initially, only one member of the software team (AC) was versed in object-related methods and
philosophys so all of the object-specific development flowed through him. This required that one person to
build most of the object classes around procedures written by other team members. There was clearly a
learning curve more team members became familiar with some of the principles so they could successfully
code and debug modules without intervention.

An area where the lack of experience hurt was in defining the correct object structure and determining
when objects should be used instead of ordinary procedures or functions. As an example of the former, we
have found in hindsight that the SRM (spectrum response matrix) object and the SPECTRUM object have
the wrong relationship in the processing chain. As written, any change in SRM parameters would cause
reprocessing of the SPECTRUM object, when in fact the two objects are mostly independent. We have
modified the SPECTRUM object's reprocessing policy by writing special cases to prevent the extra
reprocessing, however if the objects were properly related that would not be necessary.

The example above illustrates the need to build software not from a functional point of view but from a
data-modeling point of view. We believe that the best way to design software is by first understanding the
data products that are involved at every data processing step. Defining the correct data products makes it
possible to infer the software functionality from the data. Nevertheless, many software developers already
think in terms of data products, but program in a procedural way. For them, the shift to object-oriented
programming is reduced to the adoption of a few syntactic structures that will help them in their
development, and increase their efficiency. Had we understood this at an earlier stage our software
development would have been faster and more robust.

Programmers also need experience to decide when an object class is required to supplant procedural
methods. For this we have found that a figure of merit is obtained in the product of the number of times a
result is accessed by the time it takes to produce a result. As that product becomes a larger proportion of
the overall processing time, an object with clear rules that determine reprocessing should probably be
utilized. We have identified several procedures within the SPECTROGRAM classes related to energy and
time binning that would perform better using our Framework object.

For future projects requiring complex data analysis methods, we anticipate that object methods will become
a necessity rather than a choice. In this context, our experiences should prove educational. Studying
several concepts and techniques used in our software might be beneficial: (1) Our basic template for object
development (Csillaghy 2002) should be examined for its simplicity and reusability. Using that template, a
simple processing chain could be built to gain experience. (2) We use several techniques to encode variety
and exceptions within the object classes. For example, we use the STRATEGY_HOLDER class to achieve
differentiation in our image processing. This technique allows us to process images using different
strategies (image algorithms) but with identical input and output structures, and with the maximum reuse of
intermediate data products. Another example is the variety achieved in the SPECTROGRAM objects
through the use of a post-processing routine. The SPECTROGRAM objects (SPECTRUM,
LIGHTCURVE, and BINNED_EVENTLIST) start with identical data and are processed through the
inherited SPECTROGRAM process method, but then each apply their own additional processing routines.
These techniques are based on standard software engineering methods, the design patterns, described by
Gamma et al (1994). Our innovation is in applying them to scientific data analysis. We believe that design
patterns have a significant potential of application in scientific data.

6.2 Lessons Learned Post-Launch and Anticipated Changes

Kim Tolbert
I moved this paragraph from where it was a few paragraphs down since I think it applies to the previous paragraph

How well were our pre-launch expectations for our software and the deployment of our databases met? As
expected, the RHESSI hardware behaved somewhat differently in space than on the ground. The main
unanticipated problems that required immediate software solutions were data dropouts (Smith et al., 2002)
and the need to use the PMTRAS data for roll aspect (Hurford and Curtis, 2002), both of which required
non-trivial solutions. In addition, our original plan for organizing the data files was flawed. We originally
attached Level-1 Quicklook Products (QLP's) to the Level-0 FITS files. This meant that any change in the
QLP's necessitated rewriting the entire Level-0 database, and propagating all of the rewritten files to mirror
sites and individual local archives. The files are large and the time to regenerate and propagate them
became prohibitive. As of September 2002, we are removing the QLP's from the Level-0 FITS files, and
appending them instead to a much smaller daily catalog file.

It was necessary to address the issue of compute-time, particularly since users were starting from a photon-
based data set and since many algorithms are intrinsically iterative. (Maximizing re-use of intermediated
data products is valuable in this context.) Other initial efforts were directed at speeding the image
reconstruction task, where one-to-two orders of magnitude were saved by algorithm innovations (Hurford
et al., 2002). Speed is not a dominant issue with the current package except for large flares where hundreds
of millions of photons must be processed. We believe that we can significantly reduce the processing time
needed to build the spectrograms by processing the eventlist once and saving the results in a file. The size
of this file will depend on the flare x-ray intensity and the user-selected time range. Further processing in
the same time and energy range will then use this file instead of the Level-0 file, and the original raw
packets when outside these ranges.

Simulation software for RHESSI played several roles during the development phase. Simulation output
could be expressed either as an event list, a simulated Level-0 data file or as a series of timed 'photon'
stimuli into the flight hardware. This permitted testing of data handling and image reconstruction software
as well as end-to-end testing of hardware/software systems. After launch, simulation software is expected
to provide a tool for evaluating the robustness of image reconstruction. Documentation on how to use the
simulation tools can be found in Johns-Krull (2002).

The simulation software was based on many of the same geometrical modules used for image
reconstruction. While this enabled significant savings in the effort required to develop the simulation
capability, this compromised the value of simulations for the discovery of some classes of 'geometrical'
bugs since errors in simulation were exactly compensated during analysis.

Another area in which our preparations were incomplete is the tracking of instrument configuration
changes. The software team was unaware that complete housekeeping information was not included in the
telemetry stream, and consequently made no provision for compiling logs of changes in housekeeping
information. We are now compiling these logs, but a better solution would have been to have this
information encoded in telemetry.

A series of ongoing hands-on workshops provided a combination of presentations by software developers
and hands-on experience for potential users of RHESSI software. This not only represented an additional
channel by which to reach potential users, it also provided useful feedback to the software development
team. They were an integral part of our documentation strategy and provided the impetus for the creation
for many of documents found on the RHESSI datacenter website. We believe these workshops to have
been successful and that they have enabled many scientists to begin scientific analysis with RHESSI data
within a few weeks after the launch.

Finally, we expect to improve the RHESSI analysis software through the life of the mission. These
improvements will be made to the structure of our objects, to the speed of our process methods, and to the
quality of our scientific algorithms. The focus of our efforts will be, as always, to maximize the scientific
return from the RHESSI project.

Acknowledgements: We are grateful to M. Aschwanden, C. J. Conway, M. Fivian, S. Krucker, T. Metcalf,
J. Sato and D. M. Smith for significant contributions to the RHESSI software package. We also thank R.

Bentley, B. R. Dennis and C. Johns-Krull for their valuable insights and roles in documenting the software.
Without contributions such as these, the package would not exist. We also thank R. P. Lin for his support
in allocating sufficient resources and priority to this task. the work of AC has been partially funded by the
Swiss Federal Institute of Technology, Zurich, and by the University of Applied Sciences Northwestern
Switzerland at Windisch. This work is funded by NASA grant NAS5-98033-05/03.

References:

Booch, G., 2002, Object-Oriented Analysis and Design with Applications, 3rd Edition, Addison-Wesley.

Curtis, D, Berg, P., Gordon, D., Harvey, P.R., Smith, D.M., Zehnder, A., 2002, in press (this volume).

Dennis, B.R., 2002a, RHESSI Imaging -- First Steps, Internet Document,
http://hesperia.gsfc.nasa.gov/~dennis/imaging/first_steps.htm

Dennis, B.R., 2002b, RHESSI Spectroscopy -- First Steps, Internet Document,
http://hesperia.gsfc.nasa.gov/~dennis/spectroscopy/first_steps.htm

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995, Design Patterns: Elements of Reusable Object-
Oriented Sofware, Addison-Wesley.

Hill, F., Csillaghy, A., Bentley, R.D., Aboudarham, J. Antonucci, E, Finkelstein, A., Ciminiera, L.,
Gurman, J.B., Scholl, I., Pike, D. and Zharkova, V., 2002, EGSO in Need for a Global Schema, Proc. SPIE,
in press.

Hurford, G.. J., Schmahl, E. J., Conway, A.J., Dennis, B.R., Schwartz, R. A., Lin, R. P., McTiernan, J.,
Smith, D. M., Johns-Krull, C., Csillaghy, Aschwanden, M.J., Metcalf, T.R., 2002, in press (this volume).

Freeland, S.L., and Handy, B.N., 1998, "Data Analysis with the SolarSoft System ", Solar Physics, 182,
497.

Johns-Krull, C.M., 2002, An Overview of the Command Line Interface for RHESSI Data Analysis
Software, Internet Document, http://hessi.ssl.berkeley.edu/~cmj/hessi/doc.html

Schach, S., 2001, Object-Oriented and Classical Software Engineering, 5th Edition, McGraw Hill.

Smith, D. M. et al., 2002, in press (this volume)

Tolbert, K., 2002a, The RHESSI Control and Info Parameter List, Internet document,
http://hesperia.gsfc.nasa.gov/ssw/hessi/doc/hsi_params_all.htm

Tolbert, K., 2001, Plot Manager (PLOTMAN), Internet document,
http://hesperia.gsfc.nasa.gov/ssw/hessi/doc/plotman_help.htm

Tolbert, K., 2002b, Using the Observing Summary and Quicklook Data, Internet document,
http://hesperia.gsfc.nasa.gov/ssw/hessi/doc/obs_summ_access.htm

Usenet, July 2002, Usenet Object-Oriented FAQ, Internet document, http://www.cyberdyne-object-
sys.com/oofaq2/.

Zarro, D. M., 2002, The RHESSI Synoptic Data Archive, Internet document,
http://orpheus.nascom.nasa.gov/~zarro/synop

http://hesperia.gsfc.nasa.gov/~dennis/imaging/first_steps.htm
http://hesperia.gsfc.nasa.gov/~dennis/imaging/first_steps.htm
http://www.lmsal.com/solarsoft/sswdoc/local_copy/references/ssw_1998.html
http://www.cyberdyne-object-sys.com/oofaq2/
http://www.cyberdyne-object-sys.com/oofaq2/
http://orpheus.nascom.nasa.gov/~zarro/synop

	2.2 Software to Meet the Science Requirements
	3. Object-orientation in the RHESSI Data Analysis Software
	3.1 Object-Oriented Software

