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Abstract. Temperature anisotropy is a persistent fea-
ture of many space plasmas (e.g., the magnetosheath)
and can result in significant modifications to the jump
conditions at various discontinuities. The effect of
anisotropy on the Rankine-Hugoniot (RH) relations is
reexamined and the topological changes in the solutions
are illustrated by means of a graphical technique. A
class of slow shocks is found with quite unusual proper-
ties. In particular, there exists a class of nonswitchoff
slow shocks which rotate the tranverse component of
the magnetic field. To distinguish these new solutions
from the usual solutions, they are termed anomalous
slow shocks.

1. Introduction

In an isotropic plasma, it can be easily shown, us-
ing fluid theory (MHD) that there are three charac-
teristic speeds (slow, intermediate and fast) which if
exceeded result in formation of slow, intermediate and
fast shocks in the flow, respectively [e.g., Akhiezer et
al., 1975]. There also exist nonshock discontinuities
such as a rotational discontinuity (RD) which travels at
the intermediate speed but aside from rotation of the
transverse component of the magnetic field and bulk
flow leaves the plasma unchanged. The presence of
anisotropy is, however, a rule rather than exception and
understanding the effects of anisotropy on the various
discontinuities has become an important subject. An
area of immediate relevance is that of Earth’s magne-
topause which separates the shocked solar wind (magne-
tosheath) from the magnetospheric plasma. The mag-
netosheath plasma is commonly found to have a tem-
perature anisotropy.

The types of discontinuities possible in an anisotropic
plasma have been discussed by several authors (e.g.,
Lynn, 1967; Abraham-Shrauner, 1967; Chao, 1970; Hud-
son, 1970; Neubauer, 1970). In an isotropic plasma, the
Rankine-Hugoniot (RH) conditions are derived by as-
suming a simple polytropic law for the total pressure
(P = const. x density”) in the asymptotic upstream
and downstream. In an anisotropic plasma, instead of
one pressure, there are two pressures P and P, thus
requiring two equations of state to achieve closure of
the fluid equations. In the derivation of RH relations
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we eliminate the need for one of the equations of state
by prescribing the anisotropy downstream and by using
a simple polytropic law for the other equation of state
(e.g., Chao, 1970; Hudson, 1971). This is a natural way
to proceed because one is typically interested in match-
ing the observed parameters of a discontinuity (both
upstream and downstream) with predictions of RH.

Here, we reexamine the effect of anisotropy on the
Rankine-Hugoniot relations by means of a graphical
technique first introduced by Hau and Sonnerup (1989).
The advantage of this technique is that the type and
relationship between the various solutions can be im-
mediately identified. We then find a new class of slow
shocks which for an upstream intermediate Mach num-
ber of unity, have the same jumps in plasma param-
eters as the RD. The only distinction between these
shocks and the RD is that the slow shock does not ro-
tate the magnetic field. This branch of slow shocks ex-
tends to intermediate Mach numbers greater than unity
where the flow speed can be superAlfvénic both up-
stream and downstream. Using the fluid characteristic
speeds, we have verified that the upstream flow is super-
slow and the downstream flow is subslow, as expected
for a slow shock. It is interesting to note that a slow
shock of this type was recently reported in the obser-
vations of the magnetopause (Walthour et al., 1994).
At upstream intermediate Mach numbers below unity,
these slow shocks exhibit even more bizarre behavior.
The flow speed downstream becomes superAlfvénic and
unlike any slow shock known, it rotates (reverses the
transverse component of) the magnetic field.

In section 2 we discuss the effect of anisotropy on the
RH relations. Discussion and summary of the results is
given in section 3.

2. Rankine-Hugoniot Solutions

A useful way to visualize the various solutions of the
RH relations is to plot the square of the upstream mod-
ified intermediate Mach number MIZ1 versus its value

downstream M7 (subscript 2). Here My refers to

the flow speed in the shock rest frame divided by the
modified intermediate speed which is given by V; =

Vion/1— (B — BL)/2, where Vi, is the intermediate

speed in an isotropic plasma, and By and B, are the
plasma beta in the direction parallel and perpendicular
to the magnetic field, respectively.

This method was first used by Hau and Sonnerup
(1989) and later by Karimabadi (1995) for an isotropic
plasma. In order to generalize the result to the anisotro-
pic case we proceed as follows.

Our starting point is the one-dimensional time sta-
tlonary nonviscous conservation laws which can be in-
tegrated once and written as:

[NVz] =0, M
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Upstream we have chosen the fluid velocity to be
along the shock normal, and the plane defined by V;

and Bj to be the (z, z) plane. In these equations, N is
the plasma density, B is the total magnetic field, M is
the ion mass, V is the flow velocity, 92 is the sum of the
square of the thermal velocities of electrons and ions,
['=2y/(y—-1),and e = 1 — (8 —BL)/2. We have also
assumed that the total pressure P = const. x density”.
The brackets around each equation denote the differ-
ence between the upstream and downstream values for
the enclosed quantities. These equations also apply to
a system consisting of two fluids, with one fluid be-
ing isotropic and the second fluid being anisotropic.
In such a case, the only difference is that the /’s ap-
pearing in ¢ correspond only to the anisotropic fluid.
At many discontinuities electrons achieve isotropiza-
tion much more quickly than ions or simply remain
more nearly isotropic. Moreover, such a model is useful
for comparing the results with the hybrid simulations,
where electrons are usually treated as an isotropic fluid
whereas ions can be anisotropic. In what follows, we
assume that the plasma consists of an isotropic popula-
tion of electrons and an anisotropic population of ions
with its anisotropy as characterized by the € parameter.

A closer examination of these equations reveals that
the number of equations is fewer than the number of
unknowns, which can be traced back to the problem of
closure of MHD equations in the presence of anisotropy.
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As we mentioned earlier, two equations of state describ-
ing the changes in the parallel and perpendicular pres-
sures are needed. To overcome this problem, some au-
thors have used the CGL (Chew-Goldberger-Low, 1956)
theory to achieve closure (e.g., Lynn, 1967; Abraham-
Shrauner, 1967). Since assumptions of CGL theory are
violated at shocks and RDs (e.g., Karimabadi, 1995;
Krauss-Varban et al., 1995) we have taken a differ-
ent approach used by Chao (1970) and Hudson (1971).
Chao introduces the parameter € which is chosen for the
upstream and downstream plasmas. Once we choose a
value for ¢ downstream, the number of unknowns is re-
duced by one in the equations above. This along with
the assumption of a simple polytropic law for the total
pressure enables us to solve the RH relations.

Transforming the above equations into the deHoffman-
Teller frame and after some algebraic manipulations,
one arrives at a fourth-order equation for My, in terms
of upstream quantities and My,. The solution of My,
versus My, are shown in Figure 1 for various combi-
nations of €1 /ey, where €1 and €3 refer to values of €
upstream and downstream, respectively. We also as-
sume v = 5/3. Figure 1 shows the changes in the topol-
ogy of the solutions in cases where £, > £5. Note that
¢ > 1 implies 7} /Tj > 1. Other upstream plasma
parameters are 8. = 0.5, #; = 0.1, and a shock nor-
mal angle of g, = 60°. Let us first consider the
isotropic (g1 = €2 = 1) case. The solution consists of
two branches, one is a curve (the outermost solid curve
in Figure 1a) and the other is the diagonal line given
by My, = My,. The only nontrivial solution along the
diagonal line is the RD limit where the two branches
meet. The only physical solutions are the ones lying at
or above the diagonal line. The part of the curve be-
low and above My, = 1 corresponds to slow shock and
intermediate shocks, respectively. The IS solutions are
bounded on one side by the switchoff slow shock and an
RD at the other side. Fast shocks occur at much larger
Mach numbers and are not shown here. The down-

stream speed at the peak of the IS branch is equal to
the sound speed. To the left of this peak, the down-
stream velocity is subslow (strong IS) and to its right
it is superslow (weak IS).

0.85

Figure 1. Rankine-Hugoniot solutions displayed as a plot of the square of upstream interme-
diate Mach number versus its value downstream. In all cases the upstream plasma is isotropic.
(a) Downstream plasma is anisotropic with Tj/TyL > 1. (b) Enlarged segment of (a) for €5 = 0.73.
The new class of slow shocks are identified as ANS. (¢) Downstream plasma is anisotropic with

T./T) > 1.
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As g9 is lowered below unity, the two branches (the
slow shock branch and the diagonal line) merge, form-
ing a loop that now connects the slow shock branch to
the RD solution. In contrast to the isotropic case, for
a given upstream Mach number there now exists two
possible downstream states for the slow shock.

In order to examine this new branch more carefully
we have enlarged the solution for 5 = 0.73 in Figure 1b.
Comparison of the flow speed downstream of the RD
with the slow characteristic speed reveals it to be sub-
slow although it is superAlfvénic. This is because the
downstream plasma has a large enough Tjj /T so that
the slow speed is larger than the intermediate speed.
In passing, we point out that in deriving the linear
mode properties (such as the characteristic speed) in an
anisotropic plasma based on fluid theory, two equations
of state describing the functional dependence of P and
P, on other physical quantities are needed. This leads

to some free range as to what model to choose and that

in turn leads to model dependent expressions for the
characteristic speeds. A detailed discussion of charac-
teristic speeds based on various fluid theories and their
comparison with the linear kinetic theory is given else-
where (Karimabadi et al., 1995). It suffices to say that
characteristic speeds based on the simple polytropic law
with 9 = 1.6, and 71 = 2.2 yield fairly accurate es-
timates of the characteristic speeds in the parameter
regime of interest here and will be used for calculation
of characteristic speeds throughout the paper.

Inspection of the RH relations shows that there is an
additional solution at the location of the RD in Fig-
ure 1b. This solution has the same jumps in the plasma
parameters except for the sign of the transverse com-
ponent of the magnetic field and is a nonswitchoff slow
shock. The RD rotates the magnetic field whereas the
slow shock does not. Thus, there are three solutions at
M, = 1. One is the usual switchoff slow shock and the
other two are an RD and a nonswitchoff slow shock.

The merging of the slow shock branch and the RD re-
quires two conditions. First, the RD has to be compres-
sional since the slow shock is compressional in this case.
Secondly, the flow speed has to be superslow upstream
and subslow downstream, although the flow speed re-
mains the same as the intermediate speed across the
solution. The first condition is satisfied in Figure 1b
because the density jump at the RD is given by €1 /e
and thus for €; > €5, the RD is compressional. The sec-
ond condition requires the downstream plasma to have
a large enough Tjj /T so that the slow speed becomes
larger than the intermediate speed.

Another difference between the isotropic case and the
anisotropic case in Figure 1b is that the flow speed
downstream of the weak IS is subslow in the anisotropic
case whereas it is always superslow in the isotropic case.

Next, we examine the solutions in Figure 1b which
have My, > 1. In the isotropic case, all solutions be-
low the diagonal line are unphysical but as it turns out
that is not the case in the anisotropic case. Let us first
consider the continuation of the slow shock branch to
Mj, > 1 immediately following the RD limit. Exami-
nation of the jump conditions, flow speeds and entropy
lead us to the conclusion that part of this curve corre-
sponds to physical solutions. As we now demonstrate,
these are anomalous slow shocks. Since the upstream
and downstream flow speeds are both superAlfvénic in
this case, they cannot be intermediate shocks. In the
upstream region, the plasma is isotropic so a super-
Alfvénic flow is also superslow. The downstream speed
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is subslow although it is superAlfvénic. Asin the case of .
the RD, this is possible because the large temperature
anisotropy downstream is such that the slow speed is
larger than the intermediate speed. The superslow flow
speed upstream and subslow flow speed downstream
are consistent with a slow shock interpretation. The
jumps in plasma quantities are also consistent with that
of a slow shock as density increases and the magnetic
field drops across it. The question of entropy change
is more difficult to address as no unique entropy condi-
tion may be established without a detailed knowledge
of the shock structure (e.g., Neubauer, 1970). But if
we assume that the definition of entropy (S) remains
similar to that in the isotropic case, we find that the
entropy increases across these solutions. We refer to
such solutions as anomalous slow shock (ANS in Figure
1b) because unlike the usual slow shocks, the upstream
and downstream flow speeds are superAlfvénic. As we
follow the curve to higher Mach numbers, at one point
the solutions become unphysical as the flow speed be-
comes superslow downstream, the entropy change be-
comes negative, and the magnetic field increases.

Yet more bizarre solutions are those that lie along the
continuation of the IS branch beyond the RD limit and
to the regime where My, > 1 (Figure 1b). The consider-
ation of the jumps and the flow speeds reveal surprising
results. The plasma density, temperature and entropy
increase and magnetic field decreases across these solu-
tions, much like a slow shock. The flow speed is super-
slow upstream and subslow downstream. This is also
consistent with a slow shock. However, unlike a usual
slow shock the magnetic field rotates across the discon-
tinuity. Another strange property of these solutions is
the fact that the flow is subAlfvénic upstream but su-
perAlfvénic downstream. This is also unlike any other
known discontinuity. Using the above considerations,
we conclude that the above solutions are indeed physi-
cal, albeit their strange properties consists of a mix of
slow shock and intermediate shock. Whether there ex-
ist other conditions that would make these solutions un-
physical and/or whether they can be formed in a kinetic
plasma are two important topics left for future research.
Given the fact that the flow is superslow upstream and
subslow downstream we classify these solutions as slow
shocks. However, in order to distinguish them from the
usual slow shocks, we again refer to them as anomalous
slow shocks. Note that for the RD in Figure 1b, the flow
is superslow upstream and subslow downstream and in
that sense it can also be thought of as an anomalous
slow shock.

Next, we consider a case where €3 < €5. Figure lc
shows the changes in the solutions for an isotropic
upstream but anisotropic downstream with e, = 1.3
(TL/Ty > 1). The other plasma parameters are . =
0.2, B = 1.0, 6 = 60°, and w, /92 = 4000, where w, is
the plasma frequency and € 1s the ion gyrofrequency.
Aside from the fact that the range of solutions for in-
termediate shocks (My, > 1) as well as slow shocks has
increased, there are no other significant changes as com-
pared to anisotropic plasma in this case. Note that un-
like the case where €; > €5 (Figures 1-b), the slow shock
branch does not connect to the RD solution. This is due
to the fact that the plasma density decreases across the
RD in the present case, whereas density increases across
a slow shock. Thus, the two solutions remain sepa-
rated as in the isotropic case. The solution curve that
lies above the diagonal line and extends to My, > 1.3
is characterized by superAlfvénic flow speeds upstream



and downstream. Since the slow speed is slower than
the intermediate speed in this case, the flow speed re-
mains superslow across the solution. We thus conclude
that solutions along this branch are unphysical.

We emphasize that the above topological changes
shown in Figures la-c only occur if €; is different than
€o. If €1 = €9, it does not matter whether the plasma is
isotropic (¢ = 1) or not, the solution curves would have
the same shape as the isotropic case. In other words, it
is the jump in the anisotropy across the discontinuities
that results in the above changes.

Another point of importance regarding RH solutions
shown above is the question of their existence in a ki-
netic plasma. Whether a given solution can form kinet-
ically depends on the detailed structure of the discon-
tinuity and has not been addressed here. For instance,
one may find a solution based cn RH relations for a slow
shock having a large change in the anisotropy across it.
But whether such a change can be accommodated ki-
netically requires knowledge about the structure of the
slow shock and other physics not included in the RH
relations. Questions regarding the kinetic existence of
each of the above solutions can currently only be ad-
dressed by means of simulations and should be decided
on a case by case basis.

FInally, we have examined the changes to the RH
solutions as a function of the polytropic index 4. In
most cases the jump conditions are not sensitive to the
exact value of 7.

3. Discussion and Summary

The RH relations are widely used to identify various
discontinuities in observational data as well as in sim-
ulations. Given the fact that space plasmas are often
anisotropic, we reexamined the modifications to RH re-
lations due to the presence of anisotropy. We identified
a new class of slow shocks, which due to their unusual
properties we refer to as anomalous slow shocks (ANS).
These shocks can form only if €; > €, and behave dif-
ferently depending on whether the upstream interme-
diate Mach number (M) is below, equal to, or larger
than the intermediate Mach number. For Mj; > 1, the
flow speed is superAlfvénic both upstream and down-
stream. Recall that for a usual slow shock the slow
speed is subAlfvénic both upstream and downstream.
For My; = 1 and Myy; = 1 there are two solutions,
which have the same jumps in the plasma quantities,
except one solution rotates the transverse component
of the magnetic field and the other does not. The for-
mer is 1dentified as an RD and the latter as a non-
switchoff slow shock. Note, however, that the coplanar
RD solution can also be thought of as a slow shock since
its upstream and downstream flow speed are superslow
and subslow, respectively and it connects to the slow
shock branch that exists for My, < 1 but My > 1.
Finally for My; < 1, ANS has a superAlfvénic down-
stream speed and unlike all other slow shocks it rotates
the magnetic field. In all three cases, the flow speed is
superslow upstream and subslow downstream. One pos-
sible formation site of the above class of slow shocks is at
the magnetopause as part of the reconnection geometry.
Since the magnetopause structure during reconnection
events involves a rotation of the transverse component
of the magnetic field, ANS with My; < 1 could affect
the necessary field rotation but if instead an ANS with
My, > 1 is formed, the presence of an RD or an in-
termediate shock would be required to rotate the field.
A likely candidate for the anomalous slow shock with
My, > 1 at the magnetopause was recently reported by
Walthour et al. (1994). The flow speed was measured

to be superAlfvénic both upstream and downstream of
the structure that they identified as a slow shock, but
unlike the cases considered here, the downstream state
is fire-hose unstable (¢ < 0). Since the intermediate
speed becomes zero at the marginal fire-hose condition
(¢ = 0), any finite flow speed would clearly be super-
Alfvénic in such cases. As a result, for e2 < 0 only
one type of anomalous slow shock which has a super-
Alfvénic downstream speed is possible. In this sense,
the slow shock solutions with fire-hose unstable down-
stream states are a special case of the anomalous slow
shocks discussed here. The question of existence and
stability of shocks with €2 < 0 is an important issue that
needs to be addressed via kinetic simulations. With the
current interest in the magnetopause, the study of ef-
fects of anisotropy on discontinuities has gained a new
impetus. Our finding of a new class of slow shocks adds
further importance to this subject.
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