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An analytical model of the interaction between a localized wave packet and energetic electrons 
is presented. Electrostatic packets of tens to a hundred wavelengths are considered in order to 
emulate the Langmuir waves observed in the aurora1 zone and in the solar wind. The phase 
information is retained, so the results can be applied to wave-particle correlator measurements. 
The perturbed distribution function is explicitly calculated and is shown to be bounded over all 
phase space due to a broadening of resonance ascribable to the finite extent of the packet. Its 
resistive part (in phase or 180” out of phase with the electric field) maximizes for v=w/k, so that 
the associated bunching of electrons enables assessment of the characteristic wavelength. The 
changes in the wave profile due to the interaction with the energetic electrons are calculated. 
Broad wave packets grow or decay “self-similarly” with a rate given by the standard expression 
for a plane wave. Narrow, growing packets, on the other hand, quickly widen to sizes 
determined by the local distribution’ function. This sets a lower bound to the sizes of observed 
packets. Present results are supported by test-particle simulations and are in accord with recent 
correlator data of intense, localized Langmuir waves in the aurora1 zone. 

i. INTRODUCTION 

Many phenomena in plasma physics involve the micro- 
scopic interaction between wave fields and particles in 
phase space, and thus require a kinetic description. Yet the 
application of kinetic theory to space plasmas is fraught 
with difficulties in the interpretation of experimental data. 
One main difficulty stems from the relative motion between 
the plasma and the satellite or rocket probing it. The in- 
terpretation of microinstabilities, such as the classic exam- 
ple of high-frequency Langmuir waves excited by a bump 
on tail, requires measuring both wave fields and electron 
distribution functions at the same location. In cases where 
the waves have been measured simultaneously with particle 
distributions, only estimates of the growth rate could be 
obtained. 

In the solar wind, measurements of electron distribu- 
tions by satellite take - 10-60 s,’ which means, accounting 
for the solar wind speed, that a large span (4000-24 000 
km) of plasma is covered. On the other hand, Langmuir 
emissions have been reported since the early observations* 
by the Helios satellite to be highly inhomogeneous and 
intermittent. They are sometimes described as clumpyS3 
Intensity variations over two orders of magnitude can oc- 
cur within 0.5 s and the most intense bursts reach - 1 
mV/m, more than three orders of magnitude above the 
background electric field. Though the packets of Langmuir 
waves show considerable variability, their spatial 
dimensions4 can be assessed as 20-100 km. In view of the 
large discrepancy between the latter scale and the region 
covered by one measurement of the electron distribution, it 
is hard to establish a direct quantitative link between wave 
fields and distributions. 

Nevertheless, Lin et al. lp5 were able to show that the 
Langmuir waves were associated with the presence of a 

positive slope in the electron distribution function that was 
reduced along the local magnetic field. The source for the 
streaming energetic electrons (2-10 keV) is a solar flare 
from which they escape into the interplanetary space. Ve- 
locity dispersion, whereby faster electrons run ahead of the 
slower ones, forms a time-dependent positive slope in the 
distribution function and leads to a spectrum of Langmuir 
waves slowly shifting from high to low phase velocities.Gg 
The growth rate of yS 1 s-l inferred from the measured 
slope”’ was shown, however, to be too small to allow the 
waves to grow at all for conditions prevailing in the solar 
wind.’ It is now believed that much larger slopes and, 
hence, growth rates are locally present, whose actual val- 
ues are masked in the particle measurements by an aver- 
aging over several thousand km+‘“‘** Thus, even as basic a 
question as what is the growth or decay rate of the Lang 
muir waves in the solar wind remains experimentally un- 
answered. Typical data regarding observations of Lang- 
muir waves in the solar wind are summarized in TabIe I. 

Langmuir waves have also been observed in the au- 
roral zone by rockets launched to altitudes of < 1000 km.” 
Here also the emissions appear clumpy and intermittent. 
The electrostatic field amplitude can vary from a few 
mV/m to 100 mV/m in 0.2 s. Intense Langmuir waves 
with amplitudes over 200 mV/m appear in bursts of - 0.1 
s duration.13 The waves are observed in association with 
fluxes of precipitating electrons in the 0.3-3 keV range, 
which are generated and strongly modulated at altitudes of 
- 6000 km. l4 Velocity dispersion of these electrons, as they 
propagate toward lower altitudes, results in a time- 
dependent positive slope in the local distribution functions, 
similar to the scenario for the solar wind. Present sounding 
rockets are equipped with recently developed particle in- 
struments, which have faster time resolution than those on 
board satellites flown in the solar wind, and the measure- 
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TABLB I. Observational parameters. 

Description Symbol Solar wind 1 Aurora ‘I, 
Plasma frequency %  1-2x 10s s-1 .+9X10” s-1 
Electron thermal velocity ve l.5X106 ma-’ 2XlO’mC’ 
Beam velocity vb 3-5 X 10’ m  s-l l-3XlO’ms-’ 
Range of velocities with Auc/vb O.&Q.2 0.1-0.2 
positive slope . . ;.s 

Resonant wave number k, 1-3X 10-3. m-1 0.5 m-l 
Estimated size of a packet 2L 2-lOXlO m  l-10X10’ m 
Electric field amplitude: iE, - 

typical 3X low5 V m-* 1-10x lo:2 v m  -’ 
1-2X lo-3 V m-’ maximum 0.5 Vm-’ 

Estimated growth rate Y. >lO s-1 300 s-1 
T&sit ttie of a resohant’ 7, 0.2-3X 1O-4 s 0.3-l %  lo-’ s 
elect& y,..i. -, 

&. 
ments of electron distributions take > 256 r&s. This time.is 
still too long to resolve a, 100-m packet of Langmuir waves _.. 
that passes by in 0.1 s. Nevertheless, a coarse parallel dis- 
tribution&n be obtained in -$ ms. These observations 
show positive slopes in parallel velocities (not integrated 
over uI >, and the-signature of the dispersion in energetic 
electrons. One cannot, ‘however, assess the wave growth 
rate accurately nor derive information on the kinetic inter- 
action between the,waves’and the electrons. 

In order to ci&mvent the difficulties just described, 
wave-electron correlators are now being developed. lf9t6 
These instruments can follow the actual phase of the high- 
frequency Langmuir fields and search for a possible corre- 
lation between that phase and the arrival tiines of energetic 
electrons in the particle detector. The technique has al- 
ready enabled direct identification of the resonant electrons 
in the auroral’ zone, and- thus assessment of the .typical 
wavelength.13‘bata analysis shows that the waves are spa- 
tially localized’ in. packets, with dimensions of tens to a 
hundred wavelengths, packets that therefore ought to be 
distinguished from the envelopes with a vanishing wave 
number discussed in strong turbulence theory.” Data per- 
taining to Langmuir waves-in the aurora1 zone are. also 
summarized in Table I. a- 

From a theoretical viewpoint, a model of wave- 
particle interaction that. applies to the aurora or to the 
solar wind should account for the following:. ( 1) the region 
of the wave .packet is traversed by a flux of: “resonant?’ 
electrons that have only .a finite transit time rt to interact 
with the packet; and (2) the wave field is coherent over 
time scales larger than rt. The assumption of coherence is, 
of course, at the core of a wave-particle correlator, which 
by definition operates at a level. where the phase of the field 
is nonrandom. By contrast, weak turbulence theory~does 
not incorporate the w.ave phase, just its modulus. Standard 
trapping theory assumes an infinite wave train without spa- 
tial localization. The goal of our research is to provide an 
analytical model that pinpoints the peculiarities of the 
wave-particle interaction due to the finite size of the wave 
packet, and helps the interpretation of the correlator data. 
This program can be achieved by combining Vlasov and 
Poisson equations in a model, where the coherent field is 
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explicitly lim ited to a packet, in a way suggested by De- 
navit and Sudan.‘* Because for our applications Langmuir 
‘waves have a phase velocity well distinct-from the dense 
background of electrons, dispersion relation and evolution 
of the packet envelope can be decoupled. Moreover, be- 
cause the transit time rt is shorter than the trapping period, 
the Vlasov equation can be linearized, and is analytically 
integrated. :’ :’ 

For a packet with an amplitude 2Eo and extension 2L, 
the two main parameters controlling the features of the 
interaction are CT* (ku--o) (L/v) and ,UG (2eEok/mw2) 
(kL)2. The first one, which represents the Doppler-shifted 
frequency seen by the traversing electrons times the dura- 
tion of their transit through the packet, is important to 
distinguish between resonant and nonresonant particles. It 
couples wave properties with particle velocities and spatial 
profile of the packet. The second one, which is a measure of 
the effect- of the localized electric field on the electrons, is 
used asan expansion parameter to compute iteratively per- 
turbations in the distribution function. It can be thought of 
as the transit duration r, times the trapping frequency, and 
clearly the validity of the perturbation analysis is iim ited.to 
localized fields. For a Gaussian packet, explicit analytical 
expressions are obtained for the linear perturbed distribu- 
tion function. The perturbation does not become singular 
for resonant electrons because these have a short; finite 
transit time to exchange energy with the localized packet. 
For the same reason there is a broadening of the resonance 
at vpsw/k, whose width is determined by (kL) -’ (see 
Fig. 1 to assess the significance of the effect). The phase 
bunching of resonant electrons is predicted to be in phase 
with.,. the electric field, which is consistent with the 
observations. l9 When the packet dimension is sufficiently 
large, the energy exchanged with the perturbed electrons 
agrees with the classical expression, namely, the packet am- 
plitude grows or decays exponentially with a rate propor- 

tional to the slope of the velocity distribution function eval- 
uated at the phase velocity up. If resonant electrons are 
significantly perturbed by the wave field, i.e., ~~0.2, the 
nonlinear effects must be taken into account.18120,As will be 
shown in a subsequent publication, they may lead to an 
enhanced localization of the wave field.‘l 
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Since the pioneering work of Landau,22 many studies 
have addressed the spatial development of a high- 
frequency electrostatic field interacting with plasma elec- 
trons. Several coherent aspects of the interaction were in- 
vestigated over 20 years ago, in connection with laboratory 
plasma experiments. Spatial ethos were predicted by the 
theory23 and observed in a large plasma column,24 confirm- 
ing the existence of streaming oscillations in the distribu- 
tion function2* The nonlinear amplitude oscillation of a 
large-amplitude electron plasma wave caused by the 
bouncing motion of trapped electrons,25 was observed by 
Malmberg and Wharton.26 Their experiment dealt with the 
spatial damping and oscillation of the large-amplitude 
wave. After a few bounces the energy exchange between 
wave and resonant electrons ceases, and the wave settles to 
a constant leve12’ The associated observation of growing 
sideband waves led to a great deal of theoretical work on 
the stability of a large-amplitude wave that is supported by 
a distribution of trapped electrons localized near the bot- 
tom of the potential troughs.28 Later, Morales and 
Malmberg29 unveiled a link between the question of side- 
band generation and the echo phenomenon. Linear side- 
bands arise from the coupling of the launched wave to 
low-frequency streaming perturbations in the electron dis- 
tribution function; as a result, their amplitude exhibits 
large spatial oscillations, while the launched wave damps 
monotonically. The interaction between Langmuir wave 
and streaming perturbations was investigated further both 
theoretically and experimentally by Gervais et al. 3o 

Other studies, not based on the Vlasov equation, con- 
sider the interaction between sharply localized oscillating 
electric fields and electrons. They are set up to either de- 
termine the strength of the damping on the field due to 
transit time effects3* or to characterize the statistical effects 
on the electron distribution function resulting from its en- 
counter with many localized fields.32P33 The statistical ap- 
proach assumes that each clump involves a relatively small 
electric field that imparts an average “kick” in the velocity 
(energy) of the electron. The effect of multiple packets 
having different shapes and amplitudes on the electrons is 
calculated in an average sense via a diffusion operator. In 
the solar wind applications, Melrose and Cramer33 showed 
that the inhomogeneous clumps can be incorporated in the 
quasilinear diffusion operator, thus justifying the success of 
Grognard’s calculations,34 which balance the effects of ve- 
locity dispersion by quasilinear diffusion on the distribu- 
tion function. The effects of a single, intense, solitary-like 
structure on passing electrons were investigated, mainly in 
the context of strong turbulence, because transit-time ef- 
fects are considered crucial for the arrest of Langmuir 
wave collapse.35 The wave energy is extracted by bulk elec- 
trons resulting in the formation of tails in the distribution 
function.32,36~37 Several laboratory experiments38 investi- 
gated the effects of a super-strong Langmuir turbulence 
(with normalized wave energy W/nT,> 1 ), and its inter- 
action with an electron beam. In sharp contrast to those 
strong turbulence studies we consider in this paper much 
weaker electric fields and much less localized structures. 
From Table I we find for the peak values, W/nT, < low3 in 

TABLE II. Selected theoretical parameters. 

Description 

Phase velocity 
Growth rate 
Packet scale size 
Transit time 

Normalized field 

Symbol 

vdve 
Y/o, 
kL 

wpTt= kL 
2&ek 

P=X (kLJ2 
P 

Value 

20-100 
210-4 
10-100 
lo-loo 

0.01-0.2 

the aurora1 zone and W/nT, < 10R5 in the solar wind. Fur- 
thermore, the typical dimensions of the packets we discuss 
read in units of Debye length 2L/&-kL(vJvJ 
= 103-104, i.e., two orders of magnitude larger than the 
-20 /Zd structures envisioned in the strong turbulence 
transit-time studies. For those two reasons, ponderomotive 
effects are discarded in the present study. Rather, we focus 
on the phase bunching of the interacting electrons and, 
simultaneously, on the evolution of the Langmuir packet 
due to the lowest-order energy exchange with the particles. 

In Sec. II we present the general expressions of distri- 
bution functions perturbed by a localized field and their in- 
and out-of-phase relations with the field. We also introduce , 
equations to describe how the field itself is affected by the 
interaction. In Sec. III we explicitly calculate the pertur- 
bation for the streaming electrons. We obtain the correc- 
tion of the distribution as a function of position and veloc- 
ity, point out the important modifications due to the finite 
size of the packet, and compare the results to those of 
test-particle simulations. In Sec. IV we deal with the evo- 
lution of a wave packet due to the interaction with the 
traversing electrons. The energy exchanged is calculated 
explicitly from the perturbed distribution and compared to 
data from test-particle simulations. In Sec. V we summa- 
rize our results and discuss their applications to present 
and future experiments in space. 

II. FINITE-SIZE WAVE PACKET IN A VLASOV 
PLASMA 

We consider a coherent, localized packet propagating 
in the x direction with a phase $(x,t) . The coherence time 
is assumed longer than the transit time r, of electrons 
through the packet, which requires it to be longer than 
IO-100 plasma periods (see Table II). The localization of 
the electrostatic field is specified by a form factor q(x,t) 
piecewise continuous, bounded, and vanishing for x--t 
f CO. Its slow time dependence describes the drift due to 
the group velocity of the Langmuir waves or the growth 
(or damping) due to the interaction with the electrons, 
Explicitly, the field is written as 

E(Q) =E,+f)exp(i$) +c.c., (1) 
where cc. denotes the complex conjugate. The frequency, 
wave number, and phase velocity are given by w= -a@??t 
(assumed to be constant since the medium is time station- 
ary), by k=&,b/dx, and by vp=w/k, respectively. 
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The electron distribution function consists of two pop- 
ulations: a dense background F,(v) and energetic, stream- 
ing electrons F,(u), which include velocities around up. 
The streaming density LX@= J-G% F, is several orders of mag- 
nitude smaller than the background density no. Under the 
influence of the wave field, both populations (a=O,e) de- 
velop a time-dependent, inhomogeneous component 
f q(~,v,t), which satisfies the Vlasov equation 

ffp &fv$ ,2= ( ) m & (Fd-f&j. (2) 

Poisson’s equation, in turn, links the two perturbed densi- 
ties with the electrostatic field of Fq. ( 1). Our goal is to 
find explicit expressions for fo(x,v,t) and f,(x,v,t) in or- 
der to analyze their phases versus the wave phase $ for 
correlator applications. Neglecting the perturbation -f a on 
the right-hand side of Eq. (2) gives the linear approxima- 
tion to the perturbed distribution function, 

eE0 f 
f;~‘(x,v,t) =; 

s 
dt’ q(X~,tf)eUWJ’) 

--m 
&W) 

+c.c., (3) 
where the integration is carried out along the trajectories 
x’(t)), v’(t’), whichsatisfyx’(t)=xandv’(t)=v,andwe 
ignore the perturbation at large negative times when 
x’ --t f 03. The linear perturbation f a= f fr” oscillates in 
time like the electric field, i.e., with frequency w. From Eq. 
(3), one observes that the standard solution for a plane 
wave with a homogeneous amplitude (7 = 1) can be sig- 
nificantly modified due to the finite extension of the form 
factor 7. The perturbed distribution function f, depends 
on the structure of the form factor along the past trajecto- 
ries of the particles, which constitute the unperturbed dis- 
tribution function. The form factor modifies, in particular, 
the phase shift between the perturbed distribution function 
and the wave field. 

Equation (3) for the background distribution f. is 
integrated as follows. ‘* The variable of integration is 
changed from t’ to J/[x’( t’),t’], which is legitimate for the 
background electrons, since d$= (kv’ --w)dt’ has a con- 
stant sign. Then; integrations by parts are performed to 
create a series in powers of k-la In v/ax, ratio of the fast 
variation scale in 4 to the slow scale in q. The first two 
terms of the expansion yield 

aF, rl fo(x,v,t) ==a40 - - au kv--o sin! I 

+ [ ;($j +$ /(ku-cd2 

--u’q(g) /(ku-d”]cos $1, (4) 

where A,,=eE,,/m. At the lowest order (the first term on 
the right-hand side), the perturbation is rr/2 out of phase 
with the electric field, which reproduces the standard result 
for an infinite wave train. The packet inhomogeneity, how- 
ever, introduces a component in phase with the electric 

f,(x,u,t) =A0 ei(kr--ot) ~ dT r](x+vT,T 

+t)ei(ku--o)T+C.C., (9) 
in which the integral over r describes the relative phase of 
the oscillating perturbed distribution f, versus the wave 
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field. The density no consists of similar components, and it 
will be shown in Sec. IV that the perturbed density of 
energetic electrons can also be split into a resistive and a 
reactive component: n,(x,t) =nC cos $+n, sin $, where nC, 
n, are proportional to the first and second derivatives of F, 
at up, respectively. Therefore, the sin #J (reactive) compo- 
nent of Poisson’s equation results in 

2A0q(k-co$=c$ns, 

while the cos $ (resistive) component gives 
(5a) 

240 
aq 
ax+240@; 

( 

al ar aq aI rl ak a21 2 -- at aw-~~-~jZ&~ 
) 

= -qk 
(5b) 

where the velocity integral I= J dv (aFdav) ( kv - o > -’ is 
introduced.” The latter is related to the real part of the 
dielectric function, as determined by the dense back- 
ground, 

c(k,ti)=l-(+k)l. (6) 

Equation (5a) yields the dispersion relation and indicates 
that frequency and wave numbers are related by the stan- 
dard dispersion relation if the perturbed density of the 
streaming electrons does not contain a reactive component, 
n,=O. It will be shown below that n, is indeed negligible, 
provided that va In 1 aF/av 1 /avg kL and as long as p( 1. 
Therefore, k is assumed to be constant and, introducing the 
group velocity, 

Eq. (5b) simplifies to 

(8) 

The wave packet propagates at the group velocity, while its 
amplitude is modified by the resistive component n, of the 
perturbed streaming electrons. That equation will be used 
in Sec. IV to calculate the growth or damping of the 
packet. 

Ill. DISTRIBUTION FUNCTION OF STREAMING 
ELECTRONS 

The energetic part of the perturbed distribution func- 
tion f, affects only slightly the dispersion relation, Eq. 
(5a), and the wave evolution, Fq. (8); therefore, in the 
calculation .of f e itself we approximate the spatial deriva- 
tive of the phase $ by a constant k, giving += kx-c@. 
Taking as characteristics ,$he trajectories v’ (t’ > = u, 
x’ ( t’ ) ==x + v (t’ - t) , where v is assumed to be positive, Eq. 
(3) becomes 
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phase. Equation (9) is similar in form to the one used by 
Landau;22 however, our boundary conditions differ, in that 
non-negligible wave amplitude is limited to a finite spatial 
domain while the plasma medium is infinite. 

The integral in Rq. (9) relates the distribution f, to 
the motion of the particles at earlier times, and the effect of 
spatial gradients in the electric field amplitude will be di- 
rectly seen in the resulting phase relation. Considering the 
simple stationary profile of a square window, 

i 

0, 
q(x) = 

x-co, x> L, 

1, O<x<L, 

which has two one-point discontinuities in the electric 
field, one obtains, directly from (9)) 

i 
f &,v,t) =Ao - o-kv e 1 

(10) 

where B=exp[i(k--o/v) (L-x)]. Converting space to 
time, the solution for 0 <x < L is equivalent to Eq. (6) of 
O’Neilz5 In the square bracket, the rightmost exponents 
reflect the presence of the left boundary, while /z? reflects 
the right boundary in the wave field. They modify the 
phase of the perturbation relative to the wave phase $ and 
yield also, downstream of the interaction region, a ballistic 
term exp[i(k-w/v)x], which carries information on the 
number of oscillations felt by the particles during their 
transit. Another point to note is that the presence of these 
boundary terms plays an essential role in keeping bounded 
the perturbed distribution function of resonant electrons. 
The usual expression for a plane wave [Rq. (lo), with the 
square bracket equal to unity] shows the perturbation to 
have a singularity at resonance; therefore, the assumed lin- 
ear solution breaks down. Instead, the expression above 
can be expanded for velocities close to up and, following 
O’Neil, secular terms sought after. As a result, the deriv- 
ative that was neglected in the linearization of (2) is eval- 
uated at the phase velocity as 

~~5-(-200stj[q’d(ln 121) /,v]kx 

tsin 9 v;‘(k~)~ , 
I 

so is dominated by a term that grows quadratically with 
the distance. Thus, to guarantee the validity of the linear 
solution, we set a bound to df&‘v at x = L by requiring 

cl, (11) 

i.e., the interaction time between the wave and the resonant 
particles passing by is shorter than the trapping period. 
This condition, albeit obtained with a simplified form fac- 
tor, gives the correct expansion parameter for the validity 
of a linearized solution for a more realistic wave packet. 

In the aurora1 region, as well as in the solar wind, the 
observed electron beams appear as little bumps at a veloc- 
ity vb riding on a nonthermal tail of the electron distribu- 
tion fun&ion. In this description the range of velocities for 
which the reduced distribution function shows a positive 
slope at a given time is somewhat narrow: Av,/vb-0,i. 
The associated narrow range of wave numbers excited, 
Ak/k-+O. 1, corresponds to a wave packet of width 
Ak-‘- lOk-‘. Since the dispersion of Langmuir waves is 
quadratic, a Gaussian envelope moving at the group veloc- 
ity describes well a propagating Langmuir packet (e.g. Ref. 
39). The packet disperses on a characteristic time scale 
~tj- @L)2@JzQ 20;1, where v, is the electron thermal 
velocity. The dispersion time is for our applications very 
large (Table II), being several orders of magnitude larger 
than the transit time of resonant electrons through the 
packet: rd- 104r,. For simplicity, we choose to describe 
the wave field by a moving Gaussian packet with a fixed 
half-width L and group velocity U, 

q(X,t) =e-w-ut)2/4L2~ (12) 

This choice will enable us to use known properties of the 
complex error function to carry out the analysis and to 
write down explicit expressions. Substitution of Eq. ( 12) 
into (9) results in 

fJ&v,t) =AOr](x,t)ei(kr-wt) z--&-f ~(6) +c.c,, 

(13) 

where Z(g) = 2ie-PJ’i ooe-2 ds is the plasma dispersion 
function with the complex argument g= (w - kv) L/( v 
-u)-i(x-zc)/(2L). The real argument of the 2 func- 
tion is the Doppler-shifted frequency experienced by a 
passing electron times its transit duration through the 
wave packet. The imaginary argument represents the elee- 
tron position with respect to the center of the packet. Both 
parameters are of major importance, hence we define 

ff.~--Re(S)=(kv-o)L/(v-u), (144 

XE-Im({)=(x-it)/. (14b) 

The parameter D determines the proximity to resonance 
during the interaction with the localized wave packet. Ex- 
actly at resonance, a=O. On the other hand, electrons with 
1 a] > 2 may be considered as nonresonant. Since in all 
applications u/v, < 0.0 1, we set u to zero from now on for 
the sake of simplicity. As shown by Eqs. ( 14), it is always 
possible to include the effect of the group velocity by 
changing coordinates to a frame moving with u. 

The class of resonant electrons depends closely upon 
the size of the packet. When the dimension of the packet 
increases, L -) CQ while x remains finite, we have g+&.- CO 
and Z -, - l/c,. Therefore, from Eq. ( 13) we recover the 
standard result for the perturbation by a plane wave, 

f ebw,~) = 20 
aFdav - ,r(kr-wt) +(.& 
w-kv 
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(a 1’ 

By comparing that expression to Eq. (13) (with u=O) theory.40 To be sure, in both cases the broadening in the 
evaluated at the center of the packet, x=0, we can find a frequency domain reflects a lim itation of the interaction 
resonance function, time. However, in the latter case, it is the randomization of 

-iL -iL the particle orbits in a turbulent field that causes a loss of 
R=----- 

V 
2(--u)=- 

V 
i&e-d+-2e-’ the phase relation between wave and resonant particle after 

(15) 
a finite time interval. Because this time interval is inversely 

The real part of R, which physically represents the resistive proportional to the square of the electric field, the process 

contribution, is mathematically associated to the Gaussian is nonlinear and distinct from the simple, linear broadening 
described in this paper. 

& -‘, or Equation ( 13) gives the general linear expression for 

Re(R) =rr (16) 
the perturbed distribution in the presence-of a localized 
Gaussian packet. Its form shows that the perturbation fol- 

When CDL/V+ CO, namely the transit time becomes large, 
lows the wave, but has an additional phase that is described 

Re(R) tends to the usual delta function from the Plemlj by the 2 function. Although we could have expressed ( 13) 

formula, ?rS (kv - 0). It may also be shown that the imag- by means of a complex error function, we prefer, however, 

inary part of R, associated to a Dawson integral, reduces to to cast f e in the form ( 13) because of the common knowl- 
the principal part of l/( kv--w). Plots of real and imagi- edge of the plasma dispersion function. We recall, for ex- 
nary parts of R are shown in Fig. 1 for various sizes of ample, the familiar asymmetry of Z  when its complex ar- 
packets. Height and width of the resonance are given by kL gument crosses the real axis. Since here the imaginary part 
and l/kL, respectively. In panel (a), one clearly sees the of the argument depends on position, we expect an asym- 
tendency to a delta function for large values of kL and the metry of f,(x,v,t) with respect to x. Physically, this re- 
broadening of the resonance caused by the localization of flects the fact that we choose electrons with v>O, hence 
the packet. For the sake of clarity, we should stress that electrons at x < - L have been hardly subjected to the in- 
this broadening is a physical process distinct from the stan- teraction with the field, while electrons at x2 L have felt 
dard resonance broadening discussed in plasma physics most of its effect. If those are exactly at resonance, then 
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FIG. 1. Components of the resonance function defined by Eq. (15); u= (ku--o) WV. (a) Real and (b) imaginary parts are shown as a function of 
( 1 -vJv) for three sizes of packets. The resistive component is described by a Gaussian and the reactive component by a Dawson integral. For extended 
packets (kL+ CO ), they tend to ?rs(kv-o) and principal part ql/(kv-CO)], respectively. Note the broadening of the resonance for compact packets. 
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Re( 6) =0 and Z can be expressed by means of the error 
function to yield 

0 

f( - e x* k ,t =2Ao cos(kx-wt) 
) 

X~~lw,k&[ l+erf(&)]. (17) 

The perturbed distribution oscillates in phase with the elec- 
tric field and is bounded. This is in contrast with the be- 
havior of trapped equilibrium distributions, which are in 
phase with the wave potential (see e.g., Ref. 41). The am- 
plitude of the oscillation increases monotonically through 

the packet; quite naturally, the amplitude vanishes for 
X& -L and saturates for x) L, where the electric field is 
exponentially vanishing. 

From Eqs. ( 13) and ( 17) we observe that the per- 
turbed oscillating distribution f, has, in general, compo- 
nents in and out of phase with respect to the electric field. 
The energy transfer between the waves and the electrons is 
due to the work done by the electric field on the perturbed 
electron current and is therefore carried by the in-phase, or 
resistive component off e. In order to clarify the transition 
between oscillation in and out of phase with the wave elec- 
tric field, we rewrite (13) by splitting the oscillating con- 
tribution to fe into resistive and reactive terms. The split- 
ting emulates also the wave-correlator procedure 

Components of the perturbed distribution function 

-80. 0. 80. 160. 

FIG. 2. (a) Linear perturbation jJx,v) with its two components: resistive (cos) and reactive (sin). The perturbation is shown as a function of position 
(wave number units) for three nonresonant velocities; C= (kv-o) L/v. A dashed line indicates schematically the envelope of the wave electric field. The 
perturbation is spatially limited to the field region and is larger in the reactive component (note the different scales). Parameters: ~=0.2, kl;=20. (b) 
The same as (a), but for velocities close to or at resonance. The perturbations are much larger and extend downstream of the field region. The amplitude 
of the oscillation scales as exp( -02). and its characteristic length is given by L/a= k-‘( 1 -v/u,)-‘. At resonant velocities, o-0, mainly the resistive 
component (~0s) is strongly perturbed. 
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Components of the perturbed distribution function 
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FIG. 2. (Continued. 1 

performed on rocket data.13 Introducing the notation 
p=(2eE0k/m) (kL/w)2, we obtain 

q(x)[Zicos(kx--wt) 

+Z,sin(b---wt)]. (18) 

The factor ,U may be thought of as the square of the bounce 
frequency in a constant amplitude field times the transit 
time of a resonant electron through the wave packet. It is 
similar to the left-hand side of ( 11) . A validity condition 
for f e being a solution to the Vlasov equation (2) is clearly 
I af.e I 4 I awa v I inside the packet where E maximizes. 
Differentiating Eq. ( 13) and realizing that the strongest v 
dependence in f, occurs via the variable 6, it is straight- 
forward to show that 1 af Jdv 1-2,~ 1 JFJav 1 when evalu- 
ated at v=vP and x=0. Therefore, as long as ~(1, little 
nonlinear effect is expected to appear. Considering the pa- 
rameters listed in Tables I and II, this inequality is satis- 
fied. In the present analysis we use values up to p 5 0.2, 
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which for the aurora conditions corresponds to a packet of 
80 m size and the rather large electric field of 500 mV/m. 

Equation ( 18) shows that the perturbation is rather in 
or out of phase with the wave electric field, depending on 
the relative weight of Zj and Z,, imaginary and real parts 
of Z, respectively. For o=O, e.g., Z is purely imaginary, 
which leads to Eq. (17). We split Eq, ( 18) into its resistive 
and reactive components fc and IS: (fJF,) =jc cos $ 
+jS sin I/, Figure 2 displays the components as a function 
of x for velocities far from resonance in panel (a) and for 
velocities close to resonance in panel (b). Here we have 
assumed a falling power law for the equilibrium distribu- 
tion function of energetic electrons, F,= (v/v,) --(r with 
a = 5, and evaluated Eq. ( 18) numerically for p = 0.2 and 
kL=20. To gain a qualitative understanding, it is useful to 
consider simple analytic limits to Eq. ( 18). Around the 
center of the packet, Ix I= jx/2L I < 1, expanding Z gives 
the following approximate expressions. If joI is large 
enough for I a+ i,y I > 2, 
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jc3pk$ (gin Fe) 

X $2 ew2+2H(x) Fe-$ cos(20~) , 
( ) 

(1%) -* e-x2+2H(x) &Fe-’ cos(2a;y) , (20a) 

e-2 
~+W(X) &Y-e-$ sin(2q) . 

1 
(19b) x xGe i 

-~+2H(x) he-‘sin(2q) . 
X ) 

(2Ob) 

Away from the center of the packet, 1 x 1 > 1, the expansion 
yields the approximate expressions, 

The expressions above point out that for 101 > 2, when 
e-g is negligibly small, the perturbation is mainly in the 
sin term fS and is confined to the region occupied by the 

Oscillating perturbation: f 

12. 

0. 

-12. 

-80. 0. 80. 160. 

(4 

-12. ’ I I I 

-80. 0. 80. 160. 

kx 

FIG. 3. (a) Amplitude of the perturbations in fobserved in a test-particle simulation. The location of the electric field is indicated schematically with 
a dashed line. Two values of velocity are chosen: u=O.99 (circles) and o= 1.9 (asterisks). The solid lines display the analytical results as described by 
fJlc, from Eq. ( 18). For cr= 1.9, the amplitude of the bunching is too small, so that the data from the simulation are degraded by numerical noise. (b) 
The same as (a) for two other velocities: u= - 1.1 (circles) and 0=0.02 (asterisks). For resonant electrons (0=0.02) the linear, resistive perturbation 
is large: fJFes20%. The effect of nonlinear corrections from Ref. 21 is shown with a dot-dash pattern, 

1016 Phys. Plasmas, Vol. 1, No. 4, April 1994 Muschietti, Roth, and Ergun 

Downloaded 20 Jun 2003 to 128.32.147.66. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/pop/popcr.jsp



i 

O sci l lat ing p e r tu r b a tio n : f 
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kx 

FIG . 3.  ( C o n t i n u e d )  

packe t. F i gu re  2 ( a )  shows  exact ly th is  behav io r . T h e  n o n -  
van ish ing  c o n tr ibut ion is lim ite d  to  th e  packe t, w h o s e  e n -  
ve l ope  is ind ica ted  by  a  d a s h e d  l ine. Fu r th e r m o r e , fS A h a s  
th e  s ign  oppos i te  to  cr, in  a g r e e m e n t wi th (  1 9 b ) , wh i le  f c is 
o d d  in  x, as  desc r i bed  by  ( 1 9 a ) . O n  th e  o th e r  h a n d , w h e n  
[ a l  <  2 , th e  te r m  exp (  -2 )  in  E q s . ( 2 0 a )  a n d  ( 2 O b )  b e -  
c o m e s  signif icant.  T h e  p e r tu r b e d  d is t r ibut ion susta ins 
s p a tia l  osci l lat ions wi th a  w a v e l e n g th  2QTl ; ia  
=  ( 2 7 r /k) (  1  - u /Q  -’ in  b o th  react ive a n d  resist ive c o m -  
p o n e n ts fo r  th e  w h o l e  d o w n s t ream r e g i o n  ( 5  9  0 ) . Th is  
behav io r  is d i sp layed  .in  Fig.  2 ( b ) . It a p p e a r s  c lear ly  fo r  
o =  1 , w h e r e  f C  a n d  fS  osci l lates wi th a  1 0 %  a m p litu d e  a n d  
a  w a v e l e n g th  2 r k L / a =  1 2 0 . Fo r  a lmos t exact ly r e s o n a n t 
e lect rons,  a - 0  Q  E q s . ( 2 0 a )  a n d  ( 2 0 b ) ,-fS  is van ish ing ly  
smal l ,  w h e r e a s  f, is l a rge , n e g a tive , a n d  near l y  constant .  

T h e  p r e s e n c e  o f ball ist ic te r m s  is wel l  k n o w n  in  th e  
V lasov th e o r y  o f w a v e - p a r ticle interact ions.  In  R e f. 2 0 , 
e .g ., a n  express ion  l ike ( 2 0 )  is g i ven  fo r  th e  p e r tu r b a tio n  
d o w n s t ream 0 f.a  loca l ized w a v e  packe t. The i r  real i ty h a s  

Phys.  P lasmas ,  Vo l .  1, .No. 4, Apr i l  1 9 9 4  

b e e n  str ikingly d e m o n s trated in  l a b o r a to ry  p lasmas  by  ex-  
p e r i m e n ts o n  e c h o  p h e n o m e n a .2 4 ~ 2 g ~ 3 0  

F igu re  3  c o m p a r e s  E q . (  1 8 )  wi th resul ts f rom a  test-  
p a r ticle sim u lat ion c o d e . In  th e  sim u lat ion 5 0 0  0 0 0  e lec-  
tror is’a r e  l a u n c h e d  th r o u g h  a  g i ven  electrostat ic w a v e  
packe t. T h e y  a r e  d is t r ibuted b o th  ove r  a  r a n g e  o f veloci t ies 
a r o u n d  u p  a n d  un i fo rmly  ove r  th e  poss ib le  p h a s e s  re lat ive 
to  th e  e lec t& fie ld.  The i r  s u b s e q u e n t b u n c h i n g . in  th e  
p h a s e  o f th e  w a v e  ‘fie l d  is ana l yzed  wi th d i a g n o s tics wh ich  
r e s e m b l e  th e  ‘rocke t -bo rne  wave-e lec t ron  corre lator .  l3  T o  
sim u late cond i t ions  in  th e  a u r o r a , w e  c h o o s e  th e  packe t’to  
h a v e  a  m a x i m u m ~ a m p l i tu d e  o f 5 0 0  m V /m  a n d  a  ha l f -width 
L = 2 0 k - ’ = 4 0  m . Th is  choice:  co r responds  to  ,u = O .2 3  
a n d , th e r e fo r e , is a t th e  b o u n d a r y  o f th e  l i near  r e g i m e . 

F igu re  3 ( a )  shows  th e  p e @ u r b a tio n s  as  a  fu n c tio n  o f 
pos i t ion  a t two velocit ies: u =  1 .8 5  X  l o?  c m /s - , -and  
u =  1 .9 4 X  IO 9  c m /s, wh i le  _  th e . p h a s e  velocity is 
~ ~ 7  1 .7 6 X  1 0 ’ c m /s. W e  s e e  a  g o o d  fit b e tween  th e  two 

,, L  . Muschiet t i ,  Roth,  a n d  E r g u n  1 0 1 7  
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Compouents of the perturbed distribution function 
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V/VP 

FIG. 4. Linear perturbation ~Jx,zJ) with its two components: resistive (cos) and reactive (sin). The perturbation is shown as a function of velocity (in 
units of the phase velocity up) for three locations: upstream (x= -4L), within (x=0), and downstream (x=4L) of the wave packet. The resistive 
component extends over the resonance interval Au=2q,/(kL) on each side of up. Parameters: /.&=0.2, kL=20. 

methods. As compared to the analytical Vlasov approach, 
the correlator-simulation method suffers from finite size 
velocity bins and from numerical noise, as well as from 
errors in diagnostics due to a required linear interpolation 
from electron position to the plotted position. On the other 
hand, it automatically includes any nonlinearity in the par- 
ticle trajectory. Figure 3(b) depicts the comparison at ve- 
locities v= 1.67X lo9 cm/s and v= 1.76~ lo9 cm/s, show- 
ing a remarkable fit between the two approaches. For the 
resonant particle (0=0.02) the perturbation of the trajec- 
tory is large enough for nonlinear effects to play a role, and 
causes a small divergence between the results of each 
method. A dot-dash pattern indicates the result of the 
nonlinear calculation presented in Ref. 21. Still, the valid- 
ity of the linear calculation is remarkable. 

We conclude this section by showing a perturbed dis- 
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tribution as a function of velocity at several locations (Fig. 
4). While at x= -4L no effects are observed, we note for 
x > 0 an oscillating behavior. From Rqs. (20) this behavior 
is due to the ballistic term exp(2iq). As ,y=x/(2L) in- 
creases, the oscillation in u (thus in u) increases. The elec- 
trons carry with them the memory of their interaction with 
the wave field after exiting the packet. However, for x9 L 
moments of f,, like the density perturbation, do vanish 
because f, oscillates in U. The resistive component ]c is 
approximately symmetric with respect to the phase veloc- 
ity, while the reactive perturbation j=s is asymmetric. 
Therefore, the important lowest moment off e is associated 
to fc, which constitutes a source in the wave equation (8). 
This quantity is related to growth rates and changes in the 
wave profile, as will be discussed in the next section. 
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IV. WAVE PACKET EVOLUTION AND ENERGY 
EXCHANGE WITH RESONANT ELECTRONS 

In the previous section, a stationary profile of the elec- 
tric field has been assumed. The resulting linear perturba- 
tion in the distribution function just ozcillates in time with 
frequency o, the components f, and f, being in phase and 
out of phase with the electric field, respectively. The spatial 
behavior and amplitude of the perturbation was shown to 
agree well with the correlator function from test-particle 
simulations, which also assume a stationary electric field 
amplitude. In reality, the electron current resulting from 
the perturbed distribution function feeds back on the elec- 
tric field, The current associated with the resistive compo- 
nent fc extracts or deposits, after many wave periods, a 
non-negligible amount of -the wave energy. This energy, 
which is tapped from or goes into the flux of passing elec- 
trons, modifies the wave profile in the course of time. In 
this section we analyze the effect of the passing electrons 
upon a localized electric field on the basis of Eq. (8). In the 
frame moving with velocity u the envelope experiences 
slow time changes driven by the resistive component n, of 
the perturbed density. 

For the applications we consider, we recall that the 
transit time of resonant electrons through the packet is of 
the order of tens to a hundred plasma periods (see, Table 
II). The growth or damping time, on the other hand, is 
estimated from observations to be of order y-r - 10”~; ‘. 
It is therefore legitimate to consider the field as prescribed 
while solving the Vlasov equation for f,(x,u,t). Changing 
the coordinates to the moving frame: x+x-d, v-+v-u, 
o-+w-- ku, and choosing the Gaussian shape delined in 
Rq. (12) leads to 

fJx,o,t) =AOr](x,t)ei(kx-mfJ $4f Z( -a,-~) 

+c.c. (21) 

Compared to ( 13), the expression is written in the moving 
frame, and we have added an additional slow time depen- 
dence in q. The linear perturbation adiabatically follows 
the growth in the electric field, and has an amplitude and 
phase depending on Z, whose argument is explicitly split 
into its real and imaginary parts [as defined in (14)]. The 
real part, -u= (w --ku) L/v, is unchanged from the sta- 
tionary case: The Doppler-shifted frequency seen by the 
passing electron is not modified by the growth of the 
packet. The imaginary part, -x= -x/( 2L), reflects the 
spatial variation in amplitude of the-electric field, as seen 
by the passing electron. It too is not modified because the 
amplitude of the packet hardly changes during the electron 
transit. 

We seek now to calculate explicitly it, by integrating 
Eq. (21) for f, over velocities. Extracting the resistive 
component, we have 

n&d = -~o~(x,~) -$Re(~~ (224 

ii(x) =kLu; dui%iZ[ L(i-k),-g]. (22b) 

From Fig. 4, one sees that the resistive perturbation in ?e 
is confined to an interval Av=2vJ( kL) on each side of the 
phase velocity. ‘To compute Re (K) amounts to averaging 
the slope of F,(v) with (L/v)Z, as a weighting function. 
This averaging and therefore the evolution of the wave 
packet depend strongly on the packet size kL. 

For a very broad packet, (L/U)Zi is described by a 
Gaussian centered on up which mimics a delta function [see 
Fig. 1 (a)], so that one obtains 

o.12 aF, 
Re(f)=-rpx , 

“P 
(23) 

and the right-hand side of the wave equation (8) becomes 

0; aF, 
=W)=p~ 

In the moving frame the field amplitude varies exponen- 
tially with time, and the growth rate is given by 

co; dF, ae --I 

y=TKG I( 1 z * 
VP 

(24) 

Thus the familiar expression for a plane wave is recovered. 
The amplitude increases or decreases depending upon the 
slope of the nonoscillating distribution function of ener- 
getic electrons evaluated at v,,. 

When kL is finite, on the other hand, the Gaussian 
centered on up that describes the response function broad- 
ens, as demonstrated in Fig. 1 (a). Two situations may 
occur. Either the slope of F,(u) changes significantly, and 
even turns from positive to negative over the velocity in- 
terval 4u/(kL), or it remains fairly constant. First let us 
analyze the latter case, or packets satisfying the rough cri- 
terion, 

kL > 4vdAv,, (25) 

where Au, is the range of velocities over which dFJi3v is 
positive. The integral in Eq. (22b) can be approximated by 

Z((x) = -,zdFe 
p a0 is 

G f-m-), 
“P 

C 
(26) 

in which the complex integration variable c= L( W/U- k) 
--ix/(2L) is introduced. The integration contour C is a 
horizontal segment running from Re c= kL AU/( up- AU> 
to Re g= kL Au/(uP+ AU). Even with those simplifica- 
tions, the integral remains tedious to evaluate. As is shown 
in the Appendix, we obtain 

pe X 
WECx)l=--p~ uprh 2L , IO 

where 
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where 

Muschietti, Roth, and Ergun 1019 

Downloaded 20 Jun 2003 to 128.32.147.66. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/pop/popcr.jsp



2.0 

1.5 

L 1.0 

0.5 

0.0 
-4. -3. -2. -1. 0. 1. 2. 3. 4. 

Y 

FIG. 5. Auxiliary function h(y) defined by Eq. (27) and spatial profile of 
the wave field (dashed line with y=x/SL and arbitrary amplitude). 

h(y)=l+erfy-- (1-e-g) 
2TY 

+i >. g&2 [4enp( -Y-$-2 
-erf( L,--;) --ed( Lz-i)], (27) 

and L,, L2 equal 2kL(kL--2)-l, 2kL(kL+2)-‘, respec- 
tively. The function h(y) describes the difference between 
the profiles of the perturbed density and the electric field. 
The asymmetry between positive and negative y=x/(2L) 
reflects the increasing amplitude of the perturbed distribu- 
tion as the electrons penetrate further into the wave packet. 
It is reminiscent of Eq. ( 17). A plot of h (y) is displayed in 
Fig. 5: the function is monotonously increasing, is equal to 
unity at the center of the packet, and h(y) - 1 is odd in y. 
Note, though, that the density itself vanishes where the 
field vanishes [Eq. (22a)], since h(y) varies much slower 
than the envelope of the electric field, exp( -y”), shown 
here in arbitrary units with a dotted line. Substituting 
Re(E) in Eq. (22a) gives the spatial distribution of the 
perturbed density, 

(28) 

Thus the wave equation can be written as 

(29) 

with y defined in Eq. ( 24). Since, as noted above, h (x/2 L ) 
is slowly varying compared to T(X), we expand it to first 
order h(x < L) = 1 +x/( 12L). That leads to 

T(x,t)=exp - ?- 
[ [ 2L- (G+A)t]i) 

(30) 

in which the group velocity z( has been reintroduced. For 
several exponentiations the packet maintains its Gaussian 

25. , , . p I- '1 I 
.I 

20. - (0) 
15. - 

10. - 

5. - 

0. 

-5. 1 s t , , I 

-3.0 -1.5 0.0 1.5 3.0 

X/X 

in 
0.7 0.8 0.9 1.0 1.1 1.2 1.3 

FIG. 6. (a) Spatial profiles of the source term for the wave envelope 
equation (8) and inferred change in the envelope. (b) Model distribution 
function F(o) around the phase velocity up (the position of the beam 
velocity v, and the range AU, are indicated by an arrow and a dashed line, 
respectively). For a broad packet (kL=90), the profile is nearly centered 
[the solid curve labeled 90 in panel (a)], while its resonant velocity in- 
terval comprises a narrow range of positive slopes [delimited by the two 
circles in (b)}. For a narrow packet (kL= 15), the velocity interval in- 
cludes positive and negative slopes [asterisks in (b)] and the spatial profile 
is shifted downstream. This widens the field envelope [dashed versus dot- 
ted curves in (a)]. 

shape while slowly drifting. A similar result was demon- 
strated in a different context by means of a saddle-point 
method39’42 and shown in a particle simulation [see Fig. 
l(a) in Ref. 181. 

This “self-similar” growth or decay of the packet oc- 
curs where ,uL(~, namely the resonant electrons have no 
time to bounce. On the other hand, where p =0 ( 1) trap- 
ping and transit times are of the same order, so that non- 
linear effects can be expected.25 The damping of an intense 
wave packet was investigated by Denavit and Sudan.‘* It 
was shown that the wave field becomes broader with the 
formation of several new lobes. In the case of growth, non- 
linear effects reverse the sign of the resistive perturbed den- 
sity on the downstream side of the packet.20 This might, on 
the contrary, lead to an enhanced localization of the wave 
field.2’ 

We return now to Eqs. (22) and consider compact 
packets satisfying the inequality opposite to (25). The 
slope of F,(v) turns from positive to negative over the 
resonant velocity interval. A model of such a local distri- 
bution function is shown in Fig. 6(b) (in normalized 
units). It is made of a Gaussian bump added to a falling 
power law; the slope at u=uP is equal to 5 and 
AU, =O. 1 St+. For that F,(U) we integrate Eq. (22b) nu- 
merically and display the result in Fig. 6(a). The quantity 
q Re(ii) , which represents the spatial profile of the source 
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kx 
160. 

FIG. 7. Energy exchange observed in a.test-particle simulation. Case of wave damping, where y= -2.5 X 10m4 oP. -Left scale: rate of energy deposition 
into resonant electrons from the simulation (circles) and from theory (solid line), in 02(&/~o)@4rr units: fight scale: profile of the field energy in 
arbitrary units (dashed line). 

term for Eq. (8)) is shown (solid lines) for two packet 
widths as a function of normalized position. The labels 
denote the value of kL for each packet. For kL= 15 the 
resonant velocity interval, indicated by two asterisks in 
panel (b), is broader than Au, and satisfies the reverse 
inequality to (25). The source term appears totally shifted 
with respect to the packet center. To understand the spatial 
behavior of n,, it is useful to consider Fig: 4 (a), in which 
the resistive component reflects the behavior of 
- v- ‘Z, exp ( -x2) with v at various positions. For x<O, Zi 
has a constant positive sign, so the slope of F,( v) averaged 
over, the resonant velocity interval is reduced from the 
value ( + 5) it has at v= up. As a result, little energy is 
deposited by the passing electrons into the wave field on 
the upstream side. For x > 0, on the other hand, the ballis- 
tic term exp ( - g)cos( 2ax) causes Zi to oscillate and 
change sign over the resonant velocity interval. The first 
zeros, on the v axis around up are given by 
( 1 - v/v) = & 7r/2 (kx) - ‘. Hence, there exists an optimum 
position xc for which the sign change of Zi is sy,nchronized 
with that of the slope of Fe. Negative slopes are .given a 
“negative weight” in the averaging, which results in a large 
positive growth. This occurs for 

x0 n- VP 
A=-- 
2L 2 A?, (kL)-’ 

and causes the surge about x = 1.5 L in Fig. 6 (a). The effect 
upon the field envelope r~ is indicated by dotted and dashed 
lines. The renormalized envelope (dashed) is wider than 
the original envelope (dotted). Unlike broad wave packets, 
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which experience the “self-similar” growth discussed 
above, narrow hackets widen rapidly until kL Av+/v,~4, 
at which value the factor exp ( - $) drastically reduces the 
ballistic term, thus suppressing the anomalous contribution 
of negative slopes to wave growth. We emphasize that the 
widening takes place on a kinetic time scale, ‘which is of 
order y - * < 10”~; I, therefore faster than the usual disper- 
sion time rd- (kL)2(vJv,)2co;’ > 105w;‘. Since in space 
plasmas- Au, is upper bounded, the process sets a natural 
lower bound to the sizes of packets to be observed. If a. 
narrower packet happens to be measured, it must be the 
product of a complex, nonlinear evolution that has decou- 
pled the waves from the beam. It is clear that the exact 
bound depends on the details of the distribution function. 
Using the parameters in Table I, however, we note that Eq. 
(25) gives a minimum size, kLz20, which is not far from 
the smallest packets observed in the aurora. The second 
curve in Fig. 6(a) represents the source term in case of a 
broad packet with kL=90. The slope hardly changes over 
the resonant velocity interval, indicated by two circles in 
panel (b), so that one recovers the “self-similar” growth 
described by Eq. (30). In accord with Eq. (23) the height 
at x=0 is given by rr dFJdv= 16. 

We wish now to compare the prediction of E?q. (29) to 
our test-particle simulations. In those simulations we have 
access to the kinetic energy of the resonant electrons 
K,(x,t). Choosing a falling power law for Fe(v), the.wave 
total energy (electric and mechanic) is expected to de- 
crease while K, increases. The rate of energy deposited into 
resonant electrons is thus computed and compared to 
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Eb2h (31) 
UP 

where Eqs. (29) and (24) have been used. The solid line in 
Fig. 7 indicates the result of (31) while the circles show 
the simulation result. For comparison, the dashed line rep- 
resents the wave energy profile ~7~. Note the slight shift to 
the right, which is due to the asymmetry in the perturbed 
electrons with respect to the center of the packet and is 
described by the function h. 

With a relationship similar to (22a) the reactive com- 
ponent n, of the perturbed density is proportional to the 
imaginary part of K. On the basis of Fig. 1 (b) , one can see 
that the latter depends on the derivative of aFJ& at up. 
More specifically, expanding aF,Jav and using Eq. ( 15) 
yields Im ( K) - vi( #FJdv2) ( k L ) - ‘. Therefore, the reac- 
tive to resistive ratio of components scales as 

and vanishes in the limit of a plane wave. That is consistent 
with Eq. (5a) giving the dispersion relation. For a compact 
packet though, a curvature of F, about up leads to a differ- 
ential growth among the packet Fourier components, +/ 
dk#O, which results in a drift of the central wave 
number.39 Here, however, considering the relation between 
n, and ‘y, one readily shows that the right-hand side of Eq. 
(5a) behaves in magnitude as 

RHS(5a) -; w nsr (Aovk). 
c 

It is several orders smaller than the first term in (5a), and 
so was rightly neglected. 

From an experimental viewpoint, the growth rate can 
be evaluated by integrating the perturbed density as we did 
with Eq. (28). The integration of the resistive component 
of the perturbed distribution function is performed elec- 
tronically onboard the satellite, directly from the measured 
correlator data. This procedure allows us to assess a 
growth rate without having to rely on the too often uncer- 
tain measurements of positive slope in the reduced distri- 
bution function. The technique shall be used onboard the 
Fast Aurora1 SnapshoT (FAST ) satellite. l5 

V. CONCLUSIONS AND SUMMARY 

Phase correlation between waves and particles is an 
important tool for the understanding of the kinetic inter- 
action between localized waves and streaming electrons. In 
this paper we have analyzed the interaction between 
streaming, energetic electrons and a packet of Langmuir 
waves. The analysis is motivated by observations of Lang- 
muir waves in the solar wind and on low-altitude aurora1 
field lines, which frequently indicate that the high- 
frequency wave power is concentrated in spatially localized 
electrostatic packets whose dimensions are small enough 
(kL- 10-100) to significantly affect the character of the 
wave-particle interaction. Our aim has been to address the 
following questions: ( 1) What is the effect of localized 

Langmuir waves on the bunching of electrons in phase 
space? (2) How do the perturbations of the electron dis- 
tribution function affect the evolution of the Langmuir 
waveform? (3) What are the parameters that control these 
processes? 

It is essential that resonant electrons have only a short 
transit time of 10-100 plasma periods to interact with the 
wave. The finite transit time has several important conse- 
quences. First, even resonant electrons, which are mostly 
susceptible to trajectory deformation, may have their orbits 
only slightly perturbed. Second, during this short interac- 
tion time the packet is considered as coherent, an assump- 
tion supported by the experimental success of the wave- 
electron correlator in the aurora1 zone.13 Additionally, the 
wave field encountered by the passing electrons can be 
considered as prescribed. Thus, our investigation has been 
carried out by analytically integrating the Vlasov equation 
through a localized, coherent wave packet of a given am- 
plitude and form factor. The finite interaction time is re- 
fJected in the frequency domain by a broadening of the 
Cerenkov resonance at w= kv. Besides, due to the short 
transit time the singularity in the linearly perturbed distri- 
bution function at resonance is removed. For a localized 
packet with a Gaussian envelope, the resistive component 
of the resonance function is a Gaussian in velocity space 
centered at the phase velocity. Its height and width are 
given by kL and l/kL, respectively. For finite kL values, a 
non-negligible broadening of the resonant velocity takes 
place, Av=2vJ(kL). On the other hand, for very large 
values of kL, the resonant function mimics the delta func- 
tion associated with a plane wave. 

The important parameter that measures the effect of 
the localized wave field on the electrons is 
,~=(2eE~k/m)(kL/o)~. It may be thought of as the 
square of the average bounce frequency times the transit 
duration of a resonant electron. As long as PL( 1, transiting 
electrons cannot exchange much energy with the field in 
the packet, and their orbits remain close to unperturbed 
trajectories. The amplitude of the linear perturbed distri- 
bution function of the streaming electrons f, is such that 
their derivative 1 afJdv 1 is negligible versus the derivative 
of the unperturbed electrons 1 dF/dv 1, so that nonlinear 
perturbations in the Vlasov equation can be ignored. This 
is confirmed by a remarkable agreement between the ana- 
lytical results for f, and the data from test-particle simu- 
lations. The linear perturbed distribution function 
f,(x,v,t) can be written explicitly by means of the plasma 
Z function with an argument that includes x and v depen- 
dencies (unlike the usual plasma dispersion function with 
normalized phase velocity). The asymmetry of Z with re- 
spect to changing the sign of the imaginary part of the 
argument reflects the asymmetry between “upstream” and 
“downstream” electrons. Depending upon the relative 
weight of Zi and Z,, the perturbation is rather resistive or 
reactive, a characteristic that can be measured by the 
wave-electron correlator.13 

The important parameter that controls the interaction 
between the packet and electrons with various velocities v 
is UE (kv - w ) L/v, the Doppler-shifted frequency times 
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the transit duration. It distinguishes resonant particles (for 
which 1 (T 1 < 1) from nonresonant ones (with 1 CT 1 > 2). For 
(al > 2, the perturbation of the distribution function is 
small, mostly reactive, and spatially limited to the location 
of the wave electric field. For [ (T I < 1, the perturbation is 
large, mostly resistive, and “permanent” in the sense that it 
is carried downstream of the packet. It reaches the amp!& 
tude of about I f/F,1 z2p/(kL)v,ld ln FJdvl. In be- 
tween ( 1 < I (~1 < 2)) the perturbation occurs in both reac- 
tive and resistive components, and displays large spatial 
oscillations as remnants of the interaction. 

As for the effect of the interaction on the wave packet 
itself, we have computed explicitly the resistive component 
of the perturbed density in order to find the spatial modi- 
fications in the wave field envelope. If the distribution func- 
tion includes a bump superimposed to the nonthermal tail, 
there is a natural packet width that depends upon the de- 
tailed slope of Fe(v) about vP and is given by kL 
-4v/Av+. Narrower packets broaden rapidly while they 
grow. Larger packets grow “self-similarly,” i.e., they pre- 
serve their shape. This sets a lower bound (kL),i,z20 to 
observed packet sizes. 

The maximum phase bunching is predicted to occur 
for resonant particles and to be in phase with the electric 
field. This feature is actually consistent with the 
measurements I9 made in the aurora1 zone by the wave- 
electron correlator, and contrasts with trapped equilibrium 
distributions which are bunched in phase with the wave 
potential. The fact that bunching maximizes for resonant 
electrons enables one to assess the phase velocity, hence the 
wavelength of the Langmuir waves. Besides, the phase re- 
lation confirms the spatial localization of the Langmuir. 
packets. Furthermore, the range of observed packet sizei 
has a lower end that is consistent with the bound (kL),i, . 
New correlation experiments on board the Freja and FAST 
satellites are expected to help in better understanding the 
kinetic effects associated to Langmuir waves and energetic 
electrons in the aurora1 zone.15P16 In particular, the wave 
growth rate will be assessed directly from the resistive 
component of the perturbed distribution function, avoiding 
thus uncertain measurements of positive slope in the re- 
duced distribution function. _ 

As a wave packet grows, the associated parameter JJ 
increases expon&ntially (at a rate of approximately 10m4. 
wJ. When p 2 0.2, the amplitude of the perturbed distri- 
bution function becomes such that nonlinear perturbations 
in the Vlasov equation must be accounted for. The resistive 
component of the nonlinear perturbed density alters the 
shape of the packet and leads to an enhanced localization 
in the wave profile, whereby an extended wave packet of 
small amplitude becomes a more intense packet of shorter 
extension.*l. This kinetic localization operates for relatively 
low wave amplitudes and may be important when the usual 
localization due to self-focusing by ponderomotive effect is 
weak. 
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APPENDIX: INTEGRATION OF THE PERTURBED 
DENSITY 

Details concerning the evaluation of the integral of Eq. 
(26) are given here. Throughout the appendix we use the 
dimensionless units: x -+ kx, v + v/v,, t-r wt, and F,-+ vflo. 
Thanks to the connection between the Z function and com- 
plex error function, the integral to evaluate reads as 

aF, G(x) = -x$- I J & iZ(O 
u=l c 

The contour C is a horizontal segment in complex plane 
defined by 

where v varies from 1-S to 1+6, S being a small number 
compared to unity [from Fig. 4 we note that 6~2(kL)~-’ 
is large enough to encompass most of the perturbed fJ. 
The end points of the segment are given by 
&=L1=LS/(l--6) and &=-L,=-LLs/(l+@. The 
first term in the rightmost member of (A 1) gives merely 

7T aF, 
jl=y,~ [-erf(Ll+i~~)+erf(-L2+i~j)l. (A21 

In order to evaluate the term left over, 

i,=z J;; s dc e-c2 erf( ic), 
C 

(A3) 

we utilize the following series approximation to the com- 
plex error function (see formula 7.1.29 in Ref. 43): 

e-2 +m ,-G/4 

erf(-~~+i~~)=-erf(~i)-n. C n2+4~. ?I=-CO t 

x 2~i-&“S*G(&r+ e-q 
i 

+!C er25#r( &r- em”“) 
2 1 

. 

Substituting this expression in (A3) and performing the 
integrals over 5;, one obtains 
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( 

-$ fm 
j2=-jl erf(Ei)+k C 2!$i 

e-n2/4 aFo 1 
tZ=--CO n2+4g 

-xj 

x .x, n2:4gf [ erf( .I+;) +erf( L2-i) 

+erf( Ll--z) +erf( L2+i)] +zt 

x : n * 
1 

J 
-L2 

*=-m n2+4& J;F 
dy, 

L, 

x (,-(Y-n/*)2_,-(Y+n/2)2) (A41 

The term on the last line is purely imaginary and does not 
require evaluation, since we are interested in the real part 
of F(x) = j, + j, only. Summing up all real terms and re- 
arranging the sums over n, one obtains 

e-6 
l-erf(&) -R, 

e-G 
--,4LtZi C 

e-n2/4 

2) tt>o n2+46i 

aF, 1 
-xc, [erf(Ll)+erfo1-~ 1 

+erf( &-I) +erf( L2-g)]. (AS) 

Now a typical value for L,( a = 1,2) is 2. This allows us to 
set erf( L,) = 1 and to approximate Re( j,) by -F aFdav. 
Thus (A5) results in 

with 

h(y)El+erf(y)-& (l-e-?) 

+f z. &fl[4ev( -.3-$-z 

-erf( L*-i) -erf( L2-;)I. 
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