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Abstract. To study the large-amplitude Alfvén waves
that are frequently observed in the solar wind, the non-
linear equations of electron and ion fluids coupled to
Maxwell equations have been solved to obtain the rela-
tionships between the fluid density and magnetic field
for finite amplitude Alfvén waves in the cold plasma
limit. Two regimes of the parameter w./Q (ratio of
characteristic frequency to the ion Larmor frequency)
are examined. When w./Q = 0, we obtain an exact
simple wave solution for the linearly polarized Alfvén
wave, and recover the earlier results of [Montgomery,
1959a]. For finite w./Q, the geometric optics approx-
imation which is valid for large wave numbers yields
a new relationship which involves elliptically polarized
Alfvén waves. Both of these waves can be shown to
evolve into shocks.

Introduction

Large-amplitude Alfvén waves are frequently observed
in the solar wind [Belcher and Davis, 1971] and in the
interplanetary discontinuities in regions of high speed
streams [Tsurutani et al., 1994]. The nonlinear be-
havior of collisionless plasmas formulated in a self-
consistent way was first studied by Montgomery, [1959a],
using the Lorentz equation of motion for electrons and
ions coupled to Maxwell equations. He used a magnetic
field B = Boe; + By(z,t)ey and by allowing the plasma
density to be a function of space and time, obtained
an equation that relates the density and magnetic field
(a result obtained using a perturbation technique valid
to third order in By/B;). Montgomery [1959a] showed
that linearly polarized Alfvén waves become nonlinear
in the course of time and the waves steepen to form
shocks. Montgomery’s small-amplitude wave analysis
was extended to a finite-amplitude limit by Cohen and
Kulsrud [1974] who used a multiple time scale analysis
of ideal magnetohydrodynamic (MHD) equations.

In this paper, a magneticfield B = Boe+By(z,t)ey,+
B.(z,t)e, is used in the two-fluid equations coupled to
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Maxwell equations to obtain an exact simple wave so-
lution that relates the density, velocity and magnetic
field for linearly polarized Alfvén waves in cold plasmas
(the simple wave method has also been used recently to
solve nonlinear MHD equations by Mann, [1995]). In
the limit of “slow” processes, the earlier result of Mont-
gomery [1959a] is recovered. However, for an arbitrary
fluid time scale, geometric optics approximation yields
a new relationship which involves elliptically polarized
nonlinear Alfvén waves. These nonlinear waves can also
steepen and evolve into shocks. The nonlinear Alfvén
waves we investigate behave differently from the large-
amplitude circularly polarized waves [Ferraro, 1955] and
the Alfvén waves that permeate in steady-state prob-
lems [Montgomery, 1959b; Kellogg, 1964; Kakutani,
1966; Lee and Parks, 1992].

This article presents only the analytical theory and
we defer to future works for application to specific space
problems. Our formulation does not include thermal
effects or wave dissipation mechanisms, and thus no in-
formation on heating can be obtained.

Basic Equations and Formulation

We start from two-fluid equations for a collisionless
cold plasma and consider processes when the electron
inertia can be neglected. Then the equation of motion
for electrons reduces to E+%v x B = 0 where v is the
velocity field of the electron fluid. E and B are electric
and magnetic fields, and assume that plasma is quasi-
neutral. Then Ampere’s equation becomes V x B =
42¢ N(V — v) where V is the velocity of the ion fluid,
N is the density of ions and electrons, and e is the
charge of an electron. These equations combined yield

1 1
E+2VXB—W(VXB)XB (1)

The equation of motion for the cold ions can be written

as
ov 1

where M is the mass of the ion. Taking the curl of Eq.
1 and making use of Faraday’s law, ¢V x E = —9B/dt,
we obtain
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9B | V.VB4B(V.V)=

= (B-V)V

—ZUx{

1
Tre N(V x B) x B}

which can be rewritten as

0 B B
(61+V V)N—]—V-VV
¥« {L1(VxB)xB) 4
" 4nNe N ) % (4)
using the continuity equation for the ions %]—:’—+V-VN+

NV -V = 0. The equation of motion, Eq. 4, and the
continuity equation are the basic equations for defining
the variables N(r,t) ,V(r,t) and B(r,t). We now as-
sume the variables vary only in the z-direction. Then,
V-B = 8B;/0z = 0, and B, is uniform in space.
Thus, assuming that B; is also constant in time, B can
be represented as B = Boex + By (z,t)ey + B, (z,t)e, =
B()ex + BL .

Introduce for convenience the dimensionless variables
t' = wet, ' = wez/Va, by = By /By, v = V;/Vy,
vy = V1 /Va and n = N/Ny, where 1/w, is an arbi-
trary characteristic time scale, Ny 1s a representative
particle density and V, is the Alfvén wave velocity,
Va = Bo/v/4mM Ny, based on the z—component of the
ambient magnetic field and Ny, and = eBy/mc is the
ion gyro-frequency using again the ambient magnetic
field. A new set of coordinate variables 7 and £ is then

defined by the transformation relation 3aT = aat, + v M,,
(.;9—5 = i ai In terms of the new variables the basic
equations for a two fluid cold plasma are
on n? Ov
ar - " aE ©)
ov 10 .,
Bvl _ 6bL
or o (™)
0 by ovy wc 9?
61'( n )= 8 Q 8¢ ggz(ex ¥ bu) (8)

The equations in the coordinate system (£, ) corre-
spond to the Lagrangian description of fluid motion
(Landau and Lifshitz, 1959].

Analysis

If the density is uniform (n = 1, N = Ny), Egs. 7 and
8 constitute a closed set. For very slow processes where
we/Q — 0, by and b, are independent of each other.
Seeking a solution of the type by , = Re{by ,ei(ké=wm)}
yields a dispersion relation w? — k? = 0 which is the
ordinary Alfvén wave solution. This equation is valid
for cold MHD plasma. Cold MHD equations yield the
pure Alfvén mode which is not accompanied by a den-
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sity perturbation and the magnetosonic mode which is
connected with density disturbances at oblique prop-
agation angle relative to By. We can make one of the
components, say b,, zero by rotating the coordinate sys-
tem about the z-axis, and express the disturbances in
the field as a superposition of waves having a fixed po-
larization along the y-axis. This is not possible if w./Q
is finite, since then the two equations are coupled. For
finite w. /€, the dispersion relation obtained from Eq.
8 is
w? -kt %k"’w =0 (9)
where the =+ signs correspond to the eigenmodes b1 =
by £ 1b,. These waves are elliptically polarized Alfvén
waves [Kennel et al., 1988].
Now consider the general case of non-uniform den-

sity. Rewriting the set of equations (5-8) in terms of
by, obtai
+, obtain _3_n ) 230 o)
or — 6&
v 19
i 2(,)€(b+b ) (11)
0% by 0%by  w. 07 Oby
(W)= e Traager (1Y

We seek a special class of simple wave solutions. Simple
wave solutions retain the nonlinear character of the sys-
tem of equations. Simple wave solutions to ideal MHD
equations have been recently obtained by Mann, [1995].

Simple Waves

Assume that v and b are a function of n only. Then

on _ _p209ndv on dv _
Egs. 10 and 11 become = -SG5 and 327> =
2371,

or
where ¢ = %E—(b+b ) which is to be deter-
mmeé after we find b b_ as a function of n. These equa-
tions yield n?(%2)? = ¢2. Thus, once we know c in terms
of n, v can be obtalned Noting that dn = 6" dr+ df,

we obtain (%)n =-2 ";_’E‘ Also, 2o _59_21 - 23:;,

and we arrive at (%f)n = tnc which can be integrated
immediately to give £ = £nc(n)T + G(n) where G is an
arbitrary function of n. Denoting the inversion of G by
g, we obtain n(&, 7) = g(€ F ner). Since n(¢,0) = g(§),
g(€) is determined by the initial profile n(£,0).

It is instructive to translate what we have obtained
into the original space and time coordinates (z’,t).

—-n

Since dn = dr+ F¢d€ = (6t’ + vax,)dr i%d{
we obtain (%ﬁ) = (az‘ + vax,) %. Further, not-
ing that (az/) g;‘, l%% we obtain (%—f,’)n = v+

;(%&)n = v £ ¢. Integration of this equation yields
z' = (v £ c¢)t' + F(n) where F(n) is an arbitrary func-

tion of n. Thus
n(z,l, tl) = f(l"/ -

where f is the inverse of F' which is also associated with
the initial density profile n(z’,0). This equation repre-

(v £ e)t!) (13)
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sents a traveling wave propagating with a speed v £ c.
Since v is the velocity of the flow, +c represents the
wave velocity relative to the flow. If v+ ¢ is an increas-
ing function of n, waves having the form of the equa-
tion above steepen when they propagate into a region of
lesser density: wave fronts travelling behind have larger
speed than the ones ahead and they eventually over-
take them and the density gradient becomes steeper as
the compressive wave propagates until a discontinuity is
formed [Landau and Lifshitz, 1959, Landau et al., 1984].
The density gradient (On/dz’); becomes infinite at the
point of discontinuity and the shock formation time ¢,
is given by
on(z',0)

" 0z’ dn

Simple waves are stationary solutions in the instan-
taneous wave frame. It is instantaneous because v and
¢ are not uniform, so no single Galilean transformation
can bring us to the wave frame. Thus the problem of
finding a simple wave solution is equivalent to finding
an instantaneous wave frame in which the system of
partial differential equations has a stationary solution.

1/ts = — 4 yto) (14)

Wave Frame

Introduce an instantaneous Galilean transformatlon

—- 8 98 — 8
defined by a( =50 =Sl ) where s(¢, 1)
is the relative velocity of the coordlnates whlch is to be
determined, and then express the given set of partial dif-

ferential equations in this new coordinate system. Us-

ing the inverse of the transformation a% = %, a—"’; =
£ - s(¢, )a(v Egs. 10-12 become
on 6n _ 2611
v 61) 19
0 8, 0 0 _ 0%y
(35~ 3&)(5— - 3_6)(_) = 3
wc 32 3bi 0b¢
Now impose the stationarity condition, %’} 0, gg =0
and ab* = 0, which reduces these equations to
on 261)
3T (18
v 190
2 i b_:t ds 0 bi 621)5:
*acac) ) Hoacac ) = e
We 32 31)3:

Note the operators 60 and & 3¢ do not commute. Rewrit-
ing Eq. 20 as
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a b:l: N 82 61):&

2 C Y (ol E 2

gt =i BB o
and integrating it once, obtain
5 0 by Oby | we O by

“aln) =5 Faata)
Here we assumed the boundary condition 2% a o~
and n = 1 when ¢ = 0. Multiplying Eq. %2 w1ti1 b;F,

adding and subtracting the resulting equations, using
by = be*'¥ where b and ¢ are real functions, obtain
real and imaginary parts

2 . on. O  w,
nz(n&- Qb"’aZ) - ?26(“’28?) (23)
2s% , ,0¢ o¢
= 6c)"2b26c
8 ab2 s 000,
el -at @+ oo

Assume now that 62 and v are functions of n, and use
Egs. 18, 19, 23 and 24 to find their functional relation-
ship.

Small w./Q: First consider the case w./Q = 0.
Egs. 18, 19, 23 and 24 then simplify to

dv
— 27
s=n’— (25)
dv 1db?
- - 9
*dn " 2dn (26)
s?, db? db?
—(n— —2b® 27
s -2 = = (27)
2s 3¢ d¢
b2=) =262 — 28
— 6C) ac (28)
Egs. 25 and 26 yield a generally valid relation for a cold
plasma s? = "—;‘?9—‘:. Substitute this into Eq. 27 and

integrate, and obtain the solution 4> = n? — 1 where
the integration constant was chosen such that 6 = 0
when n = 1. This result, in the original variables with
B, =0, is (B3 + BZ)}/?/N = const which is the same
relation deduced by [Montgomery, 1959a]. Eq. 28 yields
-—? = 0 which indicates that the phase for this solution
between b, and b, is constant. Thus, these nonlinear
Alfvén waves are linearly polarized.

The transformation velocity s of the local Galilean
transformation is s = +n3/2. The flow velocity also can
be found by integrating Eq. 25. Note that (%ﬁ-)(

—5 = (_g_ - s%g) = s for the case 22 = 0. Since
(gé-)( = (%ﬁ-)n, we immediately obtain a simple wave
solution n(€, ) = g(£ — s7) or expressed in the coordi-
nate system (z',t') n(z’,t') = f(z' — (v + 2t’)). Note
that - represents the wave velocity relative to the flow
in (z’,t') space, which was denoted by ¢ previously.

Now consider when ¢ is a small parameter.

= Yo
-

Since when ¢ = 0, 3? = 0 assume that g% is also of



1480

order ¢. Then to order in ¢, Eqs. 23 and 24 reduce to

8¢ € 8 6b2 s2
s Ob? on b2
—( W—21{4’6() 34-+0( 2) (30)

Eq. 30 is the same as Eq. 27 to first order in €. Thus
we conclude that for a process whose characteristic time
scale is large so that %= is small, the relation b = n? -1
is valid to first order in e.

Finite w./Q: Since when w./Q = 0, & o = = 0, we

can expect that the magnitude of 51‘3 Increases as “
increases. Consider a regime where the variation of the
envelope of the wave can be neglected compared to that
of the phase. This approximation, called the geometric
optics approx1mat10n is valid for large wave numbers.
Then, bz(—f) in Eq. 24 dominates and it reduces to

2
8 w2 — 0¢
(-8 = -5 (5) (31)
Substitution of this relation into Eq. 23 yields
52 0b? 20n ab? d . s
2=[(= - 1)b? 2
G -5 = e+ 2l - 0p (@)
which can be rewritten as
s?  db® 2 db? 9
—(n E;—Qb)_—+2—[( - 16 (33)

Using the relation s? = 2-2& ® Eq. 33 yields the solu-

tion (with b2 = 0 where n = 1)

b? = 3(1 - n~%/3)

(34)
Conclusion

The relationship between the magnitude of the mag-
netic field and the density of the medium where the
nonlinear Alfvén wave has a simple wave type solution
can be expressed as

(35)

Here v is 2 for the linear polarized wave and —2/3 for
the elliptically polarized wave in the case of large wave
numbers. The nonlinear wave velocity c, is

-1

c=n"z (36)
The flow velocity is
2 =1
= — 2 —1
) (37)
The wave described by the equation n(z’,t') = f(z’ —

(v + c)t’) steepens when it propagates into less dense
regions and a shock-like structure can be formed in a
time given by
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211,3—;1
dn(z’,0
220 (v +1)

ts = (38)

The time ¢, is positive for both v = 2 and vy = —2/3.
Thus a compressive density perturbation could lead to
the formation of shock waves for both classes of pro-
cesses considered. Future work will emphasize the ap-
plication of these equations to specific space problems.
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