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A kinetic equation for interplanetary cosmic rays is set up with the aid of weak plasma turbulence
theory for an idealized radially symmetric model of the interplanetary magnetic field. As a starting point
this treatment invokes the Vlasov equation instead of the traditional Fokker-Planck equation. Quasi-
linear theory is applied to obtain a momentum diffusion equation for the heliocentric frame of reference
which describes the interaction of cosmic rays with convecting magnetic irregularities in the solar wind
plasma. Under restricted conditions the well-known equation of solar modulation can be obtained from

this kinetic equation.

INTRODUCTION

Parker [1958, 1965] originally formulated the well-known
transport equation of solar modulation
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This equation describes the cosmic ray density U(r, T, 1) at
kinetic energy T in a spherically symmetric space where elastic
scattering centers, moving radially at the solar wind speed u,
cause spatial diffusion and energy loss. The relationship be-
tween the spatial diffusion coefficient x and the magnetic fluc-
tuations observed in the interplanetary medium [Coleman,
1966] was described explicitly by Jokipii [1966]. By considering
a Fokker-Planck equation [Chandrasekhar, 1943] for cosmic
rays in a frame of reference moving with the solar wind
plasma, Jokipii, and later Hasselmann and Wibberenz [1968),
derived the diffusion coefficient for the case of stationary mag-
netic turbulence and a homogeneous average magnetic field.
Gleeson and Axford [1967] subsequently demonstrated that a
Boltzmann equation for a radial geometry leads directly to the
modulation equation (1) for the heliocentric frame of refer-
ence. However, their model invoked a collision term to de-
scribe the wave-particle interactions that occur in inter-
planetary space. As an alternative, this paper shows how the
Vlasov equation and quasi-linear theory can be applied to
solar modulation. The result is a kinetic equation that em-
bodies both the geometrical aspects of the Gleeson and Axford
model and the wave-particle interaction effects discussed by
Jokipii [1966]. '

In the quasi-linear theory of weakly turbulent plasmas the
distribution function and the electromagnetic fields are ex-
pressed as the sum of an averaged component and a per-
turbation. When these linearized quantities are substituted
into the Vlasov equation, a plasma kinetic equation that de-
scribes diffusion in velocity space is obtained [Kennel and Engel-
mann, 1966]. Moreover, the diffusion tensor can be expressed
in terms of the power spectrum of the turbulent field fluctua-
tions, In this paper, cosmic rays are regarded as a small relativ-
istic component of the interplanetary plasma that interacts
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resonantly with the ambient field fluctuations. With this point
of view, the quasi-linear result of Kennel and Engelmann is
specialized to resonant interactions between particles and the
convecting field inhomogeneities in the solar wind to obtain a
kinetic equation describing interplanetary cosmic ray trans-
port.

A quasi-linear diffusion equation has also been applied to
cosmic ray transport in the interstellar medium [Kulsrud and
Pearce, 1969]. In interstellar space the resonant interactions
occur between the particles and Alfvén waves generated by the
cosmic rays themselves [Lerche, 1967; Wentzel, 1968)]. Under
these circumstances the wave spectrum and particle distribu-
tion are interdependent, and their evolution must be consid-
ered together. However, in interplanetary space the field fluc-
tuations are evidently quasi-static magnetic structures and
waves in the solar wind generated near its source or hydro-
magnetic waves produced by instabilities of the expanding
solar wind plasma [Coleman, 1968; Scarf, 1970]. This turbu-
lence can be considered as a part of the ambient field environ-
ment in which the cosmic rays move, and a fully self-consistent
treatment relating the waves to the distribution of cosmic rays
is not required.

The limitations on the applicability of quasi-linear theory to
cosmic ray transport have been discussed in detail elsewhere
{Klimas and Sandri, 1973; Kaiser et al., 1973; Goldstein, 1975].
It has been demonstrated [Kaiser, 1975] by means of numerical
simulations that quasi-linear theory does not accurately de-
scribe charged particle transport for pitch angles near 90° in
moderately turbulent magnetic field models of limited di-
mensionality. On the other hand, in some applications, quasi-
linear theory has been shown to approximate the results of
more exact analyses of particle interactions with turbulent
fields with relative mathematical simplicity [Krall et al., 1972;"
Jokipii and Lerche, 1973]. However, the present discussion is
not intended to justify the application of quasi-linear theory in
this case but rather to describe an alternative viewpoint from
which it can be applied to the modulation problem.

In the following discussion it is assumed that the average
interplanetary magnetic field has a radial geometry. The inter-
planetary field turbulence is modeled by transverse random
magnetic fluctuations which are distributed axisymmetrically
about the average field direction. Because the waves observed
in the solar wind plasma generally have phase velocities about
an order of magnitude less than the solar wind speed # ~ 400
km/s, it is also assumed that these fluctuations have zero phase
velocity in the plasma frame and move radially with respect to
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the sun at the plasma bulk speed. In the context of this model
the cosmic rays interact with ‘waves’ of phase velocity u that
result from the convection of the solar wind.

Following a brief discussion of its derivation the quasi-
linear kinetic equation is restated below in terms of the inter-
planetary fields and the resonant cosmic ray distribution. Fi-
nally, the relationship between this plasma kinetic equation for
the interplanetary cosmic ray distribution and the well-known
modulation equation [Parker, 1965; Gleeson and Axford, 1967]
is discussed. It is demonstrated that the modulation equation
is obtained only under restricted conditions and consequently
excludes some features of the quasi-linear equation for inter-
planetary transport.

QuasI-LINEAR KINETIC EQUATION

The Vlasov equation or collisionless Boltzmann equation

-—-+vVF+Ze(E+—va>V,,F=0 ¥3)

describes the evolution of a particle distribution function F{(s,
p, t) under the influence of electromagnetic forces in the ab-
sence of collisions. In (2), ¢ is time, v is particle velocity, p is
momentum, Ze is charge, s is a spatial vector, ¢ is the speed of
light, and E and B are the electric and magnetic fields.
Quasi-linear theory separates the fields into two components

= (E) + SE
3)

= (B) + 5B
where angle brackets denote the ensemble averaged values of
the fields [Batchelor, 1946] and the perturbations 3E and 5B
represent rapidly fluctuating fields whose average values are

zero. The distribution function is similarly expressed as a
perturbed quantity:

F=f+éf “4

where the slowly evolving average distribution f = (F) is the
component of interest.

If the average electric field (E) is set equal to zero, if particle
density gradients are restricted to directions parallel to an
average magnetic field (B) which has negligible curvature, and
if f is axisymmetric with respect to the direction of (B), the
substitution of the above expansions into the Vlasov equation
leads to the kinetic equation
of ., 9f _1p 3B
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In (5) the bar over [ indicates that it has been averaged over
gyrophase. Vector components parallel and perpendicular to
the average magnetic field direction are designated by the
parallel and perpendicular subscripts, respectively. The left-
hand side of (5) describes particle conservation in a magnetic
field (B). The velocity space diffusion operator on the right-
hand side, which contains the diffusion tensor D that depends
on the power spectrum of the field turbulence, has been dis-
cussed by Kennel and Engelmann [1966], Hall and Sturrock
[1967], Wu [1968], and others. This collisionlike term describes
the effects of wave-particle interactions on F. Here, it will be
appropriate to concentrate on the form of the diffusion term
for the specific case where the field turbulence consists of
electromagnetic waves which propagate parallel to the direc-
tion of the average magnetic field (B) and where f represents a

(5)
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distribution of resonant particles. Under these circumstances
the right-hand side of (5) can be written in the form
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In (6), w = w(k,) is the wave dispersion relation which
depends on k;, the wave number of the field fluctuations; the
spectral function §4(k; ) describes the distribution of magnetic
energy <8B-3B>/8x in the waves; and the cyclotron fre-
quency Q is equal to Ze(B)/ymc, where m is the rest mass and vy
is the Lorentz factor (1 — v?/c*)~"2 The Dirac delta function
8(w — kyv, £ Q) appears because (6) describes a resonant proc-
ess. It serves to isolate the spectral power at the resonant
wave number k,° which is defined by the resonance condition

Q)

Equation (7) expresses the idea that resonance occurs when the
Doppler-shifted wave frequency seen by the particle is equal to
its gyrofrequency. So far, no restrictions have been imposed on
the waves that enter into (6) except that they are elec-
tromagnetic and propagate parallel to the average magnetic
field. In fact, the diffusion operator (6) is essentially identical
to the form given by Davidson [1972, chapter 12] for electron
resonant interactions with whistler noise.

(6)

w - k||°v“:i: Q=0

APPLICATION TO SOLAR MODULATION

In the environment of interplanetary space it is convenient
to regard the turbulent field fluctuations as electromagnetic
waves obeying the dispersion relation

w = k||u (8)

These ‘waves,’ which propagate radially in the direction of (B),
are produced by the convection of magnetic inhomogeneities.
The Fourier expansion describing the turbulence is one-dimen-
sional because in this idealized model, each field line effectively
has its own spectrum. The transverse magnetic components of
these waves 8B are the fluctuations observed from spacecraft.
The electric component given by

8E = —u x 8B/c ®)

is produced by the convection of the magnetic fluctuations
with respect to the fixed frame. In the previous Fokker-Planck
treatments of solar modulation [Jokipii, 1966] a linearized
representation of the magnetic field was also invoked, but the
electric field was neglected because the calculations were car-
ried out in the solar wind frame where u is zero.

With the substitution of the specialized dispersion relation
(8) into (6), (5) and (6) provide a kinetic equation for inter-
planetary cosmic rays. A particularly convenient form is ob-
tained if the variables p, the magnitude of the momentum, and
i = pu/p, the cosine of the pitch angle, are adopted. The
resulting kinetic equation is given by

o, o v _ 20 ( of 3f)
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and where k,° = |Q|/|u — uv| is the resonant wave number for
cosmic rays with parallel velocity uv and cyclotron frequency
Q. The first two terms on the left-hand side of (10) are self-
evident, The third term is a consequence of the radial geometry
of the average magnetic field. As discussed by Roelof [1969],
this term is related to the adiabatic invariance of the magnetic
moment of the particle. The right-hand side of (10) describes
the momentum diffusion produced by the interaction of cos-
mic rays with the interplanetary field fluctuations. This general
form of the diffusion operator was discussed by Melrose [1969]
in connection with particle interactions with Alfvén waves.
The terms that are proportional to powers of u/v represent an
energy exchange between the particles and the turbulence.
These are related to the fluctuating electric field 8E which is
produced by the convection of the magnetic fluctuations. The
remaining terms are related to pitch angle diffusion. In Appen-
dix A the kinetic equation (10) is translated into a quasi
Fokker-Planck form for comparison with the equation consid-
ered by Jokipii [1966].

DiscussioN

The well-known modulation equation (1) [Parker,
1965], expressed in terms of the phase space density f(r, p, 1)
[Gleeson and Axford, 1967; Fisk et al., 1973], is given by

1 0 ) a1, )
S ” = =0 11
3r” ar (ru)p dp an
The phase space density f, is related to f by integration over
pitch angle:
fo= [ 7du (12)
The spatial diffusion coefficient x in (11) can be expressed in
terms of the pitch angle diffusion coefficient D,, as

1 " — 7”2
"=”2f0#2d”f0(11)“)d“’ (3)
Bu

[Jokipii, 1966, 1968; Hasselmann and Wibberenz, 1970] when
the power spectrum of magnetic fluctuations is not too steep.
This relationship between the spatial and pitch angle diffusion
coefficients can be derived from (10), in conjunction with the
modulation equation (11), if certain constraints are imposed
on the parallel velocity uv and the form of the distribution
function 7.

At typical cosmic ray energies (~1 GeV) the solar wind
velocity u is small in comparison with the parallel component
of the particle velocity uw if the pitch angle is not close to 90°.
In this case (4 << uv) the approximations (I — u/v) ~ 1 and ¢!
— pu/v) ~ 1 can be made. With these two substitutions, (10)
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can be simplified to
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and the pitch angle diffusion coefficient D, takes the form
obtained by Jokipii [1966]:

2rZe\ v
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In the diffusion regime [Earl, 1974], where the magnetic power
spectrum &z « k™7 has an index ¢ that is less than 2, the
distribution function can be expressed as the sum of f, and an
anisotropy f,(u), which is an odd function of u: ‘

=1+ fiw) (16)

With the exception of f, the even terms in the series expansion
of f are neglected. The anisotropy f, represents the effect of a
net parallel velocity of the particles. _

When the expansion (16) is substituted for f, (14) can be
separated into two equations in f, and f; which equate the
terms that are even in u,

(15)
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If 8f,/ot and terms proportional to (4/v)? are neglected, (18)
can be solved for f:
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For the restricted case under consideration the anisotropy f, is
made up of two components. The first is related to pitch angle
diffusion and the gradient of f,. This term provides the parallel
spatial diffusion that is characterized by the coefficient « in
(11). Evidently, pitch angle diffusion can produce spatial ef-
fects in a plasma if a density gradient af,/dr is present. A
steady density gradient is maintained in the interplanetary
cosmic ray distribution because the solar wind plasma has a
transit time 7/u comparable to the characteristic cosmic ray
diffusion time from interstellar space to ». The second contri-
bution to f, is from the relative motion of the turbulent fields
atu and is related to the Compton-Getting effect [Compton and
Getting, 1935]. The substitution of (19) into (17) leads to an
equation for f, that is identical to (11) if terms proportional to
(u/v) are again neglected. Hence in retrospect it is seen that
(10) reduces to the modulation equation (11) when the follow-
ing assumptions are made: (1) the magnetic spectral index is
less than 2, 2) u << uv, 3) f = fo + f1, (4) 2f,/ 21 = 0, and (5)
(u/vy = 0. Clearly, if effects outside of the framework of these
assumptions are under consideration, the more general (10)
must be invoked.

fi(w) = (19)
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SUMMARY

It has been demonstrated that quasi-linear theory and the
Vlasov equation can be used to obtain a kinetic equation for
cosmic rays in interplanetary space. The kinetic equation em-
bodies both the radial expansion of the interplanetary medium
and the resonant interactions between the cosmic rays and the
interplanetary magnetic field fluctuations. The only limitations
on the validity of this kinetic equation, within the framework
of the idealized model of the interplanetary medium used here,
are the limitations inherent in the use of perturbation expan-
sions in turbulence problems and in their use in nonuniform
plasmas. The plasma physical approach to cosmic ray modu-
lation that has been taken here is potentially useful for assess-
ing the effects of interplanetary medium asymmetries on inter-
planetary transport. In particular, the spiral magnetic field
configuration that is the result of the solar rotation should
eventually be included in modulation theory, in addition to the
variation of the solar wind properties with heliocentric dis-
tance and heliolatitude. Also, the transport of the solar and
Jovian components of the interplanetary cosmic radiation can
be examined from a similar point of view.

APPENDIX A: FOKKER-PLANCK EQUATION
FOR SOLAR MODULATION

The right-hand side of the kinetic equation (10) can be cast
in the characteristic Fokker-Planck form [Chandrasekhar,
1943]

) of , v __z£_1£W?mw]
a;+’war+r(1 M)a“—Za‘f J
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if the Fokker-Planck coefficients are given by
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((ap))/At = 2D,
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Jokipii [1966] invoked the Fokker-Planck equation

(Ap)/ At
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where the primes are added to emphasize that this equation
applies to the solar wind frame of reference.

Pitch angle diffusion, described by a pitch angle diffusion
coefficient ¥(Au)?)/At, appears in both cases. However,
(A1) also includes the additional Fokker-Planck coefficients
involving the momentum p and the term (v/r)(1 — u?) af/éu
that is related to the divergence of the magnetic field. These
additional terms provide the so-called adiabatic deceleration
term —(1/3r)(@/8r)r*u)p 8f,/ 8p in the modulation equation
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(11). Hence in the context of the model that has been consid-
ered in this paper, adiabatic deceleration can be attributed to
the combination of a diverging average magnetic field and the
fluctuating electric field (equation (9)) produced by the con-
vecting magnetic irregularities.
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