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Kinetic structure of rotational discontinuities:
Implications for the magnetopause
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Abstract. Magnetic field rotations in the high ion beta magnetosheath that are part
of the magnetopause structure are expected to have only a small normal component.
We have studied the properties of rotational discontinuities (RDs) under these
conditions, viewed as the limit of weak intermediate shocks (ISs), by performing
hybrid simulations with a reflecting wall boundary condition (piston method).
With this dynamic formation, the sense and size of rotation are not arbitrarily
predetermined, but rather evolve from the given upstream (magnetosheath) and
downstream (magnetospheric) boundary conditions, similar to what takes place at
the magnetopause. This work focuses on several aspects: the observed minimum
shear of RDs, their width, their internal signature, and their relation to ISs in
isotropic plasmas. Our simulation results are in agreement with the minimum shear
observations, that is, the RDs choose the sense of rotation that corresponds to
the minimum angle between the upstream and downstream field vector. The RDs
are stable, with a unique scale size. Typical gradient scale half widths are one to
four ion inertial lengths with a total width up to ten times of that, in agreement
with magnetopause observations. We develop a generalized fluid theory of RDs
and discuss the characteristic internal signatures of the rotational layer, comparing
the kinetic simulation results to predictions from the generalized fluid theory. The
results show that ion inertia, anisotropic pressure, finite Larmor radius effects,
nonzero ion heat flux, and reflected ions all contribute to the signatures of RDs
on kinetic scales. The RDs may have upstream or downstream wave trains, which
become weak for high ion beta and small normal components of the magnetic
field. We explain the presence and direction of wave trains in terms of the kinetic
properties of the Alfvén/ion-cyclotron mode. Away from the RD limit there is a
smooth transition to weak intermediate shocks, which have small jumps close to
expected Rankine-Hugoniot values. Apart from that, there are few kinetic plasma
signatures that distinguish RDs from their neighboring ISs. However, noncoplanar
ISs evolve in time into thin RDs. Using the properties of RDs and ISs, we make
specific suggestions how these discontinuities can be distinguished observationally
in the case of an isotropic plasma.

1. Introduction

Many observations of the magnetopause current layer
have shown that it can have a finite normal magnetic
field component and at times locally resembles a rota-
tional discontinuity (RD) [Sonnerup et al., 1981; Ber-
chem and Russell, 1982a, b; Gosling et al., 1990, 1991].
Rotational structures like RDs are expected to form
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when the magnetopause is open and daytime reconnec-
tion of magnetosheath field lines with formerly closed
dipole field lines takes place [e.g., Vasyliunas, 1975]. In
this paper the kinetic properties of RDs are investigated
for plasma conditions that are typical for the magne-
topause. These are a relatively high ion beta (3;, ra-
tio between the ion thermal pressure and the magnetic
pressure) and a small normal component of the ambi-
ent magnetic field. In addition to questions regarding
the existence, stability, and signatures of RDs under
these conditions, we are interested in the relation of RDs
to intermediate shocks (ISs). The kinetic structure of
ISs is investigated in great detail in a companion paper
[Karimabadi et al., this issue], hereafter referred to as
paper 1.

The properties of RDs in MHD theory for an isotropic
plasma can be summarized as follows. RDs are discon-
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tinuities that rotate the transverse magnetic field and
the transverse, field-aligned flow velocity; they prop-
agate with a velocity va, = va cosfp,, where vy =
Vao = Bo(4mpo)~1/? is the (upstream) Alfvén velocity,
B, = |B,| is the upstream magnetic field magnitude, p,
is the upstream mass density, and g, is the acute an-
gle between B, and the normal n of the discontinuity.
There is no jump of the plasma quantities across RDs
in an isotropic plasma, thus the index o indicating up-
stream quantities can be omitted. In MHD theory RDs
can have arbitrary rotation angles. For example, if the
downstream transverse magnetic field makes an angle
o, with the upstream transverse magnetic field, rota-
tional solutions are allowed of the form a = a, + 27 n
for all (positive and negative) integers n. A positive «
corresponds to left-handed (ion sense) rotation, and a
negative « refers to right-handed (electron sense) rota-
tion. Observations have shown that both senses of rota-
tion actually exist, but in particular such that the mag-
netic field rotates in the direction of minimum shear,
|a| < 180° [Berchem and Russell, 1982b]. This finding
is also supported by observations of RDs in the solar
wind [Neugebauer and Buti, 1990]. MHD theory can-
not explain the observed minimum shear, since in MHD
RDs have no internal structure. Similarly, MHD theory
cannot determine the thickness of RDs.

There has been some hope that generalized fluid the-
ories may give a better physical description of RDs. It
has been suggested that in more general fluid theories
only a specific sense of rotation is allowed. For exam-
ple, Hau and Sonnerup [1991] did not find any solu-
tions for ion sense rotations, when ion inertia and finite
Larmor radius (FLR) effects were included in the cal-
culations. Also, their calculations indicated that RDs
exist only for specific combinations of upstream param-
eters and rotation angles. However, such findings are
not supported by observations and do not agree with
simulations [Krauss- Varban, 1993]. Here we develop a
generalized fluid theory of RDs and show that differ-
ent results are obtained when ion inertia and FLR cor-
rections (which need to be small for the equations to
be valid) are consistently carried through to first or-
der. Then, as in ideal MHD, both senses of rotation are
proper solutions, and there is no particular width. We
compare the internal signatures that are predicted by
this fluid theory under various assumptions for the fluid
with our kinetic simulations. We find that application
of a generalized fluid theory is problematic because it
does not describe effects due to reflected and trapped
ions, and new FLR corrections would need to be cal-
culated for the specific conditions that are prevalent in
the collisionless plasma.

Some of the earliest hybrid simulations (kinetic ions,
fluid electrons) of RDs suggested that rotations with
|| > 180° are unstable and disintegrate into their
minimum shear counterparts [Swift and Lee, 1983]. A
more detailed simulation study by Krauss- Varban [1993]
showed that ion and electron sense rotations with |a| >
180° evolve in different ways. While the rate of evo-
lution depends on the RD’s thickness, ion sense rota-
tions can be metastable (i.e., no significant change for
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many 100 Q! where € is the ion cyclotron frequency).
Such configurations are sensitive to external perturba-
tions [Krauss-Varban, 1994]. Although these simula-
tions have demonstrated mechanisms by which mini-
mum shear solutions can be approached, they have not
explained the universality of the minimum shear obser-
vations.

In hybrid simulations RDs can be initialized with ar-
bitrary thickness. However, Goodrich and Cargill[1991]
reported what appeared to be a threshold thickness of
the order of a few ion inertial lengths. If initialized be-
low that, the RDs would simply widen to this scale.
Krauss-Varban [1993] showed that for finite B;, this
minimum thickness is at least for a limited parameter
regime determined by the combined ion inertial length
and ion gyroradius scales. Observations at the mag-
netopause have shown that the width of the rotational
layer is consistently of the order of several ion gyro-
radii [Sonnerup and Ledley, 1979; Berchem and Rus-
sell, 1982a). Thus, only the minimum obtainable thick-
ness of the above “nondynamic” hybrid simulations is
consistent with magnetopause observations, a fact that
has not been explained. Note that deep in the mag-
netosheath, the proton inertial length ¢/w, may vary
between 40 and 80 km. Since the ion beta is typically
1/4 < B; < 4, the ion gyroradius pr; = (5)/? c/w,
would usually be at most a factor of two smaller or
larger than ¢/wy.

Basically, the previous simulation studies have suf-
fered from an arbitrariness in the sense that they allow
RDs of any total rotation (apart from further evolu-
tion for sufficiently thin initializations) and any thick-
ness (beyond a certain minimum thickness), both of
which are not supported by observations. These types
of simulations were performed by prescribing a particu-
lar field rotation and gradient scale at the beginning of
the computation, which we term nondynamic. Excep-
tions are simulations by Omidi [1991], in which unique
RDs formed as part of a solution of multiple disconti-
nuities to a more general Riemann problem, and more
recent studies geared toward ISs by Karimabadi and
Omidi [1992] and Lin and Lee [1993].

Here we argue that RDs at the magnetopause may
be best viewed as part of the solution to a general
Riemann problem. For such conditions, the piston
method is most appropriate. This setup is dynamic in
the sense that no gradient scale, internal structure, or
sense of rotation is prescribed, but rather the disconti-
nuities evolve self-consistently from the boundary con-
ditions. We address the questions listed above with one-
dimensional hybrid simulations. One may expect that
the piston method simulations should result in discon-
tinuities with a well-defined width, and that is indeed
the case. The thickness agrees with the magnetopause
observations. Moreover, these thin RDs have always
minimum shear rotations (sometimes after a short evo-
lution time). In short, such simulations remove the ar-
bitrariness inherent to the nondynamic method.

In the piston method it is straightforward to study
RDs directly as the limit of weak intermediate shocks
(ISs) and to study the signatures that distinguish ISs
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from RDs. ISs had been thought to be nonexistent for
a variety of reasons (see the detailed discussion by Wu
[1990]). However, using MHD simulations, Wu [1988]
showed that ISs do indeed exist in dissipative MHD.
There has been some controversy because in resistive
MHD steady state RDs cannot exist. This is because
the entropy does not change across RDs, while at the
same time there is dissipation associated with any finite
width structure in resistive MHD. However, such argu-
ments are different in a collisionless plasma, in which
any resistivity or viscosity has to be provided for self-
consistently by wave-particle interaction. It is therefore
clear that a kinetic approach is required to answer ques-
tions of structure and stability in a collisionless plasma.

Dissipative MHD also allows for noncoplanar ISs (|«|
# 180°). However, these so-called time-dependent in-
termediate shocks (TDISs) must necessarily evolve in
time because the conservation equations do not al-
low steady state noncoplanar solutions except for RDs.
Nevertheless, the timescales for this process may be
large, and in principle the findings by Wu [1988, 1990]
have opened the question whether the magnetopause
field rotation is really associated with an RD or an IS.
Consequently, part of the purpose of this work is to
address the respective signatures of RDs and (subfast)
ISs, and to discuss their stability and existence in a col-
lisionless plasma. A full description of weak and strong
ISs for magnetopause conditions is given in paper 1.
Here ISs are discussed only as far as relavant to our
comparison to RDs. We show that with careful sim-
ulations it is possible to distinguish between RDs and
weak ISs although the jumps associated even with the
highest Mach number ISs can be quite small.

The outline of this paper is as follows. Details of the
method and numerics are given in section 2, which also
provides an overview of the expected Rankine-Hugoniot
solutions. Because of the number of issues addressed,
we have separated the main part of the paper into two
sections, the first one (section 3) presenting the results
of the simulations, the second one (section 4) giving de-
tailed explanations of the physics entailed, also in view
of magnetopause observations. The topics described
in section 3 are minimum shear, hodograms and wave
trains, dependence on the rotation angle, stability, and
the relation to TDIS. In section 4 the RD signatures are
compared to predictions from generalized fluid theory in
order to get a better insight into the kinetic processes
involved. The physics of the internal structure, scale
sizes and wavetrains are discussed in great detail. The
analytical theory of generalized fluid solutions of RDs
is described separately in the Appendix. The results of
our study are summarized in section 5.

2. Simulation Setup and
Rankine-Hugoniot Expectations

The use of hybrid simulations, which treat the ions ki-
netically but describe the electrons as a massless fluid,
is justified because we are interested in structures on
ion spatial and temporal scales. A recent descrip-
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tion of the hybrid code has been given by Winske and
Omidi [1993]. The coordinate system we use is the same
as that used by Krauss-Varban [1993] and in paper 1.
The simulation axis is along z and the upstream mag-
netic field is in the z-z plane. The rotation angle «
is measured from the z axis through positive y. With
the normal magnetic field component pointing in the
+a direction, this gives left-handed (LH, ion sense) ro-
tations for positive o and right-handed (RH, electron
sense) rotations for a < 0.

In the piston method, plasma is injected at the left-
hand side of the simulation box, while reflecting bound-
ary conditions are employed at the right-hand side. The
right-hand magnetic field values and the injection speed
are determined by the Rankine-Hugoniot relations. A
discontinuity will form at the right and propagate up-
stream to the left, such that the simulation frame is
at rest relative to the downstream plasma, as far as
the normal velocity is concerned. RDs are the limit-
ing case of weak ISs, that is, the upstream and down-
stream speed are the same and no injection is required.
Still, the field rotation that is initially only present as a
boundary condition will propagate upstream and form
an RD with velocity va, ~ v4 cosfp,.

Figure 1 shows the Rankine-Hugoniot diagram [cf.,
Hau and Sonnerup, 1989] for a total B of 1.2 and
a normal angle with respect to the magnetic field of
0B, = 80°. Here both ions and electrons are assumed
to be adiabatic with specific heat ratio 5/3. In this type
of diagram the upstream squared Alfvén Mach number
(vgo/ V4o cosfpy)? is plotted against the downstream
squared Alfvén Mach number, with v, being the nor-
mal flow velocity. Note that the Alfvén Mach number
is variously defined with or without the factor cosfp,
in the denominator. Here we write all quantities in
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Figure 1. Solution curve to the Rankine-Hugoniot

equations for a total plasma beta § and shock nor-
mal angle 0p, as indicated. Shown is the upstream
squared Alfvén Mach number (subscript o) as a func-
tion of the downstream value (subscript 1), where v, =
v4 cos Op,. The labels indicate the regions of the slow
shock (SS) and strong and weak intermediate shocks
(IS) as well as the rotational discontinuity (RD) limit.
The region below the diagonal is unphysical.
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terms of the normal component of the Alfvén velocity
Van = vacosfp, to avoid confusion. A subscript o
refers to the upstream, 1 to the downstream, and for
RDs we usually omit the subscript. Only a portion of
the Rankine-Hugoniot diagram is shown in Figure 1;
fast mode shock solutions would be situated at higher
Mach numbers where the curve turns upward again. So-
lutions below the diagonal are unphysical. RDs are sit-
uated at the intersection of unit values, that is, the
upstream and downstream normal flow speed are both
v4 cosfp,. Slow shocks (SSs) are located on the part
with sub-Alfvénic upstream velocity. For a given up-
stream flow speed, two IS solutions, the strong IS and
the weak IS are possible. A faster downstream speed
and thus less thermalization is associated with the weak
IS, which has the RD as its limit. Note that the max-
imum Mach number IS has an upstream velocity that
differs only by a few percent from the RD velocity.

Figure 2 shows the maximum IS Mach number as a
function of the plasma beta and g, . Clearly, for typi-
cal magnetopause conditions ISs only exist over a small
range of Mach numbers close to unity. Figure 3 shows
jumps of the magnetic field (B), ion temperature (7;),
and density (n) for the same plasma conditions as in
Figure 1 and as a function of the upstream speed, ex-
pressed as the percentage difference to the RD velocity
(the maximum Mach number IS corresponds to about
3.5%). From Figure 3a it can be seen that expected
jumps in these quantities are at most ~ 10 to 30%. The
behavior close to the RD limit is difficult to see, so in
Figure 3b the percentages AT; and AB are normalized
with the jump in the density An, also in percent. While
these jumps are nearly a factor of two larger than those
in the density, it is important to note that they are still
of the same order of magnitude as the density jump.
Thus, for an IS in an isotropic plasma, we expect to see
jumps in all three quantities. Although expected jumps
are small, they can be important concerning the inter-
pretation of heating at the magnetopause [e.g., Gosling
et al., 1991].

Considering the above constraints, the simulations
have to be carried out and evaluated very carefully to
distinguish RDs from weak ISs. Of course, at a cer-
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Figure 2. Maximum value of the IS Alfvén Mach num-
ber (compare Figure 1) as a function of # and 6p,,. Note
the small values in the high 8 / large g, regime typical
for the magnetopause.
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Rankine-Hugoniot Jumps

30 % T T T
(a)
'A B //-
————— A T| //’
....... An  F
15% |
0%l
2.0
®
N ATj/An
1.8} :/
-AB/AR N
1.6 . .
0% 15% 3.0%

(vxo'vAno)/ Vano

Figure 3. Typical weak IS jumps from fluid theory
as a function of the IS speed (expressed as percentage
deviation from the ideal RD speed van,) for plasma pa-
rameters as indicated. (a) Jumps of the magnetic field
B, the ion temperature 7;, and the density n. (b) Rel-
ative jumps of B and T; compared to those of the n.
Note that even in the RD limit (left side of the Figure)
all predicted jumps are roughly comparable.

tain level the distinction between the two is esoteric.
For example, we may call a discontinuity for all prac-
tical purposes an RD if the jumps are below 1 to 2%.
To achieve this accuracy, we use 200 to 400 particles
per cell in the simulations, and at times make use of
a “time-averaged epoch analysis,” in which we average
quantities in the rest frame of the discontinuity over a
time period, to improve the statistical significance and
suppress random fluctuations. The simulation box size
chosen 1is sufficiently large such that initial perturba-
tions (which can reflect from the upstream boundary)
do not reach the discontinuity. We typically run the

“simulations 600 to 1000 27! (inverse ion cyclotron fre-

quencies).

When referring to the scale size of the solutions, one
has to keep in mind the distinction between a total
width and the width of the current layer. We mea-
sure the current layer thickness £ as the half width of
the gradient in the field component that experiences
most of the change (usually B, here). The total width
can be defined as a measure of the region over which
the plasma deviates significantly from the upstream
and asymptotic downstream, here always excluding any
wave train. Although mathematically less rigorous, it
can usually be stated within a margin of +15%.

While we have performed simulations for a variety of
plasma betas and angles 6, most results presented in
the next section are for the two angles 8, = 60° and
80°, with ion betas B; = 1.0 to 4.0, and an electron
beta of 8. = 0.2, respectively. We have executed simu-
lations with rotation angles @ = 490°, +120°, +£160°,
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+170°, and +180°. The reader is referred to Vasquez
and Cargill [1993] for a discussion of RDs with small
0pn and B;. Although an ion temperature anisotropy
is commonly observed in the magnetosheath upstream
of the magnetopause, it is not considered in the present
paper. This simplifies the evaluation of jumps at the
discontinuity and enables the detection of only slight oc-
currences of heating. The effect of upstream anisotropy
has been discussed by Omidi [1991] and will be further
analyzed in forthcoming work.

3. Simulation Results

We address two groups of questions: those related
to the characteristics of RDs and those relevant to sta-
bility, dissipation, and the relation of RDs to ISs. In
the following sections we present simulation results for
noncoplanar and coplanar rotations for both the elec-
tron and ion sense. We demonstrate that RDs are stable
and show an important difference between the internal
signatures depending on the sense of rotation. We also
address the width of the transition and its scaling with
plasma parameters, whether there is a finite jump in
the plasma quantities, and the relation of the RD solu-
tions to weak ISs. Comparison of the internal pertur-
bations with predictions from fluid theory is deferred to
the discussion in section 4. There we also explain the
phenomenology of hodograms and ‘wave trains in terms
of the properties of the Alfvén/ion-cyclotron mode.

3.1. Noncoplanar Rotations

In the noncoplanar regime, dissipative MHD predicts
that ISs should exist but be time-dependent, approach-
ing infinitely thick RDs in the time asymptotic limit.
In paper 1 we have shown that both weak and strong
noncoplanar ISs do indeed form; weak TDIS only form
as long as the rotation angle is not too far from 180°.
However, contrary to the MHD results, these structures
retain a finite, more or less fixed thickness of the cur-
rent.layer while slowly evolving into RDs. Here we find
that the RD limit coexists with the IS solutions, and
that the scale sizes of the weak ISs are similar to their
RD limit.

Minimum shear. First we show that both senses
of rotation exist including the coplanar limit, and that
our dynamic formation always leads to the minimum
shear solution. When the boundary conditions are cho-
sen such that o < 0, a typical electron sense hodogram
(see work by Goodrich and Cargill [1991] and examples
below) forms within several Q1. For a > 0 typical
ion sense hodograms form quickly when the angle is
not close to 180°. Close to the coplanar case, at first
an RD |a| > 180 with a hodogram more typical of an
electron sense RD may form, which then reverts to the
minimum shear solution. An example of this is shown
in Figure 4, for « = 170°, 0B, = 60°, and §; = 1.0.
The Figure displays the hodograms at increasing times,
starting from ¢ = 30 Q™! in steps of 30 21, each inter-
val averaged over 20 Q7! (see section 2 for the reason-
ing behind the averaging). Each hodogram shows the
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Figure 4. Evolution of a noncoplanar ion sense RD
(rotation angle & = 170°, 0, = 60°, and §; = 1) from
an initial electron senselike hodogram to the minimum
shear solution. Here and in all other hodograms the
vertical axis is By, the horizontal is B,, and the range
plotted is £1.2 of the upstream magnetic field B,. The
plots of the fields are averaged over times as indicated,
where € is the ion cyclotron frequency. Arrows indicate
sense of rotation; all RDs start with B, = 0 and B, =
B, sin g, upstream.

transverse field components between +1.2 B,. Thus,
the upstream point is, as throughout the paper, at the
right side (B, = B, cosfp, > 0, By = 0). The dashed
lines in the first panel (top left) indicate that the ro-
tation angle o has a finite deviation from 180°. The _
series of hodograms clearly shows that although in this
case at first an electron sense rotation forms, the RD
eventually reverts to the minimum shear, ion sense solu-
tion. The electron sense rotation is shed upstream as a
damped, solitary wave (cf., Krauss- Varban [1993]) that
soon dissipates in this relatively high-beta plasma. By
t = 300 Q1, the hodogram looks identical to the last
interval displayed here except that there is no significant
trace of the upstream rotation left. The timescale for
complete formation of the ion sense RD can vary from
a few Q71 to ~ 100 Q7!, depending on 8;, 0p, and
a. Some ion sense RD’s do not start with a discernible
electron sense rotation at early times. The main point
here is that even when the deviation from coplanarity
is quite small, we obtain the minimum shear solution
(most direct rotation), in agreement with previous re-
sults at multiple discontinuities [Omidi, 1991] and for
ISs [Karimabadi and Omidi, 1992; paper 1], as well as
observations.

Hodograms and wave trains.  Figure 5 shows
a series of hodograms for rotation angles @« = £90°,
+160°, £170°, and +180° at fp, = 80° and B; = 1
towards the end of each simulation. Quite obviously



11,986

0

o =-90

R

I NCD

©

o )
o/

o =-160°

C

o =160’
- o =-170°
o =170° U
' _o.=-180°
=180 | | @

Figure 5. Comparison of noncoplanar and coplanar ion
sense rotations (left column) and electron sense rotation
(right column) for rotation angles o as indicated and
fpn = 80°, B; = 1. Note that here all cases have an
upstream wave train.

in each case the minimum shear solution has formed.
Although there are some changes with o, the solutions
connect smoothly to the coplanar case. Note that both
senses of rotation have a similar upstream wave train. It
is right-hand elliptically polarized, mostly out of the B-
k plane (k: wave vector, oblique propagation), and thus
on the Alfvén/ion-cyclotron (A/IC) branch [Krauss-
Varban et al., 1994]. Such wave trains are an integral
part of the RD structure and not caused by dispersive
broadening of the RD [Krauss- Varban, 1993]. They are
related to the internal current structure of the RD, that
is, the relative excursion between the transverse ion ve-
locity and the transverse magnetic field. The associated
current is responsible for the upstream hooks (reverse
rotation) and downstream overshoots of the hodograms.
When the conditions are right, that is, sufficient up-
stream or downstream directed group velocity and suf-
ficiently low damping, the same current also produces a
nearly phase-standing wave train (see section 4 below).
Note that the existence of a wave train is indepen-
dent of the RD’s sense of rotation. The wave trains are
always on the A /IC branch of kinetic theory due to the
proximity of the normal component of its group velocity
vge = |v-n| and phase velocity vpp t0 van = va cosfOpn.
They are always right-handed here because we chose the
magnetic field to point downstream, and the polariza-
tion of the A /IC mode is right-handed at sufficient prop-
agation angle and beta [Krauss- Varban et al., 1994].
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The RDs’ velocities are often slightly smaller than
van due to the existence of back-streaming ions (typ-
ically < 4% for coplanar RDs). This effect is much
smaller than at strong ISs and has little consequence
on wave propagation. More importantly, for the local
plasma condition the kinetic solution for v,; and vy
is significantly different from the dispersion that is an-
ticipated from Hall-MHD [Krauss- Varban et al., 1994].
Since several conditions have to be satisfied for such
waves to exist (concerning the size of vy, and the damp-
ing at wavelengths of the order of the RD gradient scale,
see section 4) it is not surprising that they are not al-
ways present. Using linear theory we have confirmed
that their presence and wavelength are consistent with
the measured gradient scale (wavenumber k = O(1/£) )
and actual RD propagation speed. In section 4 we ex-
plain the behavior of upstream and downstream wave
trains as a function of §; and 6, in more detail.

Some hodogram features in Figure 5 change when «
becomes close to 180°. For example, the well-known
overshoot of the electron sense rotations [Goodrich and
Cargill, 1991] only develops in the vicinity of 180°. In
other words, in most cases no large overshoot should be
observed. A typical characteristic of ion sense RDs is
that they become quite flat close to o = 180°. However,
below we show that the flatness is a function of the ion
beta and is not as pronounced at high g;.

Variation with a. Generally, we find that there
is no significant qualitative variation of the solutions as
a function of the rotation angle. All RDs have some
reflected ions (see also Swift and Lee [1983]) and may
have a slight downstream anisotropy (7;L/Ty > 1).
However, we find that the number of reflected ions,
the deviation from the MHD RD speed v4,, any down-
stream anisotropy, and the internal plasma signatures
become weaker with |a| away from 180°. For exam-
ple, at g, = 80° and B; = 1 the normalized density
variation |An|/n within the RD reduces from ~ 50%
at |a| ~ 180° to ~ 17% at |a| ~ 90°. This is to be
expected because for |o| — 0 all plasma perturbations
should vanish. Consistent with these characteristics,
any upstream or downstream wave train (if existent)
also becomes weaker.

Stability and nonexistent jumps. To show the
stability of the RD solution over time and the fact that
there are indeed no jumps in the plasma quantities, we
present one example in more detail. Figure 6 shows
stack plots of the two transverse magnetic field compo-
nents over 50 ¢/w, in the vicinity of the RD, and for
the last 400 Q71 of the simulation. This RD has an
electron sense rotation o = —90° with g, = 80° and
Bi; = 1. Also shown are the magnetic field, density and
ion temperature profiles (normalized with their respec-
tive upstream values) over a 200 ¢/w, region towards the
end of the simulation (¢ = 500 to 700 271; see section 2
for an explanation of the averaging). It is clear that
there is no evolution of the RD over these timescales
and that there are indeed no significant changes of the
plasma quantities across it. Close to the right-hand wall
one can see minute changes of B and T; of the order of
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Figure 6. Example of a noncoplanar electron sense
RD, with 0p, = 80°, a = —90°, and §B; = 1. The top
side-by-side stack plots show the profile of the trans-
verse magnetic field components over a region of 50 ion
inertial lengths c¢/w, around the RD as a function of
time. The plots of the magnetic field B, density n and
ion temperature 7T; are all normalized with their respec-
tive upstream value and are over a region of 200 ¢/w,
around the RD. Note that there is no upstream to down-
stream change of the plasma quantities and that the RD
is basically stationary.

1 to 2%, which are due to perturbations from the ini-
tial formation of the RD. Over time the RD propagates
away from this slightly perturbed plasma. The ampli-
tude and spatial extent of such perturbations vary from
case to case, but (after sufficient time to allow the RD
to propagate out and “decouple from the piston”) can
always be distinguished from actual jumps associated
with an IS. We also performed a limited number of sim-
ulations that included upstream perturbations (of the
order of 5 to 20%) and flow speed changes. In all cases
we found that the discontinuity remained an RD.
Time-dependent intermediate shock. Asshown
in paper 1, both noncoplanar weak and strong ISs
can exist in a collisionless plasma, and evolve over a
timescale of typically many 100 Q7! into RDs, that is,
the jumps become weaker over time and the internal
signatures of the plasma quantities become identical to
those of RDs. During this evolution the original thick-
ness of the rotational layer is maintained. For the weak
ISs this is the same as that of the corresponding RD
solutions obtained from the piston method. In other
words, although the noncoplanarity demands that the
IS must be time-dependent, this does not necessitate
that the main current layer broadens over time. Weak
ISs do not always form if |e| is sufficiently away from
180°. Figure 7a shows the attempt to create an IS for
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Figure 7a. Attempt to form a weak time-dependent IS
(TDIS) for parameters as in Figure 6 and Alfvén Mach
number vz, /van = 1.02. Contrary to less noncoplanar
TDISs (e.g., @ = 160°, see paper 1), here no TDIS
forms. There is no jump of B or n over the region that
contains the rotation and the internal plasma signatures
(dashed lines). The normalized B, n, and transverse
field components are shown over a region of 200 c¢/w,
at the end of the simulation.

the same parameters as the RD in Figure 6 (¢ = —90°).
The Alfvén Mach number is vgo/vano = 1.02 which is
roughly 2/3 from the RD limit to the highest Mach
number IS. The (coplanar) Rankine-Hugoniot condi-
tions predict a jump of 9% in the density, and 15%
in both the temperature and magnetic field. Figure 7a
shows the normalized magnetic field, density, and mag-
netic field components towards the end of the simula-
tion (¢ = 700 to 900 ©~'). The magnetic field and
density profiles are very similar to that of the RD, with
a weak upstream wave train. The dashed lines indicate
that over a reasonable region around the current layer
there are no changes in B or n. The ramplike shape
of these two quantities is solely caused by the fact that
there are now counter-streaming ions that, if they were
to couple, would form the shock. However, this is not
the case. Figure Tb shows the perpendicular ion tem-
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Figure 7b. Perpendicular ion temperature 7;; nor-
malized with its upstream value for the same simulation
as in Figure 7a. Dashed lines indicate same regions as
in Figure 7a. There is no temperature jump across the
rotational layer nor within the wider area of 200 c/w,
around the discontinuity.



11,988

perature in a similar format. It is clear that not only
through the rotational layer, but also in general there
is no heating associated with the structure. Figure Tc
shows the upstream and downstream parallel velocity
distribution function, evaluated over regions as indi-
cated in the top panel. Again, it is clear that the two are
basically identical, and no dissipation has taken place.
Thus, in some cases of noncoplanar weak ISs there is not
sufficient dissipation, such that the IS evolves into an
RD very quickly, or never quite forms. In paper 1 we
have shown that the corresponding strong (noncopla-
nar) intermediate shock does maintain itself for a much
longer time. Similarly, when || is closer to 180°, the IS
stays longer. In other words, the timescale for the evo-
lution of noncoplanar ISs is a function of parameters,
but such that there is apparently more effective dissi-
pation closer to 180° and for the strong versus weak
IS. Close to |a| ~ 180° the IS may remain for a suffi-
ciently long period of time to be relevant for the open
magnetopause. Figures 7a—7c serve as an example to
demonstrate that with sufficiently careful simulations,
RDs, ISs and time-dependent ISs can clearly be distin-
guished, even though the total jumps of weak IS are
small for magnetopause parameters.

3.2. Coplanar Rotations

Although a magnetic field rotation of 180° could be
disregarded as an unimportant singular case, it presents
a special situation in that it allows a time station-
ary intermediate shock solution from the MHD view-
point. Wu [1988] first proposed the existence of weak
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Figure 7c. Ion density distribution f(v;)) as func-
tion of the parallel velocity normalized by the Alfvén
velocity for same simulation as in Figsures 7a and 7b.
Solid line: averaged over upstream region indicated by
light shading in graph of y component of B on top;
dashed line: averaged over downstream region indicated
by dark shading in graph on top. There is no significant
change of the ion distribution across the rotation.
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and strong ISs based on resistive MHD calculations.
Subsequent kinetic simulations have supported the ex-
istence of ISs [Wu and Hadae, 1991a; Karimabadi and
Omidi, 1992]. Wu and Hada [1991b] also suggested that
coplanar RDs would be unstable and develop into ISs.
However, hybrid simulations with small or negligible
resistivity demonstrated the existence of kinetic copla-
nar RDs [Lee et al., 1989; Goodrich and Cargill, 1991;
Krauss- Varban, 1993]. It is of interest to investigate the
width and structure under typical magnetopause con-
ditions without predetermining the thickness, by using
the piston method. At the same time the relation to
weak ISs becomes clearer. As we show here and in sec-
tion 4, there are some major differences between ion
sense and electron sense rotations.

Electron sense.  Going towards |a| = 180° we
find in our simulations a general increase in the num-
ber of reflected ions, and also in the amplitude of initial
perturbations. For that reason, these simulations typ-
ically have to be run longer before a clear asymptotic
downstream state is reached (see example below). This
alone hints at the fact that a neighboring state with
finite dissipation does exist.

Figure 8 shows the normalized magnetic field, density
profiles, and hodograms for three coplanar electron
sense RDs with different g, and G;, as indicated.
In each case 75 c/w, of the total box (600, 700, and
700 ¢/wp) are shown. The hodograms are for the same z
interval, as before displaying the transverse field compo-
nents between +1.2 B,. Each case shows time-averaged
values (¢ = 400 to 600, 600 to 800, and 600 to 800 2~1).
The vertical dashed line indicates where the z compo-
nent of the magnetic field goes through zero (for the
first time).

Several conclusions can be drawn from the results.
First, as in the case of noncoplanar rotations, a wave
train may form either upstream or downstream or may
be absent. Also, from these and additional simulations
we find that in general the amplitude of wave trains
decreases with ;. As a result, the hodogram becomes
simpler in Figure 8. This contrasts to solar wind RDs,
which typically have a wide range of g, and §; < 1.0.
Thus if sufficiently thin, solar wind RDs should have a
greater variation of hodograms and more pronounced
wave trains.

Note that the density and magnetic field are nearly
everywhere anticorrelated in Figure 8. An exception
is the initial decrease of B in the small 8p, current
layer. The excursion of the transverse magnetic field
becomes successively larger with both 8p, and ;. The
same scaling with 3; is also seen in the ion sense ro-
tations (Figure 12). Figure 9 shows (for g, = 60°
and f; =1.0) that the ion temperature and anisotropy
T; 1 /T;) are in phase; careful inspection shows that they
are also in phase with the density plotted in Figure 8.
This is also true for the internal structure of the other
two cases (not shown). Also, the main signatures (ex-
cept for a finite jump) are nearly identical to the exam-
ple of an IS shown in Figures 4f-4j of paper 1, for the
same plasma parameters. Apart from the overshoot,



KRAUSS-VARBAN ET AL.: KINETIC ROTATIONAL DISCONTINUITIES

11,989

COPLANAR ELECTRON-SENSE ROTATIONS

(o) (o] (o)
05,=60°, B, =1  6g,=80° B,=1 05 =80", B =4
° 1.5— : T T T 10 T T : T T ul T ]
9 10‘——W\/—\-—‘ b V“_’__/:\ﬁ
m 0'5— l Il 1 1 10 1 } I i 11 i l' } ]
1.5 T T T T T T 1 T Tt T
Co ;\:J\MAA I I 1l | ]
~ 1.0 l 5 MW\/\‘Y\r—' '—%\i/‘—\,_'
c o 17 1T 1
0.5 L L L | L L L " L
390 X/(C/(Dp) 465 550 X/ (C/(Dp) 625 560 X/(C/O)p) 635
B, B, B,

Figure 8. Normalized density n, magnetic field B profiles and hodograms of three coplanar
electron sense RDs with upstream parameters as indicated. Dashed lines indicate location where
B, has its (first) zero (center of magnetic field rotation). The spatial region shown encompasses
75 ¢/wp in all cases, also for hodograms. Note that the wave train may be downstream, upstream,

or nonexistent.

downstream oscillations are nearly invisible in B,, that
is, they are nearly linearly polarized and in the compo-
nent out of the By, k plane, as expected from oblique
A/IC waves. Figure 9 is also typical in that it shows
a slight average anisotropy 7;,/T;; > 1 downstream
and the opposite anisotropy upstream, due to reflected

15 I 7 |
0= 60°, B =1

0.5 1 1 |

465
x/(clwp)

Figure 9. Example of a coplanar electron sense RD,
with parameters as indicated. The plots of the z com-
ponent of the magnetic field B, and ion temperature
T; are normalized with their respective upstream value.
All curves, including the ion temperature anisotropy
T;1/T;), are over the same region of 75 ¢/w, as in Fig-
ure 8. T; and T; /Tj are correlated with n in Figure 8
and anticorrelated with B. Note that there is no up-
stream to downstream jump of the plasma quantities.
The upstream anisotropy is caused by backstreaming
ions.

ions. The density of reflected ions at oblique, coplanar
RDs is typically < 2—4 % and thus comparable to that
at weak ISs, but significantly smaller than for strong
ISs (paper 1). The latter also have sufficient heating
that upstream leakage of downstream ions plays a role,
which is not the case here. Generally, we find the den-
sity of reflected ions to decrease with §;, gy, and |a].
Note that the reflection takes place at the field rota-
tion and is independent of the piston method used here;
thin RDs formed with the nondynamic method also
show reflected ions (see, e.g., work by Krauss-Varban
[1993]). Typically, there is a larger reflected ion density
at the beginning of the simulation, with an asymptotic
decrease to < 2—4 % towards the end of the simulation.

From Figure 9 it is clear that there is no heating
associated with the field rotation. Similar to the non-
coplanar rotations, there is no permanent change of the
magnetic field or density across the rotation. However,
for an angle of 5, = 80° the RDs move very slowly in
the simulation. Thus it takes a very long time for the
RDs to decouple from the right-hand wall and from ini-
tial perturbations that are a consequence of the bound-
ary condition (initial field rotation within one simula-
tion cell). This is apparent in Figure 8, which shows
that the asymptotic state is not quite reached yet for
0p, = 80°. However, the value of the downstream mag-
netic field plotted over time in Figure 10 (for g; = 1)
demonstrates that the configuration is evolving into a
true RD. A similar but faster evolution is found for
Bi = 4 (not shown). It is interesting that this problem
of a relatively long decoupling time (before the rotation
can be identified as an RD) occurs only in the coplanar
case, for which IS solutions also exist, but not in the
noncoplanar case, for which we find that weak TDISs
either do not exist or evolve into RDs (see paper 1 and
section 3.1 above). The plasma in the perturbed (but



11,990

1.0

0.9

o
03]
~ 038
m

0.7 ¢ E

0.6

400 600
t/ Q"
Figure 10. The downstream of the RD may be ini-
tially perturbed. Shown here is the course of the down-
stream to upstream B field ratio over time for the case
0pn = 80° and f; = 1.0 shown in Figure 8. In some
cases as in this one the full decoupling from the piston
may take several hundred inverse ion-cyclotron frequen-
cies 71, Contrary to MHD expectation (Figure 3) and
our kinetic findings (paper 1) for ISs, there is no tem-
perature jump here, and n is actually slightly below
n, at early times (see Figure 8), indicating a transient
feature that is not related to an IS.

200 800

nonpropagating) area close to the right-hand bound-
ary has a temperature anisotropy Til/Ti” ~1.2to 1.4.
While the initial downstream values of both the mag-
netic field and the density are perturbed (Figure 8),
there is no compression here. The density is actually
lower than upstream, contrary to the Rankine-Hugoniot
solution (see section 2) for an IS or our actual findings
for collisionless ISs (paper 1). This confirms that the
perturbed downstream area is simply a transient of the
RD formation at large #p, and that there is not a tem-
porary formation of an IS.

Ion sense. For the limit o = 180°, without excep-
tion electron sense rotations form, that is, they appear
to be preferred. However, when the boundary value is
defined via the vector potential (identical to setting the
electric field), ion sense rotations result for a = 180°.
Thus, we find that both senses are allowed solutions in
the coplanar limit. Which sense of rotation forms de-
pends on which quantity (the electric or magnetic field)
can freely float at the boundary, but that question is sec-
ondary here. The same choice of boundary conditions
determines electron versus ion sense weak ISs (paper 1).

Figure 11 shows an example of a coplanar ion sense
rotation for 6, = 80° and 3; = 1.0. As for the electron
sense, there is only a weak wave train. The downstream
values of B and n have approximately reached the ex-
pected (i.e., upstream) level, albeit the density is still
slightly disturbed from the initialization and slightly be-
low n,. Figure 12 shows the hodogram for this case and
two other values of the ion beta, as indicated. Apart
from the somewhat elliptical polarization of the last cy-
cle of the wave train, the field rotation is flat, but clearly
left-handed. As for the electron sense rotations, the ex-
cursion of the transverse field increases with §; such that
the hodogram eventually looses its flat appearance that
is otherwise typical (in solar wind observations as well
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Figure 11. Example of a coplanar ion sense RD, with
parameters as indicated. Plots of the normalized z com-
ponent of the magnetic field, the total magnetic field
B, and the density n over a region of 75 ¢/w, around
the RD. Dashed line indicates location where B, has
its (first) zero (center of magnetic field rotation). Note
that there is no upstream to downstream change of the
plasma quantities.

as in hybrid simulations [Neugebauer, 1989; Goodrich
and Cargill, 1991]). Note also that the upstream wave
train has vanished at 3; = 4 but instead a downstream
overshoot has developed. This shows the extreme vari-
ability of details of the hodogram as a function of pa-

Figure 12. Hodograms of coplanar ion sense rotations
for 6, = 80° and increasing ion beta, as indicated.
Arrow indicates sense of rotation. Note that RD be-
comes successively less flat for increasing f;, and that
the details of the hodogram change considerably with

Bi.
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rameters. The parameter-dependence of the internal
signatures and wave trains is discussed in more detail
in the next section.

4. Discussion

4.1. Internal Structure and Comparison With
Generalized Fluid Theory

Whether the magnetic field, density, and temperature
increase or decrease within the RD layer is generally not
only a function of the sense of rotation but also of g,
«, 0pn, and the location within the current layer. How-
ever, for high 3; and RDs with small magnetic field nor-
mal component we find consistently that at ion sense ro-
tations the density and ion temperature increase within
the current layer and the magnetic field decreases, and
vice versa at electron sense rotations. There is also
an ion temperature anisotropy T;1 /Ty > 1 within the
current layer that is much stronger for ion sense ro-
tations than for the electron sense, and is correlated
with the density perturbation. The above statements
exclude the field signatures in wave trains and over-
shoots (compare also the hodograms in Figure 8). In
the overshoots of electron sense RDs the total magnetic
field actually decreases, and the density, temperature,
and ion anisotropy T;1 /T increase similar to the inter-
nal structure of ion sense RDs. The perturbations of the
ion temperature and anisotropy are typically larger in

the overshoot than throughout the main field rotation

of electron sense RDs.

It is of interest to see to what extent these signatures
can be described by a generalized fluid theory. Such a
comparison is useful because it sheds light on the physi-
cal processes responsible for the internal structure. For
this purpose we have developed a generalized fluid the-
ory of RDs, which is described in detail in the Appendix.
The theory assumes stationarity and expands the gen-
eralized fluid equations to first order around the non-
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linear RD solution of ideal MHD. The calculation pro-
ceeds via the momentum and pressure equations and
results in a coupled set of equations for the magnetic
field and density signatures AB and An. The equa-
tions are closed either through adiabatic assumptions
from theoretical considerations or, as done here, by us-
ing appropriate equations-of-state derived from the sim-
ulations. The theory provides the internal plasma sig-
natures (i.e., deviations from ideal MHD) as a linear
function of the local rate of rotation € = o' ¢/wp, mea-
sured in ion inertial lengths, which also can be viewed
as the smallness parameter. The rate of rotation may
be assumed to be some smooth function of z with spe-
cific thickness (larger than the kinetic scales), or local
values of o’ from the hybrid simulations may be sub-
stituted for direct comparison. The calculated pertur-
bations change sign with ¢, and the theory does not
give a particular length scale. We would like to note
in passing that this theory can also be employed as a
diagnostic aid on spacecraft data to help interpret cer-
tain kinetic effects and filter out those perturbations di-
rectly associated with rotational structures from other,
say, compressional waves.

As discussed in the Appendix, a Hall-MHD model
gives incorrect signatures for finite 3;. Also the CGL
double-adiabatic theory [Chew et al., 1956] cannot prop-
erly describe the internal perturbation, because it as-
sumes zero heat flux and magnetic moment conserva-
tion, which are both inconsistent with the kinetic simu-
lation results. We therefore use an adapted fluid theory
in which the parallel and perpendicular polytropic co-
efficients are matched to our findings of correlation be-
tween n and T;, and Tj) ~ const, that is, v, = 2 and
71 = 1. Including anisotropy perturbations and using
realistic equations of state yields the correct sign of the
B perturbation and gives a resonable dependence on g;.

The results for four cases are shown in Figure 13. The
plasma and RD parameters are as indicated. The top

0,7 6050 =-1807B; =1 B5=60 = -90B;=1 6,=8070=~180B;=4 0y=807ci= 1607B;=1
T T
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Figure 13. Comparison of hybrid simulation results (solid lines) to internal signatures predicted
by a generalized fluid theory (dashed lines), using the local rate of rotation € from the simulation
as displayed in the top panels. The center and bottom panels show the normalized magnetic
field and density, respectively, for four RDs with plasma parameters as indicated, over a range of

75¢/wp around the RD.
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panels show ¢, the center panels show the normalized
magnetic field, and the bottom panels show the nor-
malized density for a region of 75¢/w, around the RD.
The solid lines indicate the hybrid results, the dashed
lines are from the generalized fluid theory, using the lo-
cal €(z) as input and ignoring FLR corrections. While
n is generally well-described by the fluid theory, the B
perturbation is typically a factor of two to three too
large. Since the fluid theory retains anisotropy effects
and we matched the polytropic coefficients, the temper-
ature components and total temperature (not shown)
are described with the same accuracy as n. With a few
exceptions, both the structure of the internal layer and
the wave train show similar agreement. As discussed in
the Appendix, neglecting FLR effects consistently over-
estimates |AB|. Since the well-known CGL-FLR terms
are inappropriate, new, adapted terms would have to
be calculated to improve the fluid theory.

Figure 13a shows a case (0, = 60°) where the per-
turbations AB and An in the layer are correlated for the
electron sense rotation, contrary to the general oblique
and high 8 behavior. Comparison with Figure 9 shows
that this is the region where significant ion reflection
occurs, leading to a large 7j;. To test the hypothesis
that this signature is caused by the ion reflection pro-
cess, we show in Figure 13b the same case except for a
rotation angle of only —90°, where we usually see much
less ion reflection. Here all signatures are much smaller
(scale factor of five applied). The results show that now
AB and An are correlated, suggesting that ion reflec-
tion can play a major part in the internal signatures,
and can cause the AB to be negative for both ion and
electron sense rotations.

Figure 13c shows one of the cases where (at the time
displayed) the asymptotic downstream n = n, is not
quite reached. As mentioned in the previous section,
there is some downstream anisotropy associated with
this effect. The mismatch to the generalized fluid re-
sults suggests that these finite jumps of the anisotropy,
B, and n start at the outset of the field rotation. Fi-
nally, Figure 13d shows that there is a similar degree of
resemblance between the fluid and hybrid results also
for an ion sense rotation, and the case of an upstream
wave train.

The top panels indicate that e varies from < 1 to
~ 1. A look at n proves that the analytical theory is
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quite robust and gives reasonable results although ¢ < 1
has been assumed. In other words, the fact that e may
approach unity is not the reason for the discrepancies
between fluid and hybrid results. To conclude, all the
various kinetic effects including finite heat flux and ion
reflection play part in creating the internal signatures
of RDs.

4.2. Scale Sizes

Comparing the magnetic field gradient scales (half
widths) to those obtained with the nondynamic method
(all at Op, = 60°, Krauss-Varban [1993]), we find that
the dynamic method used in this work gives the same
results as the minimum scale that can be obtained when
the RD is (carefully) initialized with a given width at
the beginning of the simulation (nondynamic method).
As before we find that the total width of the structure
(region over which the magnetic field and the density
are perturbed, excluding wave trains) scales with the
ion inertial scale and the ion gyroradius pr;, also at
O, = 80°. The total thickness is at least four times as
large as the gradient scale, but can be up to ten times
as large. For example, at 6, = 80° we find the total
width to be about 10 to 15 ¢/w), at B; = 0.5; it increases
to about 25 to 35 ¢/w, at f; = 4.0, for both electron and
ion sense rotations. The gradient half width is actually
quite similar for the whole parameter region studied
here, 1 < £/(c/wp) < 3 —4. We find that for a small
normal component of B (0, = 80°) £ no longer simply
scales with the upstream pr;/(c/wp) = (8i)}/? or 1+
(B:)'/?. Figure 14 shows the evaluated gradient scale
for the three electron sense RDs of Figure 8. For 0g,, =
60° the thickness is relatively large and agrees with the
minimum thickness found in our previous simulations
(nondynamic setup). Note that there is always a finite
evolution time before the gradient of the RD is well-
defined. For fp, = 80°, the internal scale is no longer
a function of the upstream f;, and £ is of order unity.
Whether such thin current layers may be unstable to
perturbations perpendicular to the normal direction can
only be addressed with two-dimensional simulations.

Figure 15 shows the evaluated gradient scale as a
function of B; for both senses of rotation and 6, = 80°.
The ion sense RD’s thickness still increases with g;
until about B; = 2, and then remains approximately
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Figure 14. Gradient length scale (half width) £ normalized with the ion inertial length measured
over time for the three coplanar electron sense RDs shown in Figure 8. These RDs are thinner
for 0p, = 80° than for 60°, and ¢ does not increase with ;.
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Figure 15. Gradient length scale (half width) £ as a
function of ; for coplanar electron sense (triangles) and
ion sense (squares) RDs at 6p, = 80°. While £ increases
initially with 8; for the ion sense it ceases to do so for
larger G;.

constant. We have made additional runs at §; = 6
and 8 and found approximately the same width £ ~ 3.
However, for such high values of 3; and narrow RDs,
the back-streaming ions generate A /IC waves similar to
those at some ISs (compare paper 1) and slow shocks
[Omidi and Winske, 1992]. These interfere with the
RD such that the momentary thickness varies, around
an average thickness of £ ~ 3¢/wy,. Note that for typi-
cal magnetopause parameters, the ion sense £ is about
a factor of three larger than that of the electron sense.

The fact that the internal gradient width can be sig-
nificantly shorter than the overall thickness, and may
not always scale with the ion gyroradius, is not surpris-
ing if the RD is viewed as the IS limit. Kinetic work
on shocks and observations have shown in the past that
there may be multiple scales associated with collision-
less shocks. For example, supercritical fast mode shocks
have a foot that scales with the (convected) gyroradius,
and a ramp that scales with the ion inertial length or
may have substructure on electron scales (e.g., Goodrich
[1985] and references therein). Here it appears that a
small magnetic field normal component is decisive for
the existence of thin (£ < pr;) current layers.

The arguments provided in the Appendix suggest
that one of the reasons for the asymmetry between the
ion and electron sense width is that the limiting factor
(for finite ;) is not the upstream f; or ion gyroradius
PLio. Instead, given the finite perturbations of 7;; and
B, the local pr; should be considered. The dependence
of the sign of Apr; on the direction of rotation can
help explain the apparent asymmetry of the width. Ac-
cording to (A16), at ion sense RDs the internal pr; is
elevated, whereas it is reduced for electron sense RDs.
This is in agreement with the simulations and also pre-
dicts that ion sense RDs should be slightly thicker than
the upstream pr;, whereas electron sense RDs should
instead be limited by ¢/wp,. On the other hand, for less
oblique propagation Apr; is sufficiently small that it is
again the upstream f; for both senses of rotation that
limits the width. In addition, as discussed above, ion re-
flection can reduce the A B of the layer and thus destroy
a perfect antisymmetry of the two senses of rotation.

To summarize, under typical magnetopause condi-
tions the simulations predict two important differences
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between electron sense and ion sense rotations: one con-
cerning the minimum gradient scale of the current layer
(up to a factor of three thinner for electron sense ro-
tations), and the other with respect to the sign of the
internal signatures of the fields and moments (n and T'
up, B down for ion sense; vice versa for electron sense).

4.3. Weak Intermediate Shocks and Uniqueness
of Width

In paper 1 we found with the exception of electron
sense strong ISs, that all ISs with typical magnetopause
parameters have a thickness of the rotational layer that
is commensurate with that of the RD in the correspond-
ing weak IS limit. For 6p,, = 80° and coplanar ISs, the
rotational layer is also the region over which most of the
dissipation occurs, roughly independent of the strength
of the shock (see paper 1 for details). The essence of
these results is that the type of solution that is formed
depends on the amount of dissipation produced, which
is not always sufficient to obtain the solution initially
aimed for. Also, the total change in plasma quantities
across weak ISs can easily be smaller than the internal
signatures of the current layer. Superficially, such solu-
tions look very much like RDs; their internal signature
is (apart from the small jumps) basically identical.

In general, the thickness of RDs is not unique; they
are different that way from shocks. The piston method
selects a particular solution which we believe to be the
one relevant to the magnetopause because of the dy-
namic formation. This width also happens to coin-
cide with the minimum thickness that can be obtained
by the nondynamic method. In addition, the piston
method clarifies the relation to weak ISs. Another way
of looking at this is to say that ISs have the Mach num-
ber as “free parameter,” up to the RD limit. The copla-
nar RD should then have a thickness that corresponds
to the scale of the coplanar IS. Away from £180° the
RD has the rotation angle as “free parameter” and is
no more bounded by a steady state IS. So, we find for
example that the @ = —180° RD at 3; = 4 is a factor
of three thinner (¢ ~ 1 c/wp) than the corresponding
RD at o = —90°. But even for noncoplanar boundary
conditions, RDs formed with the piston method can be
viewed as the rotational part of a more general Riemann
problem. Thus, they should be the ones relevant to the
magnetopause. Indeed, their scale size is still in general
agreement with the reported observed thickness of the
magnetopause current layer.

4.4. Wave Trains

A curious finding is that depending on the parame-
ters, there can be an upstream wave train or a down-
stream wave train, and sometimes there is none. This
fact can actually be explained by the kinetic properties
of the A/IC mode. In paper 1 we show an example
of how the dispersion of the A/IC mode varies with
wavenumber and propagation angle. While the A/IC
mode always starts with a phase velocity of vpp = v4n
at small wavenumbers k, it only has normal dispersion
for sufficiently small propagation angle § and §;. For
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typical wave train wavenumbers and intermediate G;,
the A/IC has normal dispersion at 6 < 70° but at-
tains anomalous dispersion at highly oblique propaga-
tion. The damping decreases with propagation angle,
but increases with k and ;. Because the normal com-
ponent of the group velocity remains at ~ va, before
it changes when k ~ O(c/wp), vpp is mostly still quite
close to vay,.

Figure 16 shows several quantities as a function of
fpn and the ion beta §; (fixed 8, = 0.2). We have fixed
the wavenumber to k& = 0.7wp/c, which is a medium
value within the range of typical wavenumbers k = 0.45
to 0.85 found in the simulations. This range is a lit-
tle smaller than the span of gradient scales £ ~ 1
to 3 c/wp that we measured, presumably because the
stronger damping at high wavenumbers will select the
longer wavelength components of a wave train (which
always has a finite spread in wavelengths). Although
the dispersion and damping change with k, Figure 16
gives a reasonable qualitative picture of the A /IC mode
properties.

The contour lines indicate the normal component of
the group velocity normalized with the normal Alfvén
velocity vge /van. Two contours each above (solid line)
and below 1.0 (dashed line) are drawn. A value vy5/van
> (<) 1indicates that any wave train, if existent, should
be found upstream (downstream). The grey scale shows
contours of the damping, measured as the ratio be-
tween the wavelength A to the spatial damping length

1.00

50°

Figure 16. Contour plot of the Alfvén/ion-cyclotron
(A/IC) group velocity vy, normalized with the nor-
mal Alfvén velocity van = wvacosfp, and damping
(grey scale) as a function of propagation angle § = g,
and ion beta, for typical wave train wavenumber k =
0.7 wp/c. Contour levels as indicated, where a value
> 1 (< 1) indicates upstream (downstream) directed
group velocity in the frame of an ideal RD (vy = vap).
Grey scale is a measure of damping (wavelength A di-
vided by spatial damping length £, = vy, /|y|), with
levels A/¢, < 1 (white), and > 1, > 2, and > 3 for
successively darker shading. Circles with symbols indi-
cate presence of downstream (minus), none (zero), or
upstream (plus) wave trains in the simulations. The
excellent agreement demonstrates that the mode prop-
erties of the kinetic A/IC mode explain the presence or
absence and direction of a wave train.
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£y, = vgz /||, where 7 is the imaginary part of the com-
plex wave frequency. White corresponds to A/¢, < 1,
and the shaded areas correspond to successively larger
damping, A/¢, > 1, > 2, and > 3, respectively. These
levels can also be looked upon as where the wave am-
plitude drops by one e-folding within the time it takes
for the wave energy to reach 1, 1/2, or 1/3 wavelengths
distance from the RD. Actually seen damping may be a
little smaller if the wavenumber is smaller than 0.7 w;, /c.

The circles show whether we found a downstream,
none, or an upstream wave train in the simulations
(minus, zero, and plus symbols, respectively). While
Figure 16 is at a fixed wavenumber k, whereas the ac-
tual wavenumber found in the simulations varies, and
the mode properties change somewhat with k, it is nev-
ertheless evident that there is a good match between
the simulation findings and the behavior expected from
kinetic theory. Specifically, both linear kinetic theory
and simulations predict that the wave train should be
upstream and not downstream at large 0p,. We have
made an additional simulation run at fg, = 72° as
indicated in the Figure and found no wave train, as ex-
pected. Given that the gradient scale (and thus wave
train wavelengths) is a rather weak function of §; (at
most o< 1+ (3;)!/?), whereas the damping is not, there
should not be any wave trains at large f3;, in agree-
ment with the simulation results. We should point out
that while the amplitude may vary, the existence and
direction of a wave train is not a function of & and inde-
pendent of the sense of rotation (see, e.g., Figure 5). In
other words, the graph clearly shows that the direction
and presence of a wave train can be explained by the
kinetic properties of the A/IC mode.

Wave trains at ISs are more difficult to predict for
a variety of reasons (jumps in plasma parameters, re-
flected ions, upstream generated waves, and unsteady
shock transitions).  Also, some strong intermediate
shocks have a significantly thicker shock transition and
correspondingly larger wavelength of phase standing
waves, which may then not be damped even at rela-
tively large ;. The same may apply to RDs or ISs with
much smaller g, than considered here. Note that for
very small 3;, the properties of the wave train change
significantly with 8. [Vasques and Cargill, 1993].

5. Summary and Conclusions

We have performeda large number of one-dimensional
hybrid simulations to investigate the kinetic structure
of the magnetopause field rotation. The kinetic struc-
ture of ISs was presented in paper 1 [Karimabad: et al.,
this issue]. We demonstrated that internal signatures,
the questions of existence and stability of RDs and ISs,
and the associated dissipation can only be addressed
with a kinetic approach. Using the piston method (dy-
namic method), we investigated typical magnetopause
parameters (small magnetic field normal component,
large ion beta) but restricted the study to the case of
an isotropic plasma. Contrary to previous investiga-
tions of RDs in which the field rotation and thickness
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had to be specified from the outset, in the dynamic
method only the upstream and downstream boundary
conditions are given, similar to what occurs at the mag-
netopause. While the previous investigations gave no
unique scale size, and field rotations |«| > 180° were al-
lowed, we found here that the piston method always
gives a unique width of the RD, comparable to the
smallest width obtainable with careful nondynamic for-
mation, and always gives the minimum shear solution
(smallest field rotation). Both of these findings are also
valid for ISs (paper 1). Thus the minimum shear and
unique thickness found in observed magnetopause cross-
ing can be understood if the emergence of a rotational
layer is viewed as a Riemann problem on kinetic scale
lengths.

The region over which there are significant changes
in B and n (excluding any wave trains) is typically 10
to 40 ¢/w, for RDs and weak ISs and is proportional
to (B;)'/%. The gradient half width £ can be a factor of
four to ten smaller, varies relatively little with parame-
ters (1 < ¢/(c/wp) < 4 for both RDs and weak ISs) and
may be close to 1 ¢/w, even at high ; ~ 4. The in-
ternal signatures and wave trains become smaller with
the rotation angle |a|, with little qualitative changes.
Our simulations showed that depending on parameters,
there can be upstream, downstream, or no wave trains
associated with RDs. We explained the presence and di-
rection of the wave train via the properties of the A/IC
mode in kinetic theory.

The simulations gave a number of specific predictions
concerning the kinetic structure of RDs for typical mag-
netopause conditions, which are with few exceptions
also valid for weak ISs. There are significant differ-
ences between (oblique, high beta) ion sense and elec-
tron sense rotations. In the former the density and tem-
perature increase in the current layer, and the magnetic
field decreases. The opposite is the case for electron
sense RDs. We developed a generalized fluid theory
of RDs to aid in understanding which kinetic effects
contribute to the internal structure. Comparison with
the simulation results shows that CGL double-adiabatic
equations of state [Chew et al., 1956] are not satisfied.
We find that finite ion inertia, anisotropic pressure per-
turbations, and FLR effects all contribute to the inter-
nal plasma signatures. There are also effects associated
with reflected ions which the generalized fluid theory
does not describe. At high §;, electron sense RDs can
be a factor of three thinner than ion sense RDs, which
is at least partially a consequence of the size of the lo-
cal ion gyroradius, whose deviation from the upstream
carries a different sign for the two senses of rotation.

For typical magnetopause conditions, the jumps in
the plasma quantities associated with an IS are quite
small. We used a large number of macroparticles in
the simulation and careful diagnostics to distinguish be-
tween RDs and ISs. We found that RDs exist and are
stable for all parameters studied, that is, there is no dis-
cernible jump and no dissipation in the RD limit. Weak
ISs, as studied in detail in paper 1, are very similar to
their RD counterparts and have nearly identical inter-
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nal signatures, wave trains, and widths. Since jumps
for weak ISs for typical magnetopause conditions are
very small, precise measurements of the plasma quan-
tities (B, n, T') are required to identify a discontinuity
observed -at the magnetopause as weak IS. The largest
jump would occur in the proper combination of these
three parameters. Since the parallel temperature is dif-
ficult to define/measure in the presence of multiple,
drifting ion components, the perpendicular ion beta §;1
appears to be the most useful quantity. The change in
Bi;1 can be more than a factor of two even if the indi-
vidual jumps are less than 20%. One has to keep in
mind that temperature anisotropies will influence these
results. Evidently, the irrefutable observation of local
dissipation (beyond jumps due to anisotropy) would be
a strong indication for the presence of an IS rather than
an RD. For example, consistency between upstream-
encountered plasma that is leaked from downstream and
downstream-encountered plasma may indicate that ob-
served dissipation is local and the discontinuity approxi-
mately one-dimensional (see also Fuselier et al. [1993]).

Ion reflection does not only occur at ISs but also at
RDs. While the density of reflected ions is significantly
smaller than at strong ISs, it is comparable to that at
weak ISs (< 2—4 %). This means that without quantifi-
cation, the mere presence of reflected ions in observa-
tions [Sonnerup et al., 1981; Gosling et al., 1990; Fuse-
lier et al., 1991; Gosling et al., 1991] cannot be taken as
a signature of an ISs. Moreover, in anisotropic plasmas
ion reflection at RDs can be more significant [Omidi,
1991; Karimabadi, 1994].

Due to their larger jumps, strong ISs should be easier
to identify. Both weak and strong IS can also exist as
TDIS in the noncoplanar situation. While in general all
three, weak and strong ISs and RDs, may be relevant
to the magnetopause field rotation, weak TDISs have a
relatively shorter evolution time to RDs (g 100 271) or
do not exist far away from coplanarity. The processes
that lead to an open magnetopause are probably any-
thing but stationary. It is of interest to see whether in
the real world this time-dependent formation of rota-
tional layers is more accurately approximated by ISs or
by RDs. An obviously necessary theoretical generaliza-
tion is to study the properties of these discontinuities
in detail in anisotropic plasmas.

Appendix: Generalized Fluid Theory of
RDs

We outline a generalized, nondissipative fluid theory
of RDs. The treatment gives useful insights into the
scope of applicability of fluid theory and allows for di-
rect comparisons with kinetic solutions. We first give a
brief description of the approach, assumptions, and the
analytical derivation. After that, the consequences of
various models for the ion fluid are discussed.

Starting points are the one-dimensional steady state
two-fluid equations without electron inertia and with
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zero resistivity. Both ion inertia and finite Larmor ra-
dius (FLR) terms are retained in this formalism. Our
approach is a first-order expansion about the (nonlin-
ear) ideal MHD RD solution. In this way the calculation
provides the internal signatures of RDs of finite thick-
ness. All quantities A(z) are written in terms of their
upstream (i.e., unperturbed) value (subscript o) and a
spatially varying perturbation: A(z) = A4, + AA(z).

We stress the fact that for consistency, the Hall term
and the FLR effects can only be carried to first order.
This can be seen as follows. Because of the relation
pri = (6i)Y? ¢/w, for the ion Larmor radius, pr; and
¢/wp are of the same order for the range of of ion be-
tas we are interested in (say, 1/4 < B; < 4). However,
the FLR terms themselves are derived from an expan-
sion of the kinetic equations in Q7! [Macmahon, 1965;
Chhaglani and Bhand, 1980]. In our application the
timescale condition 7 3> Q! is equivalent to £ > cfwp
or > pr;, where the typical spatial scale is our gradient
length ¢. As a consequence, a higher order calculation
is inconsistent with the formulation of FLR theory. In
other words, the first-order expansion presented here is
complete as far as the use of standard FLR theory is
concerned.

By using polar coordinates for the transverse mag-
netic field B;> = By + B,?, B, = B;sina, B, =
B, cos «, it can be seen that the smallness parameter

e = d'c/wy (A1)
is the local rate of magnetic field rotation
o' = (BB, — ByB,) | B® (A2)

measured in ion inertial lengths. In the above, the prime
indicates the derivative with respect to the normal di-
rection £. Note that except for the transverse com-
ponents of the magnetic field and flow velocity v, all
derivatives vanish to zero-order.

The calculation centers around the momentum equa-
tion and the formulation of the thermal pressure. In
FLR theory the zero-order pressure is in general aniso-
tropic and is given by the tensor

P(o) = piL | + (pi" - sz_)BB/ 32 +pe I (A3)

where p;1 and p;)| are the perpendicular and parallel ion
pressures, respectively, and p. is the isotropic electron
pressure. Here we limit the discussion to the case where
the upstream is isotropic. Then the anisotropy in (A3)
appears only to first order and may be represented by

the perturbation anisotropy
6 = (pir — piy))/pi (A4)

The total pressure is given by P = Pl 4 P(l), with the
FLR terms [Braginskii, 1965; Macmahon, 1965]

PZI(I) = g(l + 3 cos? 93,,)(Byv; —Bzv;)/Bo
Py = g (1 —3cos®Opn) coslp, v, (A5)
P, = _g (1 —3cos?fp,) cosfp, v;
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In the above, 7 = 1 (pio/v40) (¢/wp), and derivatives of
v, as well as variations of the density p, etc., have been
neglected consistent with the order. Also, ¢/wp and the
betas always refer to upstream values.

Using Ohm’s law, Faraday’s law, and Ampere’s law
in the deHoffmann-Teller frame (HTF), it is easy to
show that to zero as well as to first order the trans-
verse flow is field aligned and the propagation speed is
Vgo = VAo cOsBOpy,. Carrying out the expansion to first
order, the integrated normal component of the momen-
tum equation becomes

AB/B, = cos? 0pn Ap/pe — LBi APy /Dio (A6)

where AB/B, = %ABtz/Bo and Ap/po = —Avg/vso
from the continuity equation. The first transverse mo-
mentum equations gives

A AP
= _ €+ 10; (sinfp, cos Op, sin a)™? oy

A7
Po Pio ( )

The second transverse momentum equation provides
the same information. The pressure terms can be
rewritten as

APy
— = (% + VeBe/Bi) Ap/po + (1 — 3cos*Opn)6/3
20
— (1 4+ 3cos?0p,)sin? a /2 (A8)
APay = —cosOpy sinfp, sina [§4+(1 — 3 cos? HB,L)E]
Pio 2

Here, the terms multiplying € represent the FLR cor-
rections (Ab5), and the terms multiplying é are due to
the perturbation anisotropy. Also, we have written the
isotropic part of the pressure perturbation in terms of
adiabatic coefficients v; and 7., which remain to be
specified. The above relations (A6)-(A8), together with
an equation for § = §(Ap, AB), constitute a set of gen-
erally coupled equations for AB and Ap and specify
all perturbations of the plasma within the rotational
layer. Note that the amplitude of the deviations from
upstream is simply proportional to the rate of rotation
€ = o ¢/wp, and the sign of the perturbation (increase
or decrease) reverses with the sense of rotation. As in
ideal MHD, both senses of rotation are allowed and so
is any-width RD down to the applicability limit of the
theory. In the following we discuss a few fluid models
of interest.

Hall-MHD

In this case both the anisotropy and the FLR terms
are neglected. This theory should only be valid for quite
small values of f;, but even there it may not describe
the finite beta corrections properly due to the neglect
of anisotropy within the layer. The perturbations are
in this case

Ap/po = € (A9)
and

AB/B, = (cos®0p, —vB/2) € (A10)
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where for simplicity we have written v;8; + v.8. = v8.
The change of sign in the magnetic field perturbation
occurs at the same critical angle cosf, = (y3/2)!/?
that determines the change of helicity and compress-
ibility of the intermediate mode in linear two-fluid the-
ory [Krauss-Varban et al., 1994]. Note that the curve
defined by 8. is inconsistent with linear kinetic theory
for B; » 0.1-0.3 [Krauss- Varban et al., 1994; Krauss-
Varban, 1994].

The above result of a finite AB may at first ap-
pear to contradict the fact that in stationary Hall-MHD
0B(z)/dz = 0. This relation derives from the fact that
the electron fluid and the transverse ion flow are field
aligned if an upstream HTF exists. The paradox can
be resolved by taking a closer look at the actual expres-
sion for the magnetic field derivative. From Ampere’s
law we have

(¢/wp) 0B(x)/0x = \/p/po(v: By — vy B:)/va

The right-hand side is indeed zero to first order and for
J/0t = 0. However, due to the fact that the derivative
of B, is zero and because of the factor (c/wp)8/0x ~
(c/wp) =1 = €, the left-hand side is also of second or-
der. In other words, the above equation relates the first-
order magnetic field perturbation to second-order terms
on the right-hand side. Thus a finite AB is consistent
to first order in €, and time variations are a higher order
effect. To test this argument that effects due to time
variations should be small, we have compared (A9) and
(A10) with RD computations using a one-dimensional
Hall-MHD code (paper 1). We have found excellent
agreement for a wide range of # and 0p, tested.

(A11)

Isotropic FLR-Theory

Although it is inconsistent to neglect anisotropy per-
turbations when FLR terms are included, we discuss
this case here because such a model has been used by
Hau and Sonnerup [1991]. The resulting equations are

Ap/pe = [1 —(1—3cos®0p,) i /4] € (A12)
and
ABB = {cos2 bpn + (1 + cos? 0pn) Bi /4
(o]

—[1 = (1 —3cos?0p,) Bi /4] vB/2} € (A13)

Comparison of Ap/AB with the values in Table 1 of
Hau and Sonnerup [1991] gives reasonable agreement as
long as the A’s are not too large. Some of the pertur-
bations listed in there are quite nonlinear (e > 2 based
on our Ap). In fact, Hau and Sonnerup’s finite width
solutions are a direct result of (inconsistently) including
the FLR terms to arbitrary order and would not exist
unless the FLR terms become large. Similarly, their re-
sults that only certain electron sense RDs exist follows
from this inconsistency. Instead, as argued above, cor-
rect application of first-order FLR theory allows both
senses of rotation and arbitrary width down to the limit
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of applicability, as in ideal MHD and also in agreement
with the kinetic hybrid code simulations. As expected,
(A12) and (A13) do not conform with our simulation
results.

Alternative Equations of State

The well-known equations of state of the CGL double-
adiabatic theory [Chew et al, 1956] may be written
Api1 /pio = Ap/po +AB/ B, and Apy)/pic = 3Ap/po —
2AB/B,. Note also that for both temperature com-
ponents and the total temperature we have AT;/T, =
Api/pic — Ap/po. Unfortunately, it is immediately ev-
ident from our simulations that the above cannot give
a reasonable description of kinetic RDs. We find con-
sistently that T;, is correlated with p, regardless of the
sign of AB (which is mostly opposite to that of Ap),
whereas the above indicates correlation with AB. Fur-
thermore, in the simulations Tj| ~ const, whereas the
above generally results in a finite ATj;. We have com-
pared the perturbations resulting after insertion into
(A7) and (A8) with our simulations and, as expected,
do not find any reasonable agreement. The failure of
the double-adiabatic theory is clearly due to the facts
that (1) the equations of state are derived assuming
zero heat flux, whereas the constancy of Tj) indicates
the presence of a parallel heat flux; and (2) the above
AT;, /Tio = AB/B, is equivalent to magnetic moment
() conservation, whereas neither in the RD layer nor in
the adjacent wave trains of the simulations is ¢ actually
conserved (compare, e.g., Figures 8 and 9).

Given the findings delineated above, the question
arises whether a fluid theory with polytropic coeffi-
cients that match the simulation results would fare bet-
ter. An approximately constant T; implies a large
parallel heat flux, or 9 =~ 1. Also, the variations
we measure in the simulations are best described by
Aplpo =~ §AT,~/T° ~ AT;, [/Tio. Thus, v ~ 2. The
necessary relations are therefore § = Ap/p, and
Api/pioc = i Ap/po with v; = 5/3. Insertion of these
relations into (A6)—(A8) gives the perturbations in this
adjusted fluid theory (neglecting FLR terms):

Ap/pe = ¢/ (1+ B;/2) (A14)
and
%B = [ cos? Opn — (1 — cos® 0pn/2) B;
_7e,3e/2 ] 6/ (1 + ﬁi/2) (A15)

We have not included the standard FLR terms in
the above because they are derived assuming validity of
the CGL equations of state and zero heat flux, and are
therefore not applicable here. Yet, the simulations indi-
cate that modified FLR corrections would improve the
fluid theory. Such terms can in principle be calculated
from the general third moment equations of Vlasov the-
ory [cf., Belmont and Rezeau, 1987] which is, however,
beyond the scope of this work. We find (see section 4)
that (A15) gives a |AB| that is often a factor two to
three too large. The CGL-FLR term in P, has the ten-
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dency to reduce |AB|, and indeed P in the simulations
is qualitatively consistent with such a correction. How-
ever, the transverse FLR term (A7) reduces the density
perturbation by the factor [1 — (1 - 3cos?0py) ﬁi/4],
although the simulation Ap is quite well-described by
(A14). In other words, the simulations are qualitatively
consistent with the normal component of the standard
FLR terms, but not the transverse.

Asymmetry of Smallest Width

The above theory cannot answer the question of the
smallest possible width. However, it is reasonable to as-
sume that an RD (¢) cannot be smaller than the inertial
length or the ion gyroradius pr;, whichever is larger.
Realizing that it is the local pr; of the layer that is
relevant, the above development offers a plausible ex-
planation for the asymmetry of ion sense and electron
sense widths. Using Apri/prio = %ATM/TM —AB/B,,
(A14), and (A15) results in

%—p—l’i = [1/2—coszt93n +(1—c03203n/2)ﬂi
Lio
+7eﬂe/2] 6/(1+ﬂi/2) (A16)

Thus, within quasi-perpendicular ion sense RDs (e > 0)
the internal pr; is elevated, whereas it is reduced for
electron sense RDs (€ < 0), in agreement with the simu-
lations. Demanding that pr; be smaller than £ ~ |1/¢/],
(A16) predicts that ion sense RDs should be slightly
thicker than the upstream pr;, whereas electron sense
RDs should instead be limited by ¢/wy, except for fairly
small 6p,. While these predictions are in qualitative
agreement with the simulation results, one has to keep
the limitations of (A15) in mind.
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