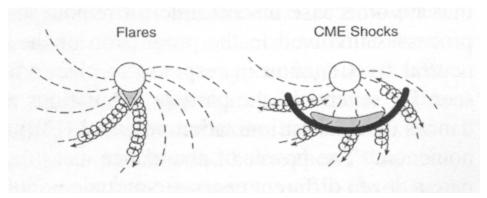

Impulsive SEP Events Solar Sources and Magnetic Field Connection

Reames (2002)

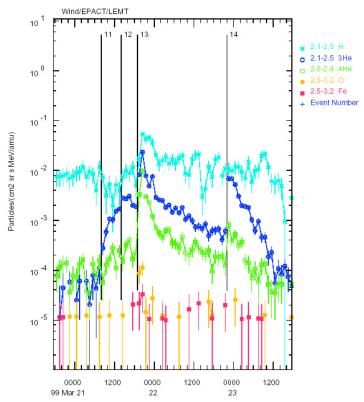

Nariaki Nitta

Lockheed Martin Solar and Astrophysics Laboratory

3 November 2006

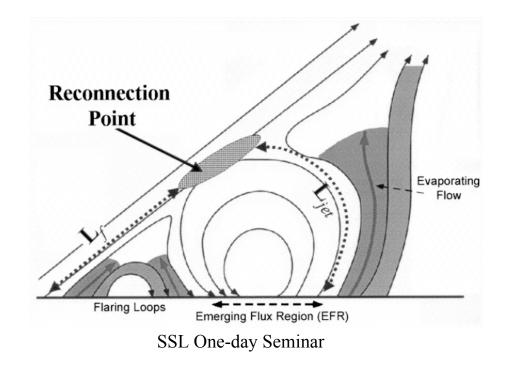
Two Types of SEP Events

	Impulsive	Gradual
Particles	Electron rich	Proton rich
³ He/ ⁴ He	~1	~0.0005
Fe mean charge state	~20	~14
Duration	Hours	Days
Origin	Impulsive Flares	CME Shocks
Longitude Cone	<30deg	~180 deg


After Reames (1996, 1999)

Why do we want to know the origin of impulsive SEP events?

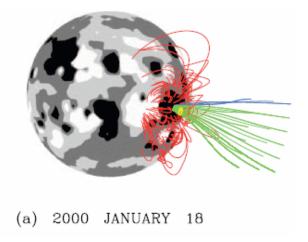
- Impulsive SEP events are thought to come from impulsive solar flares, but does anomalous composition of ions occur in every impulsive flares?
- Specifically, is there a special acceleration mechanism in open field configurations, since the presence of open field lines is essential for particles to get out?
- Why do the associated flares tend to be small?
- What is the role of CMEs in certain impulsive SEP events?
- Does enrichment in ³He and heavy ions in certain gradual SEP events result from remnants of previously accelerated impulsive SEP events?


Challenges in source identification

- Long travel time of ~1 MeV ions [2.5 hours (0.5 hours) for 2 MeV/n (50 MeV/n) ions traveling 1.2 AU].
- How well are the onsets at different energies determined?
- Possible propagation effect due, e.g., to the irregularities of IMF.
- The associated coronal activity (e.g.,brightening) tends to be tiny. How can we distinguish the activity associated with the impulsive SEP event from similar ones?

Impulsive SEP Events and Jets

- This association is expected, because impulsive SEP events accompany type III bursts (Reames and Stone 1986), and type III bursts (metric) accompany X-ray jets (Kundu et al. 1995).
- Type III bursts signify ≤ 10 keV electrons along open field lines, and jets signify interaction of emerging bipoles (closed) with open flux (Shimojo and Shibata 2000).


3 November 2006

Impulsive SEP Events and Jets

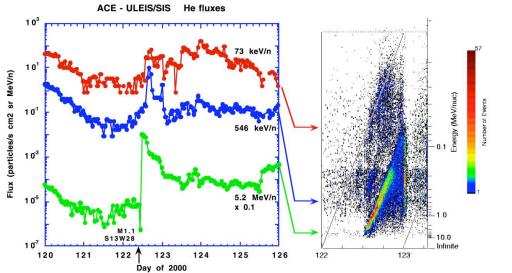
- Wang, Pick & Mason (2006) identified the source region by looking for an H_ flare or an EIT ejection/flare at W20-W90 within a few hours of the estimated ion injection time.
- The particle injection time is derived from the velocity dispersion. Some events do not show a clear velocity dispersion.
- Jets are found between W25 and W72 in EIT images, sometimes accompanied by white-light jets observed by LASCO.
- The source regions next to open field regions, as shown by the PFSS model.
- Jets tend to recur.

00/01/18

11:24 - 11:12

Impulsive SEP Events and Jets

		EIT Event ^b		LASCO CME ^e				
Date	${ m H}lpha$ Flare ^a Location (UT)	Туре	Location (UT)	Туре	P.A. (UT)	³ He/ ⁴ He ^d	$\mathrm{Fe}/\mathrm{O}^{\mathrm{d}}$	REFERENCE
1997 Nov 24	N21°W63° (12:53)	λ195 flare/ejection	N21°W63° (13:17)	Jet	281° (13:37)	~ 0.1	~ 1	1,6
1998 Aug 18.17	N20°W56° (04:13)					6.2	1.19	2
1998 Sep 9.17	S22°W60° (00:10)					0.21	1.76	2, 3
1999 Mar 21.17	N25°W26° (04:03)	λ195 flare/jet	N19°W27° (04:36)	?	?	1.67	2.22	3
1999 Jun 18.33	?	λ195 flare/jet	N24°W56° (05:17)			0.115	1.20	3
1999 Jul 3.70	?	λ195 flare/jet	S14°W56° (16:48)	?	?	0.25	0.72	2
1999 Aug 7.76	N18°W40° (17:28)	λ195 flare/jets	N19°W43° (18:00)	?	?	0.81	1.49	2, 3
1999 Sep 19.61	N20°W70° (14:35)					0.02	0.17	2
1999 Sep 30.22	?	λ304 flare/surge	N19°W60° (04:06)			0.87	1.06	2
1999 Oct 22.75	?	λ195 flare/jets	N09°W72° (16:48)	?	?	0.06	0.44	3
2000 Jan 6.20	?	λ195 flare/ejection	N15°W52° (02:36)	?	?	33.4	1.06	2
2000 Jan 17.13	S18°W46° (04:57)	λ195 flare	S17°W43° (04:52)	?	?	15.9	0.64	2
2000 Jan 18.50	?	λ 195 flare/jets	S14°W63° (11:24)	?	?	0.09	0.55	3
2000 Mar 7	S12°W71° (12:31)	λ195 flare	S15°W69° (12:36)	Narrow	262° (12:54)	0.35	2.69	1,6
2000 May 1.42	?	λ195 flare	N20°W49° (10:24)	Narrow	307° (10:54)	0.06	2.22	1, 2, 3, 4
2000 Jun 4	?	λ195 flare/ejection	S07°W61° (07:13)	Narrow	292° (07:54)	0.31	1.49	1,6
2000 Aug 22	?	λ195 flare/jet	N22°W40° (00:24)	Wide	301° (00:30)	~ 1	~ 1	1,6
2000 Sep 27.17	N18°W56° (03:10)	λ195 flare/jet	N16°W54° (03:12)	Narrow	323° (03:26)	0.08	0.66	3
2000 Dec 28.00	N12°W38° (02:08)	λ195 flare/jet	N12°W37° (02:12)	?	?	0.16	1.62	3
2002 Aug 19	S11°W27° (10:34)	λ195 flare/ejection	S11°W27° (10:36)	Wide	225° (11:06)	0.05	0.60	6
2002 Oct 5.51	N09°W64° (11:52)	λ195 flare/jet	N09°W65° (12:12)	Jet	271° (12:30)	0.63	1.77	4, 5
2002 Oct 20	S14°W53° (05:29)	λ195 flare/jet	S13°W52° (05:36)	Jet	241° (05:54)	0.17	0.85	6
2002 Dec 12.53	?	λ195 flare/jet	N14°W35° (12:48)	Jet	290° (13:31)	0.48	1.84	4, 5
2003 Mar 2.60	?	λ195 flare/jet	S15°W25° (14:24)	Jet	252° (15:06)	0.65	0.87	5
2003 Mar 17.43	S16°W33° (10:14)	λ195 flare	S17°W35° (10:14)	Jet	254° (11:06)	0.18	0.56	5
	(, , , , , , , , , , , , , , , , , , ,		, , , , ,					

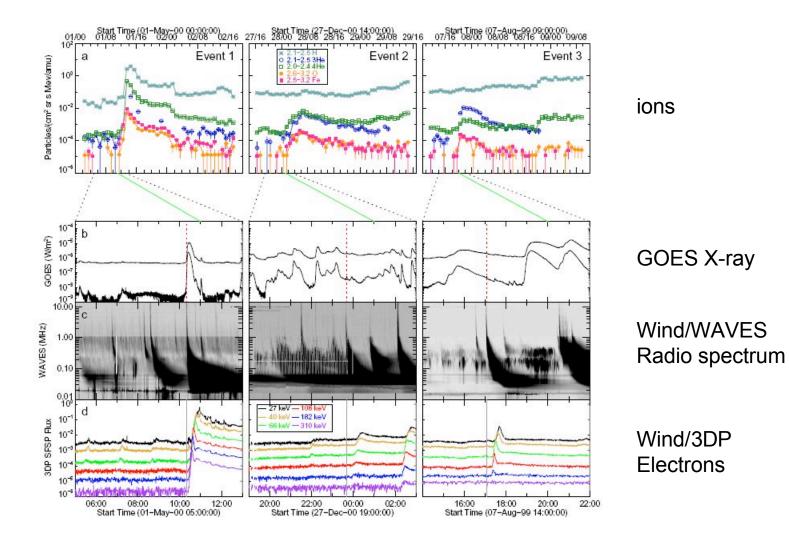

TABLE 1 25 Impulsive SEP Events

From Wang, Pick & Mason (2006)

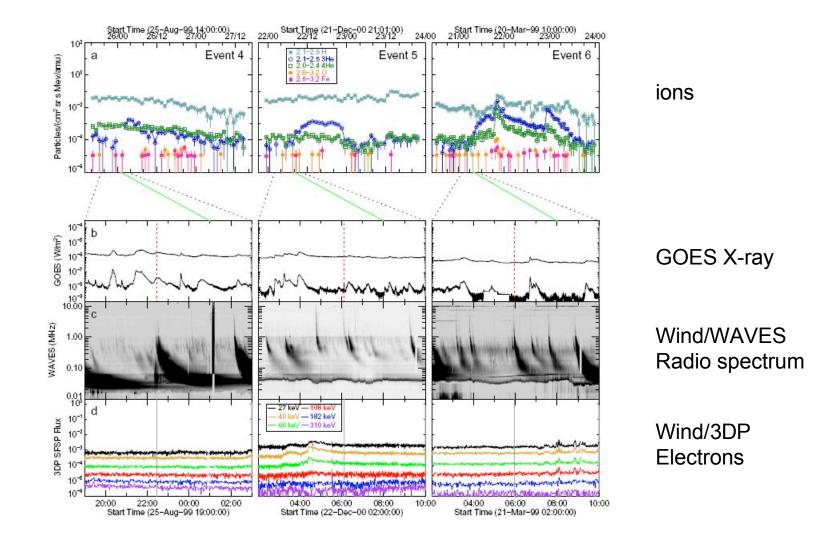
3 November 2006

Injection Times

- Does velocity dispersion always give a reasonable injection time and path length?
- Is the delayed injection true?
- Does a longer path length jeopardize the scatter free assumption?

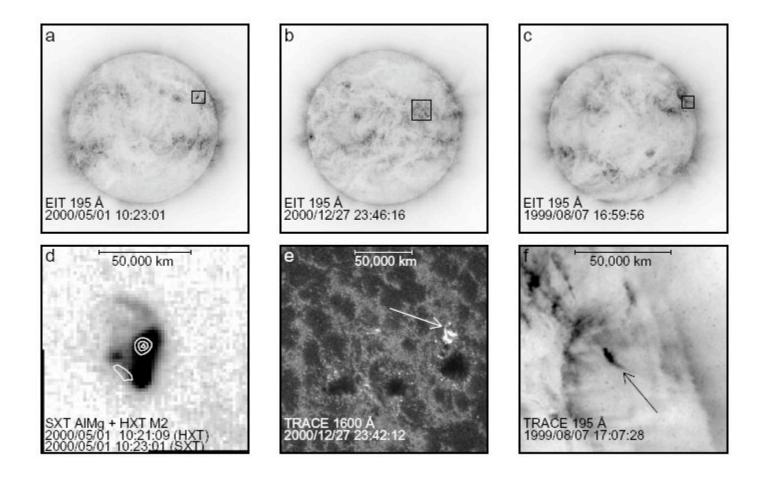

From Mason et al. (2002)

3 November 2006

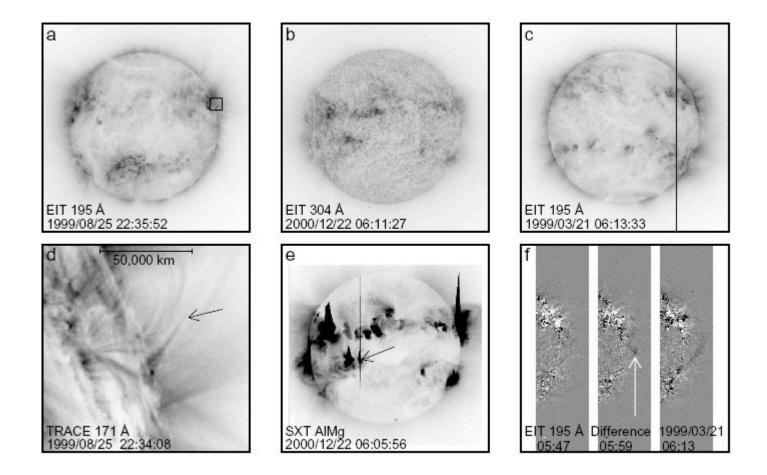

Use proxies of impulsive SEPs

- In order to mitigate the uncertainty of the injection time, we use type III bursts as proxies of impulsive SEP events (Reames & Stone 1986).
- Set the search window of 5 hours before the observed ion onset.
- Examine full-disk images to locate changes around the time of (or shortly after) the type III burst.
- In the case of multiple type IIIs, preference is given to those that accompany electron events (Reames, von Rosenvinge, & Lin 1985), and that extend to low frequencies.
- Images can help, because multiple type III bursts can occur in the interval from the same region (multiple injections?).

Type III bursts as proxies



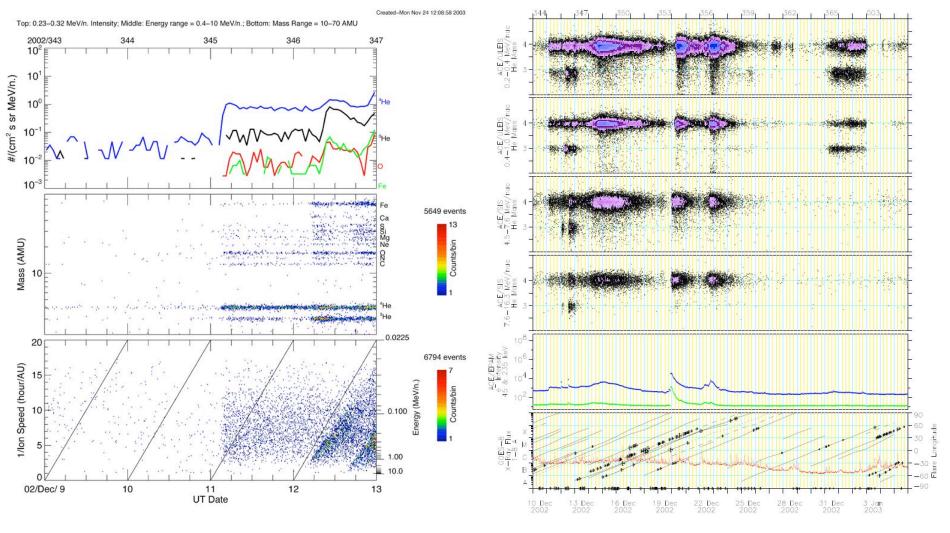
Type III bursts as proxies



3 November 2006

Images around type III times

Images around type III times



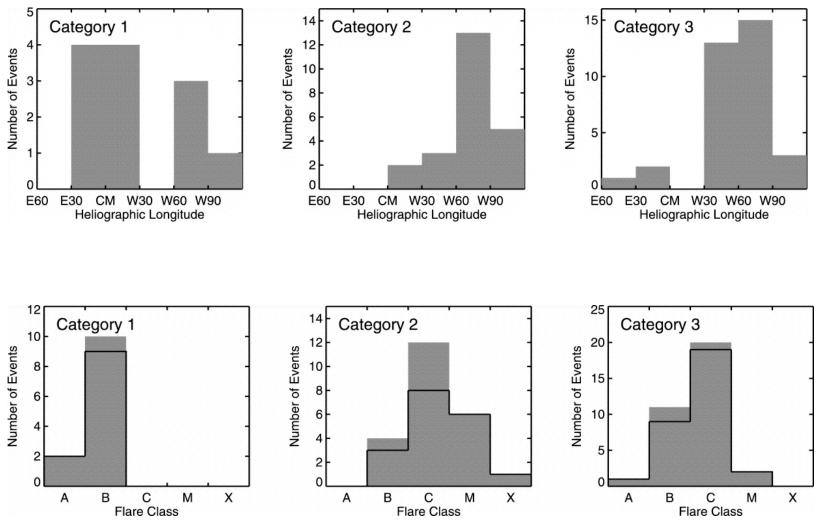
Identification – Events with different abundances

- 117 impulsive SEP events selected from Wind/LEMT data at 2-3 MeV/Nuc
 - Category 1: ³He/⁴He >0.5, Fe & O unobserved, 39 events
 - Category 2: Fe/O >0.5, ³He/⁴He <0.5 or ³He below background ⁴He, 31 events
 - Category 3: ${}^{3}\text{He}/{}^{4}\text{He} > 0.5$ and Fe/O > 0.5, 47 events

Category	Type III	>30 keV electron	СМЕ
1	35/38	11/38	7/20
2	30/31	21/30	19/26
3	45/47	36/42	20/29
Total	110/116	68/110	46/75

Quick check with ACE

3 November 2006


Identification

- In about 60% of the events, we can identify the solar source. The remaining 40% events are difficult, because of (1) no unique type III bursts, (2) no full-disk images around the type III time, (3) no compelling signatures in images.
- We identified the solar source of 10 of Wang et al. (2006)'s 25 events. In 8 of them, we picked up the same region.

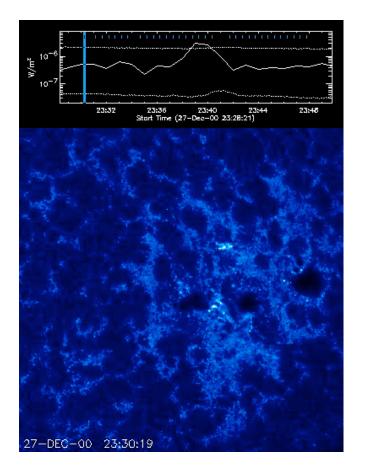
Category	Unique Type III	Coronal Images	Identified Source
1	30/35	18/30	12/18
2	30/30	26/30	23/26
3	44/45	39/44	34/39
Total	104/110	83/104	69/83

3 November 2006

Location and Flare Intensity

Associated Electrons and CMEs

- CME association is quite high.
- Some of them are fast and quite wide (partial halo CME).
- But none of them but one associated with DH type II bursts, so these CMEs appear to be different from those that accelerate gradual SEPs.

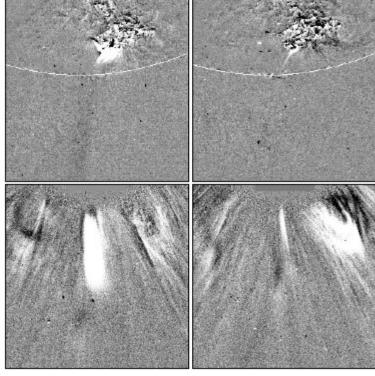

Category	>30 keV electrons	CME	CME v (km/s)	CME _ (degs)
1	1/12	3/12	570-613	13-46
2	17/19	16/20	293-1502	13-170
3	30/32	18/26	288-1360	5-113
Total	48/63	37/58	288-1502	5-170

³He vs Fe

- These results suggest that ³He-rich events may be different from Fe-rich events.
- Cliver & Kahler (1991)'s ad hoc scenario ³He high coronal, and Fe in flare region
- He/O~57 in the corona, so one needs more Fe ions to be observed at the same Fe/O ratio as ³He/⁴He.
- ³He depleted as energy input increases \rightarrow category 2 events?
- Instrument effects?

Jets

- An important solar source of impulsive SEP events
- Usually 2-5 min after the onset of a type III burst
- 13-17 jets out of 25 events observed by TRACE
- Not all of them are LASCO jets. Sensitivity issues?

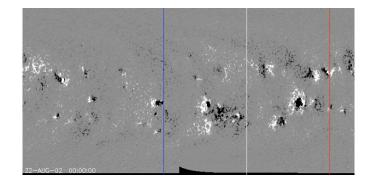

TRACE 1600 A (10⁵K) movie

Comments on EIT Jets

- How can jets be observed in EIT images with ~12 min cadence? Are many of them missed?
- Can LASCO observe accompanying jets even from regions far from the limb (e.g., W30)?
- What is the relation between jets and type III bursts? Which provides a better diagnosis of open fields, less affected by sensitivities of instruments?

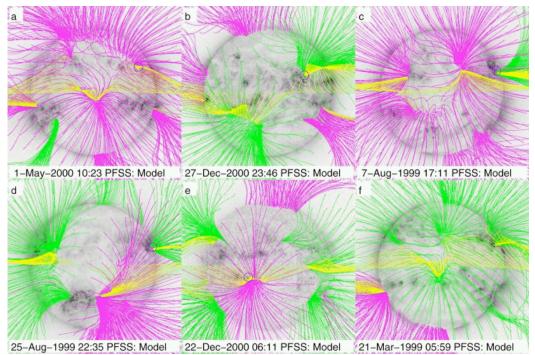
2002 OCTOBER 5

12:24 - 12:12 (195 A) 08:24 - 08:12 (195 A)



12:54 - 12:30 (C2)

09:06 - 08:30 (C2)


Potential field source surface model

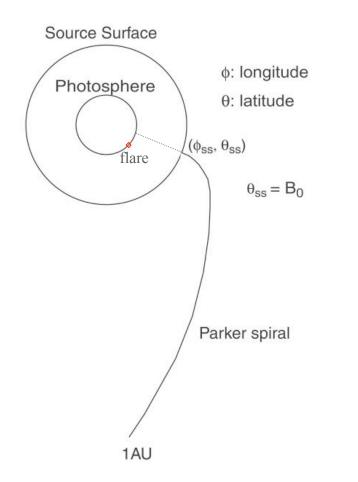
- Assumes current-free corona (therefore not representing flareproductive active regions).
- Once arriving at the magic surface, called the source surface, they are deemed to be radial.
- Other field lines are closed.
- The source surface is usually set as a sphere at 2.5 R_{sun} from Sun center.
- Use the photospheric synoptic map as a lower boundary condition.

Magnetic field connection

- PFSS model is the only operational extrapolation that can handle global magnetic field
- We use the MDI data assimilated to the flux dispersal model (Schrijver 2001), which is updated every 6 hours.

3 November 2006

SSL One-day Seminar


Open field lines are plotted.

pink: anchored in negative polarity regions,

green: anchored in positive polarity regions,

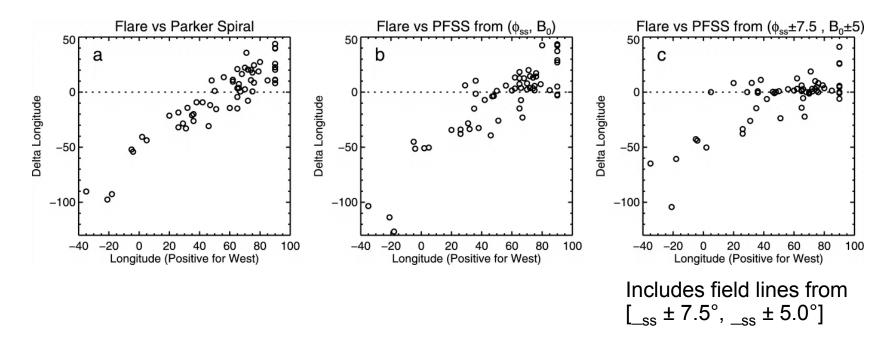
<u>yellow</u>: ecliptic.

Field line tracing

- Trace field lines from 1 AU. The source surface longitude is a function of the solar wind speed.
- "Well-connected longitudes" reflect straight extrapolation of the Parker spiral to the photosphere.
- The PFSS extrapolation redistributes the field between the photosphere and the source surface.

SEPs: tracers of magnetic field (Hudson: "Tracing SEPs from Sun to Earth")

How to use the SEPs

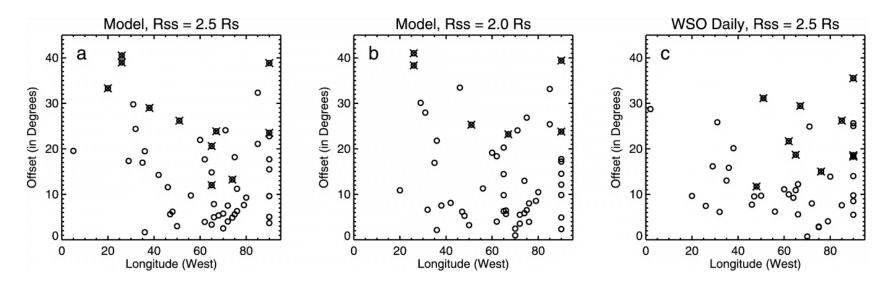

- We have many SEP events, now with RHESSI identification of solar sources. From each we get some knowledge of the connectivity to a probe in the heliosphere
- Magnetic models based on PFSS theory are now readily available
- The heliospheric part of the propagation can be approached now from ballistic or better solar-wind models

Does the model give wellconnected field lines in the source region of the SEP event?

Solar MURI, June 2003 H.S. Hudson

Magnetic field connection

- What are the well-connected longitudes? Do all the flares in those longitude range produce impulsive SEP events?
- Does the PFSS model improve the magnetic connection of the Parker spiral?

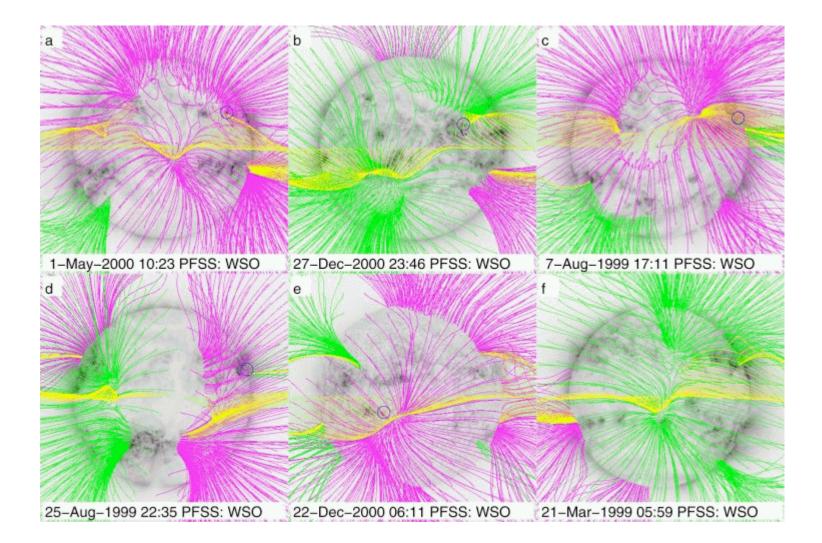

More on Field Line Tracing

- Given various uncertainties of IMF, we need to allow for a range of field lines we trace.
- We trace field lines from [_ss ± 7.5°, _ss ± 5.0°] to the photosphere, as well as from [__{flare}±10°, __{flare}±10°] to the source surface.
- Let the coordinates of the field line at the photosphere and the source surface be (_0, _0) and (_1, _1), then the offset at the photosphere and at the surface is written as

$$d_{phot}^2 = (__0 - __{flare})^2 + (__0 - __{flare})^2$$
 and
 $d_{ss}^2 = (__1 - __{ss})^2 + (__1 - B_0)^2$, respectively.

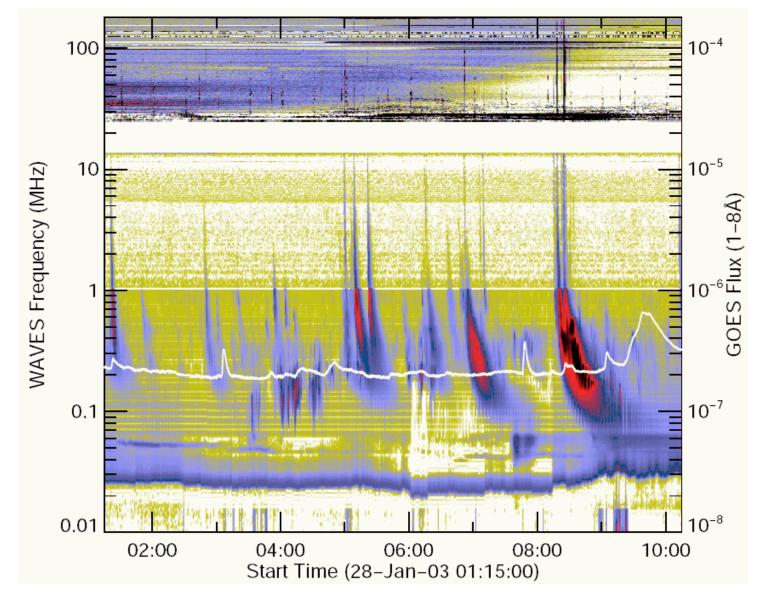
• We look for the field line that minimizes the combined offset $d = sqrt(d_{phot}^2 + d_{ss}^2)$ [latitudinal effect small]

What the PFSS + Parker Spiral Model Tells Us


For the 58 events we traced field lines,

23 events show d < 10,

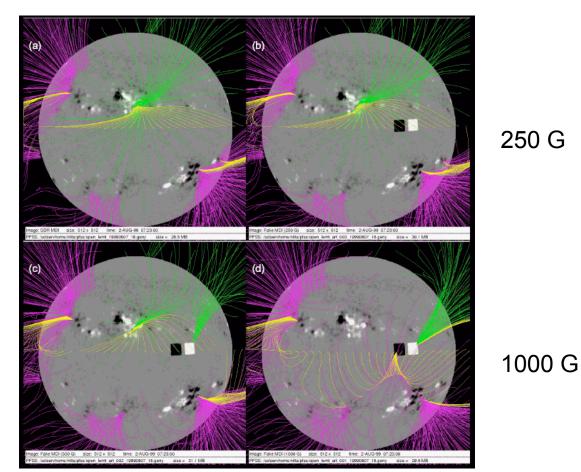
- 15 events show 10 < d <20,
- 9 events show d > 20, and
- 11 events show no open field lines from [__{flare}±10°, __{flare}±10°]


Results from PFSS extrapolations using different boundary conditions $(R_{ss}=2.0 R_{sun} \text{ and the Wilcox}$ Observatory magnetograms) are more or less similar, but in detail, locations of open field lines are somewhat different.

Comparison of Different Versions of PFSS

More on the PFSS + Parker Spiral

- It is not accurate enough to answer the question as to whether the impulsive flares associated with 3He-rich SEP events are nothing special, just close to open field lines.
- The paper by Wang, Pick & Mason (2006) sounds more optimistic, largely because they call ecliptic open field lines all the field lines that intersect the source surface in the range of [W35, W65], and $[B_0 \pm 15^\circ]$.
- It is necessary to test the PFSS model alone using solar observations.
- Different PFSS workers should calibrate their results.



Metric spectra

RSTN: ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_RADIO/SPECTRAL_RSTN/ 31Nove Astr @opal. SSL One-day Seminar 31

Play with artificial flux emergence

Suppose the region near CM with open field lines is located at W 75, and see how the emergence of an AR at W 105 affects the distribution of open field lines.

500 G

3 November 2006

Summary

• We have worked on a large list of impulsive SEP events and tried to identify their solar sources, using image data.

• Our assumption is that impulsive SEP events should be associated with type III bursts.

• Even with the present array of spacecraft monitoring the Sun, about 30 % of events do not have image data at right times.

• The source characteristics (flare intensity, association of electron events, etc.) suggest differences between ³He-rich and Fe-rich events, but this may be an instrument effects, which are not limited to SEP measurement, but also to coronagraphs, EUV/X-ray telescopes, and radio instruments.

Summary

• These results need to be confirmed with ACE data that produce particle spectra in wider energy ranges and have better mass resolution.

• We confirmed what is said about the PFSS model, pretty good in many cases, but not quite useful for studies that need accuracy.

• One of the reasons the magnetic extrapolation fails is that we do not have synoptic magnetograms in a strict sense. This continues with STEREO....

 The CMEs associated with impulsive SEP events may be fundamentally different from those that accompany large gradual SEP events.