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Given the importance of linear mode properties (e.g., characteristic speeds) in 
identification/classification of discontinuities, a detailed comparison between the mode properties in 
fluid theory and kinetic theory in high ,0 plasmas is carried out. It is found that conventional fluid 
theories of linear modes in both isotropic and anisotropic plasmas do not yield the correct mode 
properties, even in the long-wavelength limit. In particular, fluid phase velocities are very sensitive 
to the model and parameters (polytropic indices) employed. Because of this, fluid theory loses its 
predictive power. In linear kinetic theory, modes cannot. be ordered according to their phase 
velocities. For instance, at small and moderate propagation angles, the slow/sound (S/SO) mode can 
have the fastest phase velocity. In such cases, a (quasiparallel) fast shock would be associated with 
the S/SO mode rather than the usual fast/magnetosonic (F/MS) mode. This has important 
implications for fast shocks. Since it is the F/MS rather than S/SO mode that connects to the whistler 
branch, low Mach number quasiparallel shocks associated with S/SO would not be expected to have 
a phase standing whistler wave train upstream, and their thickness is determined by dissipation 
rather than dispersion. The consequences of the kinetic mode properties are demonstrated via hybrid 
simulations (fluid electron, kinetic ions) using the quasiparallel shock as an example. 0 1995 
American Institute of Physics. 

I. INTRODUCTION 

Much of the physics of discontinuities is based on the 
fluid characteristic speeds. Examples are their classification, 
the order in which they stand.in the how, or the type of wave 
train associated with the discontinuity. The characteristic. 
speed is the phase velocity of a mode in the long-wavelength 
limit..The main appeal of fluid theory. is that it yields simple 
analytical expressions for the characteristic speeds. With this 
simplicity, however, comes the price of less accuracy com- 
pared to kinetic calculations. Given the heavy reliance on the 
fluid characteristic speeds in studies and identification of dis- 
continuities, we examine their validity in both isotropic and 
anisotropic but high p plasmas. 

In the absence of anisotropy, it can be easily shown, 
using magnetohydrodynamic (MHD). theory that there are 
three characteristic speeds (slow, intermediate, and fast), 
which, if exceeded, result in the information of slow, inter-. 
mediate, and fast shocks in the flow, respectively.’ In MHD, 
even when the Hall term is included, the dispersion curves of 
the modes never intersect and modes have been named (slow, 
intermediate, and fast), based on the ordering of their phase 
velocities. A fourth mode, referred to as the entropy wave, is 
not associated with a propagating discontinuity and will not 
be discussed further. In the high /3 regime, however, kinetic 
dispersion curves can intersect and modes can no longer be 
classified according to their phase velocity. For instance, a 
slow/sound (S/SO) mode can have a phase velocity that is 
larger than the fast/magnetosonic (F/MS) mode. Since a fast 
shock is related to the fastest mode in the system a fast 
shock would then be associated with the slow/sound, rather 
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than the usual case of F/MS. As we show, this velocity in- 
version has important consequences for the physics of fast 
shocks. 

We also consider the more complicated case of aniso- 
tropic plasmas. We point out that the presence of anisotropy 
is a rule rather than the exception in space plasmas. An area 
of immediate relevance is that of the Earth’s magnetopause, 
which separates the. shocked solar wind (magnetosheath) 
from the magnetospheric plasma. The magnetosheath plasma 
is. commonly found to have a temperature anisotropy. The 
main complication arising from the presence of anisotropy is 
the fact that changes in anisotropy or equivalently, pitch 
angle scattering, are, by definition, a kinetic effect, and their 
proper description within fluid theory remains as a funda- 
mental but as yet unresolved problem in plasma physics. 
Technically speaking, the closure of fluid equations requires 
the introduction of two equations of state, one for the parallel 
pressure and one for perpendicular pressure. In spite of much 
effort, no generally valid form for the two equations of states 
are known. This, in turn, implies that there are no unique 
fluid expressions for the characteristic speeds. 

Most fluid studies of small amplitude waves in aniso- 
tropic plasmas have used the Chew-Goldberger-Low 
(CGL) equations of state.2-5 However, the CGL limit is only 
expected to hold in a very limited cases from the outset. It 
breaks down when there exists a finite heat flux and/or the 
magnetic moment is not conserved. Thus, others have at- 
tempted more generalized models with a number of free 
parameters,6 which include CGL as a limiting case. The ap- 
peal of these models is that they yield analytical expressions 
for mode properties, but the drawback is that they involve 
free parameters, and, in addition, one cannot be assured of 
the validity’ of the models a priori. This latter concern ap- 
plies specially to high plasma p regimes, where fluid theory 
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is known to break down.4F7*8 Before abandoning the fluid 
characteristic speeds, it is worthwhile to determine their do- 
main of applicability. To this end, we calculate the fluid char- 
acteristic speeds based on two different models and compare 
the results with linear kinetic calculations. The mode prop- 
erties of kinetic theory are calculated, as outlined in Krauss- 
Varban et a1.8 

The outline of the paper is as follows. Section II contains 
a comparison of linear mode properties in fluid theory and 
kinetic theory for both isotropic and anisotropic plasmas. In 
Sec. III we demonstrate the implications of the kinetic phase 
velocity inversion for quasiparallel shocks via hybrid simu- 
Iations (fluid electron, kinetic ions). Finally, a discussion and 
summary of the results is given in Sec. Iv. 

II. LINEAR MODE PROPERTIES IN THE LONG- 
WAVELENGTH LIMIT: KINETIC VERSUS 
FLUID DESCRIPTION 

The linear mode properties are important in understand- 
ing shocks and discontinuities. In fact, the connection be- 
tween linear mode properties and shock waves have been 
utilized in at least four different fashions. (1) According to 
classical shock physics, a necessary condition for formation 
of a shock is for the flow speed to exceed the long- 
wavelength phase velocity (characteristic speed) of the 
mode. Thus, the knowledge of the characteristic speed is 
important in classifying the various types of discontinuity. 
(2) The order in which various discontinuities stand in the 
flow is typically discussed in terms of upstream and down- 
stream speeds relative to the fluid characteristic speeds. For 
instance, the flow speeds upstream and downstream of an 
isotropic slow shock are superslow (but sub-Alfvenic) and 
subslow, respectively. Thus, a rotational discontinuity (RD) 
that propagates with the intermediate speed can form and 
remain upstream, but not downstream of a slow shock. (3) 
The correlation between the magnetic field and density 
across the shocks are usually explained in terms of the linear 
waves. For instance, the density and magnetic field are anti- 
correlated for the slow mode in isotropic plasmas. This is 
consistent with the fact that the total magnetic field decreases 
but density increases across a slow shock. So it is important 
to determine the correlation between density and magnetic 
field for each mode and to see if this correlation changes for 
different parameter regimes. (4) The dispersion and damping 
of a mode at a finite wavelength is used to determine whether 
the mode can steepen. For instance, Hada and Kennel’ ar- 
gued that a slow shock cannot be formed in the high p solar 
wind because of the large damping rate of the slow mode. 

We emphasize that shocks are nonlinear entities and care 
must be taken in using linear theory to explain their behavior. 
Furthermore, the formation of a shock depends strongly on 
the boundary conditions. One way to form a shock is if the 
flow encounters an obstacle. Such a situation is different 
from a shock formation process in which a linear wave 
grows in amplitude and eventually steepens. The latter pro- 
cess depends on the mode properties of the mode at the 
wavelength comparable to that of the linear wave. In the 
former case the shock properties are determined by those of 
the long-wavelength limit. The two shock formation pro- 

cesses do not aIways yield the same answer. For instance, the 
slow mode is heavily damped at finite wavelength in a high 
p plasma, and thus a slow shock cannot be formed by the 
steepening of a linear mode in such a plasma. At the same 
time, a slow shock can be formed in a high p plasma if the 
flow encounters an obstacle.” From the foregoing and given 
the lack of a suitable nonlinear analytical theory, it is clear 
that the question of existence of a particular type of shock 
has to ultimately be answered by simulations. Linear theory 
can, however, provide some level of understanding of an 
otherwise untractable problem. 

Before discussing the anisotropic case, we contrast the 
isotropic mode properties based on fluid and kinetic theories 
in the long-wavelength limit. 

A. Isotropic plasma 

The shock classification based on MHD characteristic 
speeds has gained general acceptance, and the order in which 
various discontinuities stand in the flow is often discussed 
using the fluid theory. Ideal MHD lacks any dispersion and 
yields only the phase velocity of a mode. In order to deter- 
mine other shock properties such as its polarization, the 
sense of correlation between the magnetic field and density, 
as well as the location and the types of coherent waves that 
can be generated by the shock, Hall MHD theory” has often 
be used. By retaining the Hall term a characteristic scale (ion 
inertial length) is introduced in the fluid equations, which 
gives rise to dispersion of the modes. In this section, we 
compare and contrast linear mode properties at the long- 
wavelength limit based on Hall MHD and linear kinetic 
theory. 

We start by reviewing linear mode properties in Hall 
MHD.*+12 The fast mode (F) always has a positive correla- 
tion between the magnetic field (B) and density (N) , is right 
handed and has a phase velocity that increases as a function 
of wave number k. in the limit of k-+0, the phase velocity 
approaches the MHD fast speed. The intermediate mode (I) 
has a phase velocity that approaches the MHD intermediate 
speed VA cos 8 and the sound speed as k-0 and k-m, 
respectively. The intermediate mode is different from the fast 
and slow (S) modes in that its dispersion and polarization 
change as a function of plasma p. Depending on whether j3 
is smaller or larger than (2/y) cos2 0, the mode is left handed 
with positive correlation between B and N and ordinary dis- 
persion or is right handed, with anticorrelated B and N and 
anomalous dispersion (i.e., its group velocity is larger than 
its phase velocity). Finally, the slow mode is always left 
handed, has an anticorrelated B and N, and its phase velocity 
approaches the MHD slow speed as k-+0 and zero as k-+m. 
In Hall MHD, the three modes never intersect at finite wave 
number k and the phase velocities satisfy the condition 
v,< v,< v,. 

In the low p regime, Hall MHD provides a reasonable 
approximation to the mode properties in the long-wavelength 
limit. However, for p in the range of 0.1-0.5 some of the 
mode properties based on fluid theory start to deviate from 
kinetic theory, and for higher /I fluid theory fails altogether 
(see below). Note that plasmas with pBO.5 are common 
place in space physics. Plasmas downstream of nearly 
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FIG. 1. Phase velocity of the three modes versus wave number in (a) the 
Hall MHD and in (b) kinetic theory. 

switchoff shocks, strong intermediate shocks, and fast shocks 
are generally high /?, even if the upstream plasma has low /3. 

The discrepancies between fluid and kinetic predictions 
is best illustrated by way of an example. Figures l(a) and 
l(b) show the phase velocities for the three modes based on 
Hall MHD and kinetic theory, respectively. The plasma pa- 
rameters are pi=2.5, p,=O.5, and 13=15”. In the Hall 
MHD case, the modes are ordered according to their phase 
velocities, V,> VI> V, , and the three modes never intersect 
[Fig. l(a)]. In the kinetic case, however, the modes can 
intersect,7V8 as is shown in Fig. l(b). For this reason, modes 
in the kinetic theory cannot be classified according to the 
ordering of their phase velocities, rather they are classified 
based on their physical properties. In Fig. l(b), we have la- 
beled the three modes A&.&/ion cyclotron (AK), F/MS, 
and S/SO, respectively. The name convention’ is chosen so 
that the first letter corresponds to the low p limit of the mode 
and the remaining two letters correspond to more general 
properties of the mode. For instance, the slow/sound (S/SO) 
is the slow mode in the low p regime, but it is essentially a 

I sound mode that is slightly modified by the presence of the 
ambient magnetic field. 

Ignoring the names of the modes for the moment, we 
consider the three phase velocities at k = 0 in Figs. 1 (a) and 
l(b). Of the three fluid phase velocities, only one matches a 
kinetic phase velocity. This mode is the intermediate mode, 
which has a phase velocity of VA cos 8, both in the fluid and 
kinetic limit. In contrast to the fluid case, the other two ki- 
netic modes have phase velocities larger than the A/K. Thus, 
except for the AK mode, fluid theory does not yield the 

TABLE L Kinetic versus fluid theory of linear modes 

correct phase velocities of the modes in the long-wavelength 
limit. The discrepancy between fluid and kinetic theory be- 
comes even more pronounced at finite k. For instance, the 
phase velocity of A/K and intermediate mode match at 
k = 0, but the phase velocity of the intermediate mode in- 
creases as a function of k [Fig. l(a)], whereas the phase 
velocity of the A/K mode decreases with increasing k [Fig. 
l(b)l. 

Aside from the phase velocity, there are significant dif- 
ferences in other predicted mode properties in fluid versus 
kinetic theory. This is shown in Table I, which summarizes 
the mode properties for the above parameters based on fluid 
and kinetic theories. Although the actual entrit?s in this table 
would change for different parameter regimes, it is represen- 
tative of the types of problems encountered by using fluid 
theory. As we mentioned above, a number of mode proper- 
ties such as compressibility, damping, and polarization, need 
to be considered before a mode can be classified in the ki- 
netic regime. The A/K mode is classified by the fact that its 
phase velocity is given accurately by the intermediate speed 
in the long-wavelength limit. Furthermore, its magnetic tluc- 
tuations lie mainly out of the plane of k and the external 
magnetic field Bo. The classifications of S/SO and F/MS are 
less straightforward. The S/SO is characterized by a large 
damping (highest damping of all modesj, since for TeSTi, 
its phase velocity is comparable to the ion thermal speed. In 
addition, it is the most compressible of all modes (Table I), 
and behaves like a sound wave slightly modified by the pres- 
ence of the magnetic field. The F/MS is characterized by the 
fact that it is always right handed and continues to the whis- 
tler branch. Note that for small propagation angles and high 
p, the fast shock should be associated with the S/SO mode 
(which is the fastest mode), rather than the usual F/MS 
mode. This has important implications for the structure of the 
quasiparallel shock, as we show in Sec. III. 

A careful examination of Table I reveals that in addition 
to phase velocities, fluid theory does not yield a correct pre- 
&ction for other mode properties either. For instance, the 
slow mode has a negative correlation between B and N, 
whereas S/SO can have a positively correlated B and N if 
Pe-Pi (Table I). Recall that the density increase and mag- 
netic field decrease across a slow shock is attributed to the 
fact that for the slow mode B and N are anticorrelated. 
Whether a slow shock can still be formed when B and N are 
correlated is not known at the present time. 

Mode Polarization 
Characteristic 

speed 
I3 and N 

correlation Compressibility 

Fluid Kinetic Fluid Kinetic Fluid Kinetic Fluid Kinetic Fluid Kinetic 

Slow s/so L -linear/R 0.9464 1.624 - - 10-2 -2 x lo2 
(+ for PC-Pi) 

Intermediate A/K R L 0.9659 0.9657 - + 10-3 zslo-“-10-3 
(- for large 0) 

Fast F/MS -linear/R R 1.6138 1.057 + + 6.0 0.1 
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6. Anisotropic plasma 

In this section we derive the linear mode properties in 
the long-wavelength limit for waves propagating in a homo- 
geneous anisotropic plasma. We consider two general classes 
of anisotropic auid theory and compare the results with ki- 
netic theory. One class does not involve the magnetic field in 
the equations of state (simple polytropic model), whereas the 
second class does (the double polytropic model). Clearly, it 
would be extremely useful and desirable to have a fluid 
theory that can successfully predict the linear mode proper- 
ties in a high p plasma. In that case, many problems associ- 
ated with the existence and characteristics of discontinuities 
could be determined analytically. If, on the other hand, it 
turns out that the results show a large sensitivity to the free 
parameters (polytropic indices) involved, the fluid theories 
lose their predictive power. 

Regardless of whether large-scale flows, discontinuities, 
or linear waves are considered, application of fluid theory 
requires closure of the set of moment equations. ‘Iwo such 
relations are needed in the case of an anisotropic plasma. 
Recently, there has been much interest in describing the ther- 
modynamic behavior of the magnetosheath. Both observa- 
tional and simulation studies have been carried out that lead 
to empirical relations between the plasma anisotropy and the 
plasma p.13,‘4 Such relations can be viewed as closure rela- 
tions for magnetohydrodynamic theory. Typically, it has been 
found that the magnetosheath is neither adiabatic nor isother- 
mal. These findings have led Hau et al. I5 to suggest a heu- 
ristical, generalized double-adiabatic closure of the form 

d PI 
z pBY’-’ =o, 

( i 

d p,,BY”- ’ 

z ( i 
- so 

p Yll , 

(1) 

with polytropic indices xl and yl. Here, the limit x =2 and 
yl,=3 corresponds to the CGL description, whereas 
x = ‘y,= 1 corresponds to the case of an isothermal plasma. 

The properties of small-amplitude waves have been ex- 
amined by several authors using the CGL2-5 and double 
polytropic model.‘j In analogy with MHD, three modes re- 
ferred to as slow, intermediate, and fast waves are identified. 
A fourth mode referred to as the entropy wave (mirror mode) 
is not of interest here and will not be discussed further. Al- 
though the properties of fast and intermediate modes remain 
qualitatively the same as in the isotropic case, the slow mode 
can, under certain conditions, have a different behavior. The 
three changes that can occur for the slow mode due to an- 
isotropy are (1) its phase velocity can exceed the intermedi- 
ate wave; (2) the density and magnetic field can be corre- 
lated; and (3) rarefraction waves rather than compression 
waves steepen. The phase velocities for the three low- 
frequency modes derived from (1) are given in Hau et ~1.‘~ 

One must keep in mind that the CGL limit is only ex- 
pected to hold in very limited cases from the outset. When a 
finite heat Aux exists and the magnetic moment is not con- 
served, one cannot necessarily expect that the Form of the 
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polytropic laws should in any way resemble the CCL equa- 
tions of state. As an alternative approach, we consider theq 
simple polytropic model, 

d PI 
;i; PyI =O, i ! 

which does not include the magnetic field perturbation, Of 
course, all such models are largely arbitrary and can find 
justification only through correct predictions. Here the idea is 
that the above two distinct approaches cover reasonable 
broad ground, such that meaningful and sufficiently general 
conclusions can be drawn when comparisons are made to the 
correct results from Vlasov theory. 

It is straightforward to derive the phase velocities from 
Maxwell’s equations, using the simple polytropic laws (2) in 
the anisotropic fluid equations (e.g., following Stringer’s16 
prescription for the isotropic case). We assume that the elec- 
trons are isotropic and satisfy the polytropic law (dldt) 
X(p,/pye) = 0. We introduce the sound velocities based on 
the ion mass, 

YkTk yk c+-= - 
mi 

2 &k, 

where the subscript k can assume the values I and II for the 
ions, or e to indicate the electrons. 

The intermediate mode phase speed then follows as 

u,2=cos2e[u~-(c~ly,,-c~Iy~j]. (4) 

Note that this expression is similar to the known modifica- 
tion of the anisotropic intermediate mode speed, except that 
here only the ion /3 enters. 

The slow (minus sign) and fast mode (plus sign) phase 
velocities are given by 

u&= $(A 2 &i=@), (5) 

with 

A=U~+C:+C:+cos%[ (~)+(~)c: 

‘(6) 
and 

B=v; ~os~d{C,2+C~-(C~1y,,-C~ly~)*[~os~~C,: 

- sin’ 19Cz -I- ( cos2 19- sin2 0) Ci]}. (7) 

The last expression differs from the double-polytropic 
results6 in the y factors, multiplying the term -sin2 0 Cf. 
Otherwise (and except for our use of isotropic electrons} the 
results are identical. 

We start with the low p case. For pi = 0.2, 8=60”, and 
anisotropy A = T,ITII = 1.3, the phase velocities for the ki- 
netic S/SO, F/MS, and AK normalized to Alfvin speed are 
0.506 07, 0.115 22, and 1.0826, respectively. Since the 
double-polytropic law of Hau and Sonnerup does not distin- 
guish between ions and electrons, we assume p, = 0 in the 
kinetic theory for the remainder of this section. The phase 
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EYIG. 2. Contours of the characteristic speeds for the slow and fast modes 
based on the double-polytropic and the simple-polytropic fluid models. The 
dashed contours correspond to the kinetic value of the phase velocity for 
each case. See the text for specific parameters. 

velocity depends on ql and y1 in both of the fluid theories 
above; we consider changes in the phase velocity for y’s 
ranging from 0.5 to 2.5. The range in the resulting phase 
velocities of the fast mode is small and is 1.024-1.1 in the 
two fluid models. The combination of vs that match the 
kinetic phase velocity of the F/MS in this case lies on a 
diagonal line (not shown) in the nl-yL plane, extending 
from y,,-1.0, ~~-2.5 to y,,-2.5, ~~-1.8.3 in the simple 
polytropic case, and it lies on a horizontal line with ~~-2.0 
(independent of y,$ in the double-polytropic case. 

The fluid theory is less successful for the slow mode 
where the range in the slow mode speed in the simple and 
double-polytropic theories are 0.089-0.218 and 0.091- 
0.224, respectively. The fact that the phase velocity can 
change by more than a factor of 2 by changing the ys is 
problematical, since the proper values of fs are not known a 
priori. The combination of. ?)s that match the kinetic phase 
velocity of the S/SO in this case lies on a line (not shown) 
extending from ~~-0.68, ~~-0.5 to ~~-0.8, ~~-2.5 in the 
simple-polytropic case, and the line ~~-0.73 (independent of 
yl) in the double-polytropic case. Thus, neither the isother- 
mal (n,=n=l) nor the usual CGL (n,=3, y,=2) in the 
double-polytropic case are valid. The phase velocity of the 
intermediate mode is independent of the choice of nl and y1 
and matches that of the AK! in kinetic theory. 

We now consider the phase velocities in the high /I re- 
gime. Figure 2 shows contours of phase speed in the long- 
wavelength limit for both slow and fast modes as a function 
of ql and yl. The plasma parameters are pi= 1.2, 8=60”, 
the ion plasma to gyrofrequency ratio w,/~=4000, and 
TLi lT,li = 1.3. Again, we have chosen the electron beta to be 

Double Polytropic Simple Polytropic 

0.5 1.5 2.5 0.5 1.5 2.5 

FIG. 3. Contours of the quantity V,lV, , where V, and V, are the charac- 
teristic speeds of the slow and intermediate modes, respectively. The dashed 
contours correspond to the kinetic value for each case. 

zero. The phase speeds are calculated based on the double- 
polytropic model [Figs. 2(a) and 2(c)] and our simple- 
polytropic model [Figs. 2(b) and 2(d)]. The contour corre- 
sponding to the phase velocity in the linear kinetic theory is 
indicated with a dashed curve in each case. Note that there 
are no ys in the kinetic theory and these dashed contours 
merely show what combination of y’s would yield the same 
phase velocity in fluid theory as that obtained from kinetic 
theory. 

In the double-polytropic model, the phase speed of the 
slow mode is nearly independent of y1 [Fig. 2(a)], whereas 
the phase speed of the fast mode shows no significant varia- 
tion with ll [Fig. 2(c)]. Both the slow and fast modes show a 
significant range in their phase velocities as a function of y’s. 
This also holds in the simple-polytropic model [Figs. 2(b) 
and 2(d)]. The combination of ‘y’s that yield me correct phase 
velocities for the slow and fast modes is I,- 1.0 and ~~-2.0 
in the double-polytropic model and ~~-1.6 and ~~-2.2 in 
the simple-polytropic model. As in the low beta case, neither 
CGL nor the isothermal case yield the correct phase velocity. 

We have also carried out comparisons between kinetic 
theory and the two fluid models for some other parameter 
regimes. We have found no unique combination of nl and y1 
that works for all cases. Thus, the polytropic approach is not 
very useful. 

In anisotropic fluid theories of the types discussed 
above, the slow phase velocity can become larger than the 
intermediate speed (the so-called pseudo- or reverse MHD 
regime). Figure 3 shows contours of the ratio of the phase 
speed of slow mode to that of the intermediate mode in the 
long wavelength as a function of y,, and yl. The plasma 
parameters are pi=2.0, pe=O, 0=60”, and T,IT,,=O.8. 
The contour corresponding to the ratio of the phase velocity 
of the S/SO to me A/IC based on linear kinetic theory is 
indicated with a dashed curve in each case. For the present 
case, the S/SO speed is slower than the A/K and the ratio is 
given by 0.9782. In both fluid models, there exists a large 
range in nl and yl, where the slow mode has a higher ve- 
locity than the intermediate mode. But there also exist re- 
gions where the slow mode is slower than the intermediate 
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FIG. 4. Phase velocity of the S/SO and F/MS modes as a function of plasma 
beta. 

mode. Note also that the range in the ratio V,/V, is large for 
both below and above unity. Although fluid theory’s predic- 
tion that the slow speed can be larger than the intermediate 
speed also occurs in the kinetic theory, the conditions for 
reversal to occur are not given correctly by fluid theory and 
are impossible to predict without prior knowledge of appro- 
priate y’s. In addition, velocity reversals occur in the kinetic 
theory even in the isotropic case and in a more general sense 
than in fluid theory. For instance, in kinetic theory any com- 
bination of phase velocities for the three modes is possible, 
whereas in fluid theory the only reversal is for the slow mode 
to become faster than the intermediate mode, but it would 
still be slower than the fast mode. 

III. lMPLlCATlONS FOR SHOCKS 

As we demonstrated in the previous section, the ordering 
of the kinetic phase velocities of the three modes can change 
both in the isotropic and anisotropic plasmas. An example, 
the S/SO mode can have a phase velocity that is larger than 
the F/MS mode. One of the important implications of this 
phase velocity reversal is in regards to structure of fast qua- 
siparallel shocks. In the low /I regime, the fast shock is as- 
sociated with the F/MS mode and a steady (low Mach num- 
ber) quasiparallel shock has an associated upstream phase 
standing whistler wave train. This is explained by the fact 
that a fast shock is formed as a result of the steepening of the 
F/MS mode that connects to the whistler branch. In the high 
beta regime, however, the S/SO can have a phase velocity 
larger than the F/MS mode (e.g., Table I). Since a fast shock 
is associated with the fastest mode, the fast shock would be 
associated with the S/SO in such cases. However, S/SO does 
not connect to the whistler branch and thus the fast shock 
cannot have a phase standing whistler wave train when S/SO 
is the fastest mode. 

To test this theoretical expectation, we have performed 
hybrid simulations (fluid electron, kinetic ions) for the case 
where F/MS has a larger phase velocity than S/SO and for 
the case where S/SO is the faster mode. We have verified 
using linear theory that for T,= Ti , and f?=20°, the F/MS 
has a larger phase velocity than the S/SO mode for p,~O.7, 
and a smaller phase velocity for p,>O.7. This is shown in 
Fig. 4, where we have plotted the phase velocity of the F/MS 
and S/SO modes as a function of ion fl. 

FIG. 5. Plot of shock thickness as a function of time for (a) &=0.5 and(b) 
pi= 1 .o. 

Using the same parameters as in Fig. 4, we have made 
two runs: one with pizO.5 and another with pi= 1.0. In 
order to keep the effect of backstreaming ions to a minimum, 
as well as to assure that the shock strength is the same in 
both cases, we have chosen the magnetosonic Mach number 
(MF) to be low and the same in both cases, M,= 1.24. The 
Alfvinic Mach numbers are 1.38 and 1.7 for the two runs. In 
each case, the shock is initialized based on Rankine- 
Hugoniot relations and with a finite thickness. Given the dif- 
ficulties associated with the fluid theory of simple linear 
waves outlined in the above section, our use of a fluid based 
magnetosonic Mach number as well as RH relations to set up 
the shocks may at first seem puzzling. But the RH relations, 
which are simple conservation laws, generally work much 
better than fluid theory of linear waves (see also the discus- 
sion in Karimabadi et al.). The reason for this can be seen as 
follows. Let us consider the high p case where the fluid 
theory of the three modes is clearly not valid. We have veri- 
fied that the phase velocity of the (fluid) fast mode is almost 
identical to that of S/SO mode at k = 0 (e.g., Fig. 1). Thus, 
one can interchangeably define the Mach number based on 
either the fast mode or the S/SO mode. Furthermore, the 
S/SO mode has a positive correlation between the magnetic 
field and density, which is what is required for a fast shock. 
Since the Mach number and the correlation of magnetic field 
and density are what is important in determining the jump 
conditions, the RH relations remain valid, although in fluid 
theory the shock is associated with the fast mode and in 
kinetic theory with the S/SO mode. Simply said, the impor- 
tance of the association of the shock with S/SO rather than 
the fast mode comes into the structure of the shock and at 
finite wavelength, but it does not affect the jump conditions. 
It may, however, occur that the S/SO mode has an anticorre- 
lated magnetic field and density oscillations. Whether a fast 
shock can be formed in such cases is not known and is be- 
yond the scope of this paper. 

We have made several runs with different initial shock 
thicknesses. The initial transitory evolution of the shock con- 
sists of steepening or spreading of its thickness, depending 
on whether the initial thickness was set larger or smaller than 
its final asymptotic value. After this transitory stage, the 
shock thickness does not change significantly, Figure 5 
shows the shock half-width as a function of time for the case 
where the low and high p shocks were initialized with a 
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FIG. 6. Hybrid simulations of two quasiparallel fast shocks having the same 
parameters, except for the ion beta. (a) ,&=0.5 and (b) pi= 1 .O. 

half-thickness of 1 Oclw, . Both shocks evolve in time, steep- 
ening and reaching a fixed thickness after some time. As is 
evident in Fig. 5, the shock thickness is considerably larger 
in the high /3 case. In order to gain more insight into the 
change in the shock thickness as a function of /?, we made 
new runs, starting with a shock thickness of 5~10~. Stack 
plots (of BZ) are shown in Fig. 6. Here we started with an 
initial shock half-width of 5cIwp . In the low ,0 case, the 
shock steepens until it reaches a thickness matching that in 
Fig. 5. There is no significant change in the shock thickness 
in the high ,8 case, since it was initialized with a thickness 
close to its asymptotic value given in Fig. 5. The low p 
shock has an upstream phase standing whistler wave train 
[Fig. 6(a)], and the shock thickness is determined by disper- 
sion. However, the dispersive whistler wave train is con- 
spicuously absent as the ion beta is increased to 1.0 [Fig. 
6(b)], and the shock thickness is determined by dissipation in 
this case. At late times in the simulation there are some whis- 
tlers generated upstream of the shock. These waves are gen- 
erated due to the relative streaming between ions back- 
streaming from the shock and the incoming plasma. Artificial 
removal of the backstreaming ions eliminates these whis- 
tlers. The presence of whistlers, although beam generated, 
points to the fact that the absence of a whistler wave train is 
not simply due to damping effects. From linear theory it also 
follows that the damping is not strong enough to exclude a 
wave train. 

From the foregoing we conclude that not only can fluid 
theory not be used to explain the types of waves that phase 
or group stand at shocks, it also does not provide an accurate 
framework for classification of shocks. Although we have 
chosen large beta for our comparison, it is quite relevant. For 
instance, the observed slow shocks in the magnetotail’7-20 
and the newly discovered slow shock at the magnetopause21 
have small ion beta upstream but high ion beta downstream. 
Given the above reversal of phase velocities, it may become 
possible for a RD to stand downstream of a slow shock. Such 
a situation was observed at the magnetopause.2* 

IV. DISCUSSION AND SUMMARY 

The linear properties of low-frequency waves are widely 
used in studies and identification of various discontinuities in 
space physics. In the low beta regime, fluid theory provides a 
good approximation to kinetic theory and has been used ex- 
tensively in theory of shocks. Low beta plasmas admit two 
simplifications. One is that the modes can be ordered accord- 
ing to their phase velocities; e.g., the fast mode is faster than 
the slow and intermediate modes at all angles and indepen- * 
dent of T,lTi as long as the total plasma beta is small. The 
other is that mode properties such as correlation between 
density and magnetic field remain intact as a function of 
propagation angle, etc. This facilitates a simple classification 
scheme of discontinuities and jumps across discontinuities 
can be related to linear modes. For instance, the fact that 
density and magnetic field always increase across a fast 
shock can be explained by the positive correlation of the 
density and magnetic field for the fast mode. The above 
scheme has worked so well that its applicability in high beta 
plasmas if often not questioned. 

Our explanation of the above results is that in the high 
beta case, the shock is associated with the S/SO mode, which 
does not connect to the whistler branch. The shock thickness 
is then given by dissipation rather than dispersion, yielding a 
different shock thickness. Another possible interpretation 
would be that the shock is still associated with the F/MS 
mode, but there may exist some scaling of shock thickness 
with /? that also prevents a wave train from forming. We 
have ruled out the latter possibility by performing a third 
simulation for the same parameters as in Fig. 6(b), except 
that 8=60”. The F/MS mode is then faster than S/SO mode, 
even for pi= 1 .O. The shock showed a thickness similar to 
that in Fig. 6(a), and has a dispersive whistler wave train (not 
shown). Thus, we attribute the lack of a dispersive whistler 
wave train in Fig. 6(b) to the fact that the shock is indeed 

Here, we reconsider the relation between linear modes 
and shocks in high beta plasmas using both fluid and kinetic 
theory. Since fluid theory has the advantage that it yields 
simple analytical expressions for linear modes we first con- 
sidered its validity in high beta (20.5-1.0) and isotropic 
limit. We found that fluid theories of linear modes (both 
MHD and Hall MHD) do not yield the correct mode proper- 
ties, even in the long-wavelength limit. Using linear kinetic 
theory, we demonstrated two complications that are not 
present in the low beta regime. 

First, modes can no longer be ordered according to their 
phase velocities. We studied in detail the example that at 
small and moderate propagation angles, the S/SO mode can 
have the fastest phase velocity. In such cases, a (quasiparal- 
lel) fast shock should then be associated with the S/SO mode 
rather than the usual F/MS mode. This has important impli- 
cations for fast shocks. Since it is the F/MS rather than the 
S/SO mode that connects to the whistler branch, low Mach 
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associated with the S/SO mode. Another fact supporting this 
conclusion comes from examination of the heating across the 
shock (not shown). In the low p case, the heating occurs 
almost equally in both directions with respect to the mag- 
netic field, whereas in the high p case the heating is pre- 
dominantly in the direction parallel to the field. Parallel heat- 
ing with little perpendicular heating is consistent with a 
shock that is associated with the (highly electrostatic) S/SO 
mode. 
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number quasiparallel shocks associated with S/SO would not 
be expected to have a phase standing whistler wave train 
upstream and their thickness is determined by dissipation 
rather than dispersion. Moreover, the shock is not expected 
to have a S/SO wave train because the S/SO mode does not 
have the proper phase and group velocities and also it is 
heavily damped. We verified this expectation through kinetic 
(hybrid) simulations. Further, S/SO can become heavily 
damped at high beta, and thus the existence and structure of 
quasiparallel shocks in high beta plasmas warrants further 
study. At large propagation angles, F/MS remains the fastest 
mode and thus the above difficulty does not apply to quasip- 
erpendicular shocks. 

Another complication in a high beta plasma is that the 
linear properties of a given mode can change with propaga- 
tion angle and ratio TJT, . For instance, the S/SO mode can 
possess both a positive or negative correlation of density and 
magnetic field, depending on the parameters (see Table I). 
The implication of this behavior for the relation of linear 
properties to jumps across the shock remains to be explored. 

We also examined the validity of two general class of 
fluid theories in anisotropic plasmas. As in the isotropic case, 
fluid theory becomes inaccurate in the high beta regime and 
questions regarding the steepening of the mode, and relation 
of mode properties to shocks, have to be explored within the 
context of kinetic theory. In regards to the breakdown of 
fluid theory, the ion beta matters more than electron beta 
since for low-frequency waves, electrons act approximately 
as a fluid, whereas ion kinetic effects play a significant role. 

. Anisotropic fluid theory can, however, be useful in the cal- 
culation of characteristic speeds with the issue of its appli- 
cability dictated mainly by the level of accuracy required in 
a given application. In general, fluid theory provides accurate 
predictions for the intermediate speed, less accurate result for 
the fast speed and yet less accurate result for the slow mode 
(e.g., see Fig. 2). Since we have found no unique combina- 
tion of 1, and yL that yields the correct value of slow and fast 
characteristic speeds for all parameters, whether one can use 
the fluid speeds depends on the size of error or uncertainty 
one can tolerate in a given application. For instance, if one is 
interested in identifying a certain discontinuity in the data 
and a factor of 2 uncertainty in the slow speed does not 
change the identification of the discontinuity, fluid theory can 
be used. As demonstrated in Fig. 2, the kinetic values of slow 
and fast speeds usually fall within the range of speeds pre- 
dicted by fluid theory when varying ‘ye, and yL between 0.5 
and 2.5. On the other hand, if one is interested in knowing 
whether the slow speed is larger or smaller than the interme- 

diate speed and this ratio changes from a value smaller to a 
value larger than unity for a reasonable range in nl and yL 
(see Fig. 3) then fluid theory obviously cannot be used. 

In short, our results show a strong need to continue stud- 
ies of discontinuities in high beta plasma in general, and their 
classification as well as relation of linear waves to shocks in 
particular. The present work has raised and addressed some 
of the important issues involved. We hope that this work will 
inspire more research in this area. 

ACKNOWLEDGMENTS 

This work was supported by the National Aeronautics 
and Space Administration Space Physics Theory Program at 
the University of California, San Diego (IJCSD) and Na- 
tional Science Foundation (NSF) Grant No. ATM-92-24553. 
Computing was performed on the CFLAY C-90 at the San 
Diego Supercomputer Center, 

‘A. I. Akhiezer, I. A. Akhiezer, R. V. Polovin, A. G. Sitenko, and K. N. 
Stepanov, Plasma Eiectrodytamics, Vol. I: Linear Theory (Pergamon, 
New York, 19751, pp. 25-109. 

‘G. E Chew, M. L. Goldberger, and F. E. Low, Proc. R. Sot. London Ser. 
A 236, 112 (1956). 

‘I. A. Akhiezer, R. V. Polovin. and N. L. Tsintsadze, Sov. Phys. JETP 37, 
539 (1960). 

4Y. Kate. M. Tajiri, and T. Taniuti, J. Phys. Sot, Jpn. 66, 765 (1966), 
‘B. W. Abraham-Shrauner. J. Plasma Phys. 1. 361 (1967). 
6L.-N. Hau and B. U. 0. Sonnerup. Geophys. Res. Lett. 20, 1763 (1993). 
‘S. P. Gary and D. Winske, J. Geophys. Res. 97, 3103 (1992). 
sD. Krauss-Varban, N. Omidi, and K. B. Quest, J. Geophys. Res. 93,5987 
(1994). 

9T. Hada and C. F. Kennel, J. Geophys. Res. 90,531 (1985). 
“‘H. Karimabadi, D. Krauss-Varban, and N. Omidi, “Temperature anisot- 

ropy effects and the generation of anomalous slow shocks,” J. Geophys. 
Res. Lett. (in press). 

“V. Formisano and C. F. Kennel. J. Plasma Phys. 3, 55 (1969). 
“L.-N. Hau and B. U. 0. Sonnerup, J. Geophys. Res. 95, 18 791 (1990). 
13B J Anderson, S. A. Fuselier, S. P. Gary, and R. E. Denton, J. Geophys. 

Res: 99, 5877 (1994). 
14S P Gary. B. J. Anderson, R. E. Denton, S. A. Fuselier, M. E. McKean, 

and’D. Winske, Geophys. Res. Lett. 20, 1767 (1993). 
“L.-N. Hau, T.-D. Phau, B. U. 0. Sonnerup, and G. Paschmann, Geophys. 

Res. Lett. 20, 2255 (19933). 
16T. E. Stringer, J. Nucl. Energy C 5, 89 (1963). 
“W C Feldman, R. L. Tokar, J. Bim, E. W. Hones, Jr., S. J. Bame, and C. 

T.‘Russell, Geophys. Res. Lett. 11, 599 (1984). 
“W. C. Feldman. D, N. Baker, S. J. Bame, J. Bim, I. T. Gosling, E. W. 

Hones, Jr., and S. J. Schwartz, J. Geophys. Res. 90, 233 (1985). 
“S. J. Schwartz, M. F. Thomsen, W. C. Feldman, and E T. Douglas, J. 

Geophys. Res. 92,3165 (1987). 
*‘E. J. Smith. J. A. Slavin, B. T. Tsurutani, W. C. Feldman, and S. J. Bame, 

Geophys. Res. Lett. It, 1054 (1984). 
“D W. Walthour, J. T. Gosling, B. U. 0. Sonnerup. and C. T. Russell, I, 

Gkophys. Res. 99, 23705 (1994). 

4184 Phys. Plasmas, Vol. 2, No. 11, November 1995 Karimabadi, Krauss-Varban, and Omidi 

Downloaded 02 Nov 2004 to 128.32.147.181. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp


