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ABSTRACT

To understand the dynamics of twisted active region flux tubes below the solar photosphere, we inves-
tigate the linear kink stability of isolated, twisted tubes of magnetic flux. We apply linearized equations
of MHD to a cylindrical magnetic equilibrium (screw pinch), but with significant differences from earlier
work. The magnetic field vanishes outside a radius r = R where it is confined by the higher pressure of
the unmagnetized plasma. The outside boundary of the tube is free to move, displacing the
unmagnetized plasma as it does so. We concentrate on equilibria where all field lines have the same
helical pitch: By/rB, = q = const. The main results are as follows.

1. These equilibria are stable, provided that the field line pitch does not exceed a threshold; g < q.,
for stability. The threshold is g, = («)!/%, where a is the r? coefficient in the series expansion of the equi-
librium axial magnetic field (B,) about the tube axis (r = 0): B,(r) = Bo(1 — ar? + ---). When this cri-
terion is violated, there are unstable eigenmodes, & oc ¢®**?. The most unstable of these have a helical

pitch k which is near (but not equal to) the field line pitch g.

2. For weakly twisted tubes (qR < 1) we derive growth rates and unstable eigenfunctions analytically.
For strongly twisted tubes (qR 2 1), we find growth rates and unstable eigenfunctions numerically.

3. The maximum growth rate and range of unstable wavenumbers for a strongly twisted tube can be
predicted qualitatively by using the analytical results from the weakly twisted case. The maximum
growth rate in that case is given by w,,, = va R(q> — q%)/3.83, where v, is the axial Alfvén speed. The
range of unstable wavenumbers is (—g — Ak/2) < k < (—q + Ak/2), where Ak = 4qR(q* — q2)'/*/3.83.

4. The kink instability we find consists mainly of internal motions. Helical translations of the entire

tube are stable.

5. We argue that an emerging, twisted magnetic flux loop will tend to have a uniform g along its
length. The increase in the tube radius R as it rises results in a decreasing value of ¢,,. This means that
the apex of the flux loop will become kink unstable before the rest of the tube.

6. Our results suggest that most twisted flux tubes rising through the convection zone will be stable to
kinking. Those few tubes which are kink unstable, and which presumably become knotted or kinked
active regions upon emergence, only become kink unstable some time after they have begun rising

through the convection zone.

Subject headings: instabilities — MHD — Sun: activity — Sun: interior — Sun: magnetic fields

1. INTRODUCTION

The greatest concentrations of magnetic flux on the Sun,
known as “active regions” or “bipolar magnetic regions,”
consist of two adjacent areas of opposite magnetic polarity;
the magnetic field lines connecting the two polarities rise
into the corona, resulting in the “coronal loops” seen in
X-ray images of the Sun. This morphology suggests that the
magnetic flux visible at the surface results from the emer-
gence of loops of flux from the solar interior. In current
theories of the solar cycle dynamo (see, e.g., review by
DeLuca & Gilman 1991; Hughes 1992), magnetic flux is
generated in a shear layer near the base of the solar convec-
tion zone. From here, it emerges in the form of discrete
“magnetic flux tubes,” the topmost portions of which form
bipolar magnetic regions where the fields pierce the photo-
sphere, while the remainder of the tube stays anchored at
the base of the convection zone.

Recent theoretical work on the dynamics of emerging flux
tubes, based on the “thin flux tube ” approach outlined by
Spruit (1981), has been successful in reproducing many of
the observed properties of solar active regions. The thin flux
tube approximation assumes that a magnetic flux tube
diameter is small compared to all other relevant size scales
and that the distribution of physical properties across the
tube can be replaced by simple averages. Applying these
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approximations to the equations of ideal magnetohydro-
dynamics (MHD) yields a nonlinear model for the dynami-
cal evolution of a thin flux tube. In recent numerical
solutions of these model equations, loops emerge to form
bipoles which are tilted relative to the equator, in agreement
with observation. The tilt angles in the simulations vary
with latitude (the so-called “Joy’s Law” [Zirin 1988, p.
307;—see also D’Silva & Choudhuri 1993]), and with the
total unsigned flux (Fan, Fisher, & McClymont 1994) in
quantitative agreement with observation (Fisher, Fan, &
Howard 1995). In addition, observed morphological differ-
ences between leading and following sides of the bipole are
also present in the numerical simulations (Fan, Fisher, &
DeLuca 1993; Moreno-Insertis, Caligari, & Schiissler 1994;
Caligari, Moreno-Insertis, & Schiissler 1995).

Most models have considered only untwisted flux tubes.
In an untwisted tube, all field lines parallel the tube’s axis
exactly, and there is no current or twist in that direction.
However, an untwisted tube lacks integrity and will be frag-
mented or dispersed by external hydrodynamic forces
(Parker 1979a; Schiissler 1979). Recent simulations of self-
consistent buoyant evolution indicate that an initially
untwisted tube will split into two counterrotating elements
before it rises several of its own diameters (Longcope,
Fisher, & Arendt 1995). To remain intact, the flux tube must
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be twisted sufficiently that the shear Alfvén speed around its
own axis is as great as its speed of buoyant rise through the
atmosphere.

While it provides integrity to the tube, axial current can
also lead to dynamical behavior quite different from that of
the untwisted flux tube. It is well known that a cylindrical
equilibrium containing both axial and azimuthal fields is
subject to a class of current driven instabilities known as
kink modes (see, e.g., Shafranov 1957; Kruskal et al. 1958).
This instability results in a displacement of the magnetic
axis into a helix with a pitch similar to the twist of the field
lines themselves. Once the axis and the circular boundary of
the flux tube has developed a helical pitch, the flux tube
itself is said to be kinked. Care must be taken to distinguish
the helical twist of the individual field lines from the helical
kink of the tube itself, which results from the kink insta-
bility. (In MHD, the term kink has generally referred to such
current-driven instabilities. The term has also been used to
describe a buoyancy-driven instability of an initially hori-
zontal, but untwisted tube [Moreno-Insertis 1986]. Here,
we use the term exclusively in the first of these senses.)
Although the nonlinear development of the kink instability
has yet to be treated rigorously in an isolated flux tube, it is
likely to distort the axis of the tube severely. The emergence
of such a tube will result in a bipolar region with properties
quite different from those of a simple untwisted flux tube.

Most active regions do not exhibit strong signs of mag-
netic twist and appear consistent with the emergence of
simple loops of flux. However, there is a small but impor-
tant subset of loops that are significantly twisted and poss-
ibly kinked or knotted when they emerge. The structure and
dynamics of these active regions is especially important
because they are linked to the occurrence of large solar
flares. The link between flares and emerging, kinked flux
loops can be inferred from the fact that the “island 6 ” spot
configuration is typically the site of the largest solar flares
(see, e.g., Zirin 1988, p. 337). Here, two spot umbrae of
opposite polarity emerge within one spot penumbra;
further, the orientation of the two polarities is frequently
reversed from the usual Hale configuration. One interpreta-
tion of d spots is that a rising loop of a twisted flux tube has
kinked into a braided structure, similar to that which results
when twist is applied to the loop of a rubber band. This
would account qualitatively for the reversed polarity con-
figuration, the close proximity of the opposite polarity
spots, and the occurrence of flares as the oppositely directed
fields in the intertwined loop legs undergo reconnection.

Detailed observations of flare productive active regions
support this view. Kurokawa et al. (1994) studied the devel-
opment of flaring active region NOAA 7270 from 1992
September 5 to 7 with high-resolution Hx images, magneto-
grams, and soft X-ray images from Yohkoh. They found that
magnetic shear observed with the vector magnetograms
was caused by the successive emergence of twisted flux
ropes from below the photosphere. Similarly, in the analysis
of the legendary 1972 August flaring active region, Tanaka
(1991) found that the time evolution of this é spot group
could be explained by the emergence of a twisted flux loop
which had actually formed a knot like structure. Kurokawa
(1991) reviews a number of other observations in which flare
productive active regions develop through the emergence of
twisted flux tubes. Most recently, Leka (1995, p. 76)
observed the emergence of new magnetic flux in the flare-
productive active region NOAA 7260 with the Imaging
Vector Magnetograph at the University of Hawaii’s Mees

Solar Observatory and found that emerging bipoles were in
the shape of helically twisted loops of flux.

This suggests that a § spot group represents the emer-
gence of a flux tube that not only has twisted fields, but has
also succumbed to an MHD kink instability that distorted
its axis. To explore this possibility and its consequences, it is
essential to develop a nonlinear model for the evolution of a
thin, twisted flux tube. For cases of relatively weak twist
(azimuthal magnetic field), initial estimates suggest that the
tube’s dynamics will be altered only slightly from those of
an untwisted tube. The twist can then be treated as a linear
perturbation, giving rise to eigenmodes including torsional
Alfvén waves (Ferriz-Mas & Schiissler 1990). These have
little or no effect on the gross dynamics, and thus the tube as
a whole would behave essentially as if it were untwisted.
However, if the linear modes resulting from the twist are
dynamically unstable (i.e., to a kink mode), they would
almost certainly affect the large-scale dynamics.

This paper establishes the conditions under which an iso-
lated, twisted flux tube is linearly unstable to kinking. We
use the term “ thin ” for our twisted tube in one of the senses
that it is applied to untwisted flux tubes; namely, that the
radius of its cross section R is negligible compared to length
scales in the external medium, compared to scales of varia-
tion along the tube, and compared to the curvature of its
axis. In a twisted tube, a magnetic field line twists about the
central axis of the tube with some pitch g. We refer to a case
where gR < 1 as a weakly twisted tube. In this case, the axial
length for one turn, 27/q, will also be much larger than the
tube’s radius. We will not, however, restrict ourselves to the
limit of weak twist, since the general criterion for kink insta-
bility will turn out to be gR = O(1).

Treatments of untwisted thin tubes often use only the
cross-sectional averages of quantities like axial magnetic
field and internal pressure, which is similar to keeping only
leading order terms from a Taylor expansion in radius r.
However, the dynamics of a kink mode depend on the
detailed distribution of magnetic field and pressure with
radius. Therefore, it will be necessary for us to work with a
variety of flux tube profiles.

To separate the kink instability from the general
dynamics of the flux tube, we consider a tube which is ini-
tially in equilibrium. We take a straight tube with perfect
symmetry along its axis, Z (i.c., a cylinder) immersed in a
uniform external medium which is unmagnetized but per-
fectly conducting. This equilibrium represents the lowest
order in an “inverse aspect ratio” expansion of a more
general flux tube. Subsequent terms in such an expansion
will be smaller by factors R/L, where L is some axial length
scale.

The stability of such an equilibrium has been studied
extensively in the contexts of the laboratory (e.g., Shafranov
1957, Kruskal et al. 1958; Suydam 1959; Voslamber & Cal-
lebout 1962) and the solar corona (e.g., Gold & Hoyle 1960;
Anzer 1968; Raadu 1972; Hood & Priest 1980, 1981;
Migliuolo & Cargill 1983; Craig et al. 1990); our treatment
generally parallels that analysis. In § 2 we review the varia-
tional principle for linear stability to ideal MHD pertur-
bations (Bernstein et al. 1958). We use a generalization of
this method to find the linear growth rates and eigenmodes
as well as the criteria for marginal stability. Helical pertur-
bations of arbitrary radial structure , &(r), result in a second-
order differential equation of the Sturm-Liouville type for
the eigenmodes. Our case differs from the laboratory and
coronal analyses in its treatment of the tube’s outer bound-
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ary. This boundary, which separates the magnetized plasma
inside the tube from the unmagnetized plasma outside, is a
free surface which must be permitted to move in response to
the perturbation. As there is no field outside this free
surface, in contrast to many other studies of the kink mode,
the tube carries no net current. In § 2.3 we derive the
boundary condition for the eigenmode equation which
describes this free surface, and compare it to boundary con-
ditions appropriate in other contexts.

In § 3 the eigenmode equation is solved analytically in the
limit of a weakly twisted tube. The solution shows that
tubes are unstable to kinking provided their pitch g exceeds
a threshold ¢, that depends on the field profile of the equi-
librium. The helical pitch k of the unstable eigenmode
closely matches, but does not equal g. The eigenmode’s
cross-sectional variation is mainly internal, distorting the
axis of the tube much more than the boundary. Thus, the
free boundary assumption does not significantly affect the
dynamics of weakly twisted tubes, as the weakly twisted
eigenmodes require very little boundary motion.

The threshold for marginal stability q., depends on the
equilibrium field profile. For the most plausible profiles,
de ~ 1/R. Thus for a tube to be unstable, ie., ¢ > q,,, it
cannot be weakly twisted. This also means that the onset of
instability for an infinitely long, current neutral tube with a
free boundary depends on both its twist and tube radius, in
contrast to cases where the instability depends on only the
twist, or on the total number of turns (e.g., Shafranov 1957:
Hood & Priest 1980, 1981). In § 4, we treat numerically a
class of strongly twisted flux tubes. These are found to
behave qualitatively like their weakly twisted counterparts,
but with correspondingly larger growth rates and larger
distortions of the tube boundary. Thus the free boundary
assumption, though unimportant in the weakly twisted
limit, becomes increasingly important for strongly twisted
tubes. Strongly twisted tubes are more likely to kink, and
will kink more strongly than weakly twisted tubes. In § 5 we
show that a flux tube which starts out weakly twisted and
kink stable deep in the convection zone can become kink
unstable as it rises. This results from the tube’s expansion,
and the subsequent decrease in q,. Estimates of the linear
growth rates for a typical tube indicate that the kink mode
can e-fold several times during its rise.

2. THE LINEAR EIGENMODE ANALYSIS

2.1. Energy Principle

The energy principle is a method for evaluating the linear
stability of a MHD equilibrium subjected to a small dis-
placement perturbation & We choose a cylindrically sym-
metric magnetic equilibrium (i.e., independent of both 6 and
z in cylindrical coordinates). It consists of a tube plasma
with magnetic field By(r):

B(r) = [0, Bo("), B,(r)], (1)

surrounded by field-free plasma, and confined by the higher
pressure of this external plasma. The field vanishes outside
the boundary of the tube, r = R. In many cases, the field will
be formally discontinuous at the boundary, but this is
meant to represent a smooth transition to zero over a dis-
tance small compared to R.

If an energy integral, W[&, By(r)], representing the
second-order variation of potential energy, is less than zero,
then the equilibrium B (r) is unstable to the perturbation &.
The energy integral as derived by Bernstein et al. (1958) is
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W=—3 fd"’xé‘* - F(©), @

where F is the force per unit volume from the linearized
MHD equations. The perturbation & is related to the veloc-
ity by v = dé&/dt.

Evaluating F and substituting into W, we find all bound-
ary terms are zero because By(r) = 0 outside the tube (see
Bateman 1978, p. 96). The most unstable modes are incom-
pressible (Newcomb 1960), so hereafter we assume incom-
pressibility, and drop terms proportional to V - £ in the
energy integral to give (Newcomb 1960):

W=1fd3['%—1¢* Jo X Q)], )

where @ =V x [£ x By(r)], Jo = cV x By(r)/4n, and B(r)
is the unperturbed magnetic field. Lagrangian coordinates
are used to permit a discontinuity in By(r) at the boundary;
the perturbed field strength B,(r) is formally divergent
there in an Eulerian formulation. This involves expressing
V in Lagrangian coordinates, and B, - Q + (£ - V)B,(r)
(Bernstein et al. 1958). In contrast, the Eulerian pertur-
bation is B, = Q (Bateman 1978, p. 92). Note that the
plasma pressure, which balances magnetic forces in the
tube, does not appear in this expression.

While instability follows from the sign of W for a particu-
lar &, the unstable growth rate must be found from con-
strained variation over all neighboring perturbations. In
particular, an eigenmode will extremize W while holding
fixed the integral (Bateman 1978, p. 98)

1
K=§;Id3x|§|2. 4

This constrained variation is accomplished by finding an
extremum of a generalized energy U = W + AK, where 4 is
a Lagrange multiplier. At an extremum A is related to the
eigenfrequency,

= —'471?[)0 wZ 5 (5)
where & oc €™, A negative w? (positive 1) implies an insta-
bility with growth rate |w|.

2.2. Variation of U

We focus on the kink mode (azimuthal mode number
m = 1), and take & to have helical symmetry, with pitch k,
and an arbitrary radial structure for which we will solve by
variation:

&= [&(), &), £ (6)

All three components of the perturbation must be varied,
but they are interrelated by incompressibility

& & b
or +zr+zkéz. W)

Using this to eliminate £,(r) gives an expression for the
generalized energy

= % err '[6 {l + [k - By(n]* +
lfo

V-¢(=0=

2B,, _14dB}
r dr

& Bok - Bo(r) + {4 + [k - Bo(r)]*}

2 2i : 2
x[(igo)z +(c, ud L erg(f, Jlrczér/r)+(t€£/2r) ]]’ ®
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where L is the length of the tube, & = d¢,/dr, and
[k - By(r)] = kB, + By/r. )

The integrand in equation (8), call it #/(¢,, &,, &), does not
depend on &,. A variation over &, yields the simple Euler-
Lagrange equation 0.2//0&, = 0, which can then be used
along with equation (7) to express &, and &, in terms of the
radial displacement alone:

i f, &, 2Bk By

=111 {é' EPR TR Bo(")]z} ©
_ik* [, & 25 Byk- Byr)

=7 + k2r? [l:é' T r*{iA+[k- Bo(r)]z}i“ 1o

Using expression (9) for &, in equation (8) gives a gener-
alized energy

v=7% f dr(fE2 + g&2) , (1)

where the coefficients depend on the specific form of the
equilibrium as well as on the eigenvalue 4:

_ P+ k- B0

f 1+ k*r? ’ (12
k? d|By(r)|?
g= ﬁ# |[r2{1 + [k Byn]*} —r %
[ 20k Bl
s -

2
e At k*r*BZ — Bg)]l .
Minimizing U with respect to £,(r) results in the Euler-
Lagrange equation,

d d¢g,

dr f dr
This can be solved, subject to appropriate boundary condi-
tions (discussed below) to give &,, and therefore &, and £,.
The boundary conditions at r = 0 and r — oo can be satis-
fied only for specific values of 4, which enters equation (14)
implicitly through fand g. This determines the growth rates
which characterize the stability of the tube, to be discussed
in §§ 3-4. For most cases, the eigenmode consists primarily
of a cross-sectional swirling motion (&, and &) with a small
axial motion (&,).

Equation (14) is singular if f(r) vanishes, which can occur
for stable (A < 0) and for marginally stable cases (4 = 0).
The latter singularity occurs at the radius where k + By(r) =
0, called the mode resonant surface. In such a case, £, can be
discontinuous, permitting internal (external) instabilities in
which &, = 0 outside (inside) the mode rational surface (see
Rosenbluth, Dagazian, & Rutherford 1973 for a discussion
of the internal kink mode). For the case of instability
(A > 0), equation (14) is formally nonsingular, but often the
mode resonant surface remains the site of a steep gradient in
&,. In this way, the inertia “resolves” the singularity at the
resonance in an internal kink mode (Rosenbluth et al. 1973).

Equations (11)13) apply to any cylindrical MHD equi-
librium and have been studied in many contexts (Newcomb
1960; Rosenbluth et al. 1973, both with A = 0). Application
to a flux tube neglects curvature of its axis and variations in
atmospheric properties. Thus, we implicitly assume a flux

—95=0. (14)
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tube that is “thin” in the commonly used sense (Spruit
1981): a radius much smaller than both the axial radius of
curvature and the pressure scale height of the atmosphere.

The functions f(r) and g(r) depend on the specifics of the
tube equilibrium B(r) defined in equation (1). Any pair of
field profiles By(r) and B,(r) constitutes a valid equilibrium
when supplemented with the appropriate pressure profile,
p(r). Since only incompressible perturbations were con-
sidered, the function p(r) never enters the analysis explicitly,
meaning that both magnetic field profiles are arbitrary. In
contexts where f = 8np/| B|? is much less than unity, such
as the corona, the pressure is unable to balance magnetic
forces, and force-free equilibria, including the well-known
Gold-Hoyle field (Gold & Hoyle 1960), are typically con-
sidered.

Deep in the convection zone, a flux tube has a large
B(~ 10%) so magnetic forces are of little importance in deter-
mining equilibrium structure. Thus, pressure, temperature,
and density profiles must all be almost perfectly flat. If a
tube begins in an untwisted state with some axial magnetic
field profile B,(r), then simple twisting will not change this
profile. This follows from the ideal MHD constraint B,/p =
constant which holds provided flow along the axis is small
during the twisting. Therefore, twisting a flux tube to have
pitch g changes only the azimuthal field, By(r).

By(r)=qrB,(r), r<R, (15)

where B,(r) is the axial field profile before and after twisting.
Equilibria of this form are most relevant for our present
discussion; however, to aid comparisons with previous
work on force-free equilibria, we continue to consider more
general profiles until § 3.

2.3. Boundary Conditions on &,(r)

Regularity at the origin, requires £,(0) = 0 and £,(0) be a
constant, which can be taken as unity without loss of gener-
ality. The outer boundary of the tube r = R is not actually a
boundary of the problem. It is simply a point beyond which
the magnetic field is known to vanish; it might be the loca-
tion of a discontinuity in the equilibrium magnetic field.
The Euler-Lagrange equation (14) represents the linearized
MHD equations and is valid at points where B,(r) is both
finite and zero (i.c., both inside and outside the tube). The
true outer boundary condition is that &, vanish asr — 0.

Even if the equilibrium is discontinuous at r = R, the
Euler-Lagrange equation (14) must hold across the bound-

ary,and
R+ d dér _
L_ drl:a (f E) — gf,:l =0, (16)

Equation (16) can be nontrivial as a result of the delta func-
tion in dB(r)/dr at r = R. This results in the following equa-
tion which must be satisfied at the outer radius of the tube:

K| Bo(R) PE(R) + R{A + [k - Bo(R)I*},,(R)
~ R, (R)=0, (17)

where ¢, (R) and ¢, (R) are {(R) from the internal and
external solutions of equation (14), respectively.

This boundary condition accounts for an interaction
between the magnetized tube and the unmagnetized exter-
nal medium. The response of the unmagnetized medium is

contained in the external solution treated below. Previous
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stability analyses relevant to tokomaks or coronal loops
have used different forms of external boundary conditions.
For those cases, the tube is confined by a conducting wall,
¢ (R) =0 (see, e.g., Voslamber & Callebout 1962), or an
external vacuum field B(r > R) # 0 (Kruskal et al. 1958;
Anzer 1968; Hood & Priest 1981). Neither of these is rele-
vant to our study of the convection zone, where tubes have
free boundaries and essentially no external magnetic field.

The boundary condition given by equation (17) is equiva-
lent to requiring that the total pressure, P = p + B?/8m, be
continuous across the boundary. While it was not necessary
to solve explicitly for the pressure, we can do so after the
fact. Taking the Z component of the linearized MHD
momentum equation in Lagrangian coordinates, and
expressing P as the equilibrium P, plus the perturbed pres-
sure P, gives

. B2
Pi= o A+ Tk B} — 6. (19)

Using equation (10) to express ¢, in terms of &, and ¢, and
requiring P to be continuous at R returns equation (17). In
Lagrangian coordinates, continuity of P is equivalent to
continuity of P,, whereas in Eulerian coordinates a motion
of the boundary introduces a discontinuity in P, arising
from an initial discontinuity in P,. This discontinuity must
be offset by a discontinuity in P,. In his study of flux tube
stability, Roberts (1956) applied the condition of pressure
continuity, but this was done in Eulerian coordinates.

Outside the tube where B,y(r) = 0, equation (14) can be
solved analytically for &(r). The solutions are consistent
with requiring &, to be the gradient of a harmonic scalar
potential (i.e., & is divergence-free and curl-free outside the
tube. The scalar potential is then related to the pressure P;.)
The external solution of equation (14) for ¢, is

&) = —alk| K (| kr])

&ll) = —K?aK (| kr]), (19)
where K is a modified Bessel function, and a is a constant.
The other independent solution, the modified Bessel func-
tion I, is rejected because it diverges at large distances and
is therefore inconsistent with a localized perturbation. Since
¢,(r) must be continuous across the boundary, &, (R) =
&rouR) = E(R), and we can express £, (R) as
|k|K(|kR]) 1
S (R = —

K(1kRp) P

R
(1 + k*R*K, (k| R) ]
X|:1+|k|RKo(|k|R)+K1(]k|R) CraR) - (20)

Equation (17) then gives a linear, homogeneous boundary
condition for the internal solution

£ulB) =

D(A; R, k) = [kZIBO(r)I2 +i+A

1+ k*R*K ((|k|R
| k| RKo(|kIR) + Ky(|k|R)
+ {RA + R[k * By(r)]*}¢,(R)=0. (21)
The function D(4; R, k) can be regarded as a “dispersion
function ” for the eigenvalue A. It depends parametrically on

R and k and implicitly on the equilibrium B(r). Equation
(21) forces the solution to match continuously to a potential
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solution decaying at infinity and remains valid even if the
magnetic field goes continuously to zero atr = R.

3. ANALYTICAL RESULTS

3.1. The Weakly Twisted Limit

To apply the boundary condition (eq. [21]), &, must be
found by integrating the Euler-Lagrange equation (eq. [14])
out from the axis. This equation simplifies significantly
when gR < 1, the weakly twisted flux tube. It can be shown
a posteriori that such tubes are unstable only to pertur-
bations with similarly weak helical pitch | k| R < 1. Further,
these tubes are unstable only if B,(r) and By(r) vary slowly
with radius; thus, it is possible to use only the lowest orders
in Taylor series expansions

B, = By(1 — ar?)
By = Bogr, (22)

where B, = | By(0)|, and aR? < 1. Again, the field (eq. [22])
is not necessarily force-free, although for a = ¢ it is force-
free to lowest order. In non—force-free cases, zero order
magnetic forces are balanced by plasma pressure gradients
in the tube.

In the weakly twisted limit, the dispersion relation (eq.
[21]) reduces to

D(A; R, k) = (K*B} + 2)&(R) + [4 + Bi(k + 9*1RE, (R)
=0. 23)

This has an immediate interpretation for £(r) which are
nearly uniform across the tube, i.e., £,(R)/R > £,(R). In this
case, equations (23) and (5) give us

kZ
i= - B

or w=

B2 k
0 _ 404 (o9
TPo

k

+— +—2,
IR RING
where v, is the Alfvén speed at r = 0. The phase speed of
this mode is the tube wave speed v,/2'/2 (Priest 1984, p.
112), differing from the Alfvén speed by a factor of 1/21/2
due to the “added mass” effect (Ryutov & Ryutova 1976;
Spruit 1981). The tube is therefore stable to perturbations of
relatively uniform £,(r), which propagate as Alfvén waves.
This tells us that if any perturbations are unstable, they will
require large variations in &, across the tube, and hence will
correspond primarily to internal motion.

The modes to which the tube is unstable have a helical
pitch closely matched to that of the magnetic field, k ~ —gq,
and have growth rates much smaller than the Alfvén fre-
quency, A < k*B3. In this limit equation (14) becomes

d 3 d 3
o (r o €,>+g0r (=0, 25)
where g, = —g/f has a simple form in the weakly twisted
limit
49> ( o’n*
g°_71+n2(1+n2_“ ' 26

Here the mismatch between g and —k is written as #:
n=q+k<gq, @7

and 7 is the squared frequency normalized to the Alfvén
velocity squared,
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=—Z’—<q2. (28)

The solution of the weakly twisted Euler-Lagrange equa-
tion (eq. [25]) is

£ = f J1/907) (29)

where J, is the Bessel function of the first kind. For g, < 0,
the argument of J, is imaginary, and &,(r) will be pro-
portional to I,. In this case £(r) and its derivative will
always have the same sign, and D(4) = 0 cannot be satisfied
for positive A. Therefore, instability occurs only when g, >
0. In light of the definition (eq. [26]) this indicates that there
is a minimum twist a tube must have to be kink unstable :

q > o =/ for instability . (30)

Equation (30) has several important consequences. First,
a thin, weakly twisted tube will be unstable only if the B,(r)
profile is almost flat. The ratio of axial field strength at the
edge to that on the axis is

BAR)
B,(0)

which is close to unity given that aR? < 1. Indeed, this
verifies a posteriori that a series expansion of the field
profile is sufficient for a weakly twisted tube. However, it is
unlikely that a real flux tube could maintain such a perfectly
flat profile in the face of thermal and resistive diffusion. Nor
would it be likely to even begin so flat before diffusion had
occurred. For this reason, we conclude that it is unlikely
that weakly twisted flux tubes will kink. Nevertheless, this
limit will form a valuable touchstone for the strongly
twisted tubes discussed in §§ 3.2 and 4, so we continue the
analysis.

Applying the boundary condition (eq. {21]) to the weakly
twisted solutlon for £.(r) (eq. [29]) and taking limits # < ¢
and 1 < ¢? result in the condition

Jo/9oR) = f Ru l(f R).

This a transcendental equation for the elgenfrequency, 7, in
terms of k (or equivalently # = k + ) and the cthbnum
as described by R, ¢, and a. However, since £ + 7% < k? the
coefficient of J, is large while J, is at most of order unity.
Therefore, | J;[(g0)}*R)| < 1, or to lowest order its argu-
ment must be

— | 49> ([ q¢*n* .
g0k = \/Z +n? (1 +n? R =jiss Y

where j,  is the sth zero of J,. Solving for 1 gives dispersion
relations for a spectrum of unstable eigenmodes indexed

by s:
2 R 2 R 2
I 4 (‘1—) +n2]. (34)
]l,s ]l,s

2

1 = __"2 + _Z_Q_R [_
J i,s

The eigenfunction {eq. [29]) corresponding to s has s — 1
zeros inside the tube.

The dispersion relationship above expresses growth rate,

in the form of 4, as a function of wavenumber, expressed as

=1—aR?, (1)

(32
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n. The tube is unstable (1 > 0) over the narrow range of
wavenumbers

Inl=1k+gq

(33

Ak 2qR 55

2 q qg{ 2
centered on k = —g. Note that for the unstable pertur-
bations, |k + q| < qas initially assumed. The point of exact
resonance, = 0, is only marginally unstable (1 = 0) and

the behavior is symmetric about this point. The maximum
value is

2

4 T @ —a2). (36)

max,s

j 1,s
Returning to dimensional form, this corresponds to a
maximum eigenfrequency of

s = 21 28 (g2 g2). ()
J1 .S

This is smaller than the Alfvén frequency v, k by the factor

gR < 1, justifying our earlier assumption. Of the spectrum

of unstable modes, that corresponding to s = 1 (j; ; ~ 3.83)

has the largest growth rate.

Figure 1 shows the weakly twisted eigenfunction &,(r), (eq.
[29]) versus normalized radius /R as the dotted curve. The
solid curves show numerically computed eigenfunctions for
strongly twisted tubes (§ 4). Even in the strongly twisted
cases, the internal displacement is much larger than the
displacement of the tube boundary. Thus the instability is
primarily (though not entirely) internal. In the weakly
twisted case, the radial boundary displacement &,(R) can be
found by combining equations (29) and (32) to eliminate J ,,

2

¢/R) = % @ — 42, - (38)

Finally, we have

I&R) =12J,G1, /R > IER)/R| (39)

for this mode, in contrast to the stable Alfvén oscillation
(transverse tube waves) which have essentially uniform dis-
placement profiles.

1.07
0.8

T

0.6
«J [

0.4

0.2

0.0t
0.0

0.4 0.6 0.8 1.0
r/R
F16. 1.—Unstable radial eigenmodes &,. Solid curve 1: qR =1, B,(r) =
By, 4., R =0. Solid curve 2: qR =1, B{r) = By(1 — r*/R*)°3%, q_R = 0.6.
Dotted curve: E(r) = 2J 1[(go)”zr]/(go)”zr, from the weakly twisted limit:
qR<1B(T) B(l_dr)chr R

0.2
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3.2. Critical Twist (q,) for Strongly Twisted Tubes

Analytical constraints can also be found for strongly
twisted tubes. In the boundary condition (eq. [21]), the coef-
ficients of £(R) and &(R) are each positive when A > 0
(instability). Thus to satisfy D(4; R, k) 0 it is necessary
that £,(R) and (R) be of opposite signs. Integrating the
Euler—Lagrange equation (14) and noting that f(0)£(0) =
gives

FEr) = L g . (40)

Since f(r) (eq. [12]) is never negative when A > 0, the expres-
sion above is inconsistent with £(R) and £,(R) of opposite
sign unless ¢(r) is negative somewhere. Thus a necessary
condition for instability is that g(r) < O within0 < r < R.

For equilibria of the form (15) the necessary condition for
instability g(r) < O can be cast as a lower bound on axial
field gradient

dB, rB, 2 2k k> )
b, 15, _4 4
r>2(1+q2r2)|:" q+1+k22 > @)

where we consider only marginal stability A = 0. Tubes with
axial gradients smaller (or more negative) than the right-
hand side of equation (41) over the whole tube cross section
are always stable. If k = —g, this is equivalent to Suydam’s
criterion (Suydam 1959), which indicates when a tube is
unstable to a highly localized perturbation.

In cases of interest, the axial field is flat near the axis of
the tube, and slopes more sharply at larger r. In this case,
the gradient of B, will be least negative near the axis, and
equation (41) is most likely to be satisfied there. Expanding
B, as in equation (22) gives

— 2(k? — g?)] for instability . (42)

Close to resonance, k + g = < q, the second and third
terms in equation (42) are ~5* and ~ gqn, respectively, and
can be dropped relative to 4q%. The condition for instability
then reduces to the form of the criterion for instability in
weakly twisted tubes, equation (30) (g > ¢., = «'/?). In the
strongly twisted case, however, this condition is merely suf-
ficient since it is possible that equation (41) is satisfied away
from the axis. In practice, this does not occur: § 4 shows
agreement between the stability thresholds of weakly and
strongly twisted tubes.

Numerical simulations shows this criterion to be inappli-
cable in the special case of a Gold-Hoyle field (Gold &
Hoyle 1960). While the Gold-Hoyle field is at the margin of
this condition (g = «!/?), we find it to be unstable for
—q<k<0.17q. In fact when ¢ =« it is necessary to
retain higher powers of 7 in equation (42). Keeping these
terms, equation (42) predicts instability for —q < k < g/3 in
reasonable agreement with our numerical result. It also
agrees with ranges of instability found in several other
studies of Gold-Hoyle fields: —g <k (Raadu 1972),
—g <k < q/3 (Hood & Priest 1979), and —q < k < 0.18¢
(Craig et al. 1990). Note also that because the instability of
the Gold-Hoyle field is due to a higher order effect than
instabilities for other tubes, its growth rate is correspond-
ingly lower.

4. NUMERICAL RESULTS FOR STRONGLY TWISTED
FLUX TUBES

o< [4g’ —n*

For strongly twisted tubes we must solve equation (14)

Vol. 469

for &,(r) numerically. Given a By(r) profile and outer radius
R, the method for finding an unstable eigenmode and its
growth rate is as follows: Assume values for k and A, and
integrate equation (14) for &, from r = 0 to the boundary at
r = R. Generally, D(4; R, k) #+ 0, and some form of iteration,
e.g., the shooting method (see Press et al. 1986, p. 582), is
used to vary A for fixed k until D(4; R, k) = 0. This results in
the eigenfunction &,(r) and eigenvalue A, given By(r), k, and
R. In general, there are multiple values of A that satisfy the
boundary conditions, forming a spectrum of eigenmodes,
both stable (transverse tube waves) and unstable. Hereafter,
we restrict ourselves to the most unstable mode, i.e., that
with the largest value of A for each By(r), k, and R.

The analytical results from § 3.1 were numerically con-
firmed in weakly twisted cases. A second class of profiles
were then investigated to test the importance of an abrupt
boundary at r = R. In these profiles B,(r) is flat in the center
and goes continuously to zero. Growth rates and eigen-
functions &,(r) in these cases were close to those in the ana-
lytical (discontinuous) treatment.

Strongly twisted tubes of various profiles were then inves-
tigated. In all cases instability set in at a threshold equiva-
lent to that found for weakly twisted tubes: g, = a'/?,
where o is the coefficient of the 2 term in a series expansion
of B,. One particular profile is

r2\?
B, = Bo<l — P) s 43)

where p > 0 so that B, goes smoothly to zero at r = R.
Taylor expansion B, = By(1 — pr?/R* + --+) gives ¢, =
p*/2/R which was verified by the numerical simulations, to
within 0.5%. Near marginal stability this profile qualifies as
weakly twisted only when p < 1. Another set of profiles uses
a Bessel function B, = B(0)Jy(j,,,7/R), which goes contin-
uously to zero at r = R. Again, the threshold for instability
was ¢, = a'/? = j, ;/(2R) to within 0.5%. We conclude that
Qo = 0 1/2 js a robust result for any tube where B, = grB,, as
is suggested by our analysis in § 3.2.

It has been argued (Parker 1979b, p. 172) that a tube is
unstable when its magnetic tension drops to zero. For
equation (43), zero tension occurs when g = 2(p + 1)/?/R,
but the kink instability sets in at even smaller twist (i.e.,
q = p**/R).

Further numerical investigations of strongly twisted flux
tubes show qualitative, though not quantitative, agreement
with the weakly twisted results. The solid curves in Figure 1
show two eigenmodes &,(r) for strongly twisted (gR = 1)
tube profiles parameterized by p as in equation (43). Curve 1
is for a p = 0 profile, meaning B, is perfectly flat out to
r= R, and curve 2 is for a p = 0.36 profile. Both eigen-
modes are the most unstable for their respective field pro-
files. (The less unstable modes look approximately like these
modes, but are more concentrated toward the origin). The
dotted curve in Figure 1 is the analytically derived eigen-
function given by equation (29) for a weakly twisted tube.
The shape of &, is qualitatively similar for all three cases,
though the strongly twisted tubes have a greater amplitude
near the outer boundary of the tube.

Figure 2 shows the eigenvalues for these same strongly
twisted flux tubes. The points on these plots corresponding
to the eigenfunctions of Figure 1 are indicated by the dia-
monds. The weakly twisted eigenvalues (eq. [34]) are shown
by the dotted curves for these same tubes (although the
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FiG. 2—Dispersion relations for strongly twisted tubes gR = 1, with
B,(r) = Bo(1 — r*/R%P. Solid curves: numerically computed dispersion
relations for tubes with p = 0 and p = 0.36. Dotted curves: analytical solu-
tion from the weakly twisted limit (eq. [34]) applied to the same two
(strongly twisted) tubes. The values of k and A for cases 1 and 2 shown in
Fig. 1 are shown here by the diamonds labeled with the corresponding
numbers.

-0.4

assumptions leading to equation [34] are invalid here),
showing that the qualitative behavior of strongly twisted
tubes can be predicted from the analytical results of the
weakly twisted case.
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F1G. 3.—Ak = range of wavenumbers k over which tube is unstable.
Dotted curve: Ak/q = 4R(q> — q2)'/*/3.83, from the weakly twisted limit
for B, = By(1 — g2r?). Solid curve: numerically computed range for B, =
By(1 — r*/R*)°35, g R = 0.6. Dashed curve: numericaly computed range
for B, = Bo(1 — r*/R?),q R = 1.
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Fic. 4—Behavior of growth rate as (g2 — g2) increases. Dotted
curve: @y, /v, = R(g? — q2)/3.83, from the weakly twisted limit for B, =
Bo(0X1 — g2 1?). Solid curve: numerically computed growth rate for B, =
B,(0)(1 — r?/R*)°36, g =0.6. Dashed curve: numerically computed
growth rate for B, = By(0)1 — r*/R?),q,,R = 1.
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Figures 3 and 4 show how the weakly twisted results can
be used as a rough predictor for the range of unstable wave-
numbers and the growth rates of strongly twisted flux tubes.
The solid and dashed lines in Figure 3 show the relative
range of k over which the strongly twisted tubes are
unstable, Ak/q, versus g% — g2, for fields with p = 0.36 and
p =1, respectively. The dotted line shows the analytical
prediction from equation (35). The solid and dashed lines in
Figure 4 show w,,, versus gq*> — g2 for strongly twisted
tubes, and the dotted line shows the results from equation
(36). In both figures, the analytical weakly twisted results
and numerical strongly twisted results agree in their general
behavior, if not in their magnitude. For w,,,,, we find that
the weakly twisted prediction (eq. [37]) should be scaled
down by a factor of ¢, &~ 2-10 if it is applied to strongly
twisted tubes.

5. THE DEVELOPMENT OF KINK-UNSTABLE FLUX LOOPS
RISING THROUGH THE SOLAR CONVECTION ZONE

No one knows how twist is introduced into the toroidal
fields that form new active regions. Observations of a large
sample of active regions (Pevtsov, Canfield, & Metcalf 1995)
made with the University of Hawaii’s Haleakala Stokes
Polarimeter (see Mickey 1985) show great variability in the
helicity of individual active regions. Here, we simply assume
that each toroidal magnetic flux tube is “ born” with its own
twist g. We presume that because a flux tube must be stable
at the base of the convection zone, it is not initially twisted
sufficiently to kink, i.e., ¢ < q.,. (We argue below that there
is a minimum twist q,;, which a flux tube must have to rise
through the convection zone without fragmenting.)

Eventually a portion of the toroidal flux loop is destabi-
lized, possibly by thermal transport of heat into the tube or
by a gradual increase in the field strength as the fields are
wound up by differential rotation. Once buoyantly
unstable, the tube rises through the convection zone at a
speed v, which approximately balances buoyancy with
aerodynamic drag (Parker 1979a)

1/2 1/2
I

For a thin tube R < A so v, < v,. How does the rising
motion affect the distribution of twist along the tube? The
azimuthal equation of motion for a section of a magnetic
field line located at the coordinates (r, 6, z) in a tube with
magnetic field (B,, By, B,) gives

e 1 dB, 1 dB,
—=—|B,=2+=B,B, + B, =2 4
prdtz 41t(Bz z+rB9 r+ rdr s (5)
where all components of B are assumed independent of 6.
Using V- B =0 and assuming dB,/dr =0 and dB,/dr ~
B,/r, we find

e, d*0

T =Ua R

dt? dz
meaning that torsional forces propagate along the tube at
the axial Alfvén speed

B2
~ 2= 47)
U 47cp (

Because the rise speed is much less than the Alfvén speed,
torsional forces will equilibrate quasi-statically, and the

(46)
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number of tubes

0

0 9min qcr.O
magnetic field twist (q)

Fic. 5—Sketch of hypothetical distribution of twists in flux tubes to
illustrate effect of twist on tube evolution. For tubes with a given B,(r) and
R, those with g < ¢, are destroyed by hydrodynamical forces as they rise,
and those with g > g, , are destroyed by kinking before they begin to rise.
Of tubes which can reach the photosphere (all shaded areas) those with g
less than, but near q., , (dark shaded area) will kink.

right-hand side of equation (46) can be set to zero,

Gd d

Thus g is uniform as the tube rises, which also means that
the axial current carried through the tube interior is con-
served.

The quantity g should thus remain nearly constant and
uniform along the tube during its rise. Meanwhile, because
of gravitational stratification, the gas pressure confining the
tube decreases substantially as the flux tube rises. The cross-
sectional radius R must then increase in the rising portion
of the tube. If the expansion occurs homologously in the
directions normal to the tube axis, then the radial B, profile
will also expand homologously, resulting in a decrease of g,
(i.e., «'’?), with ., ~ 1/R .

The result is that the uppermost portion of the rising,
twisted flux loop will become kink unstable when ¢, < g.
As the tube continues to rise, an increasing fraction of the
flux loop becomes kink unstable. This scenario is similar to
the description of twisted flux loop evolution given by
Parker (19790, p. 186), but it differs in a crucial aspect: The
kink is triggered not by an increase of twist at the apex of
the flux loop, but rather by a flattening of the B, profile (i.e.,
a decrease of g.,) which occurs because of the expansion of
the tube’s cross section.

In addition to its role in the kink instability, magnetic
twist may be important in preventing the dispersal or frag-
mentation of flux tubes during their rise through the solar
convection zone. To maintain its integrity in the face of
hydrodynamic forces the tube’s circumferential tension
force (B7/4nR) must balance or exceed the hydrodynamic
forces from flow past it (pv2/R). This occurs when the rise
speed is

(48)

(49)
Combining equations (44) and (49) gives a minimum twist

(50)

1
D
min = TRA
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for the tube to maintain its integrity. The quantity g,,;, can
be expressed in terms of g, as @i, = 4. (R/A)'/%, where we
assume the most kink stable case of g. ~ 1/R. Because
(R/A)}? < 1 near the base of the convection zone, there is a
considerable range of twists for which the tube is both kink
stable (before it emerges) and able to withstand the forces
acting to break it apart.

The importance of the kink instability can be estimated
by the number of e-foldings experienced by the tube as it
rises one pressure scale height. With growth rate w,,,, from
equation (37), along with the factor ¢, (§ 4) to account for
the difference between the strongly and weakly twisted
growth rates, we find that the distance a tube will rise
during the time it takes for a kink to go through one e-
folding is

v, va/R/A

I (e I Ua R(qz - qu)/cwjl, 1

2;
= cwjl,l\/ RA 2+

P —q;
(51)

This indicates that for a kink to go through one e-folding
time while rising a distance shorter than a scale height,
q2:./(q* — ¢2) must be less than unity, or

R G+ 4% (52)

As it is unlikely that tubes will have field profiles so flat that
qd. ~ 0, we expect that only tubes much more strongly
twisted than the “minimally twisted” tube with g = ¢,
will exhibit substantial kinking.

To illustrate these ideas we show a schematic picture of a
hypothetical distribution of twists in flux tubes in Figure 5.
Tubes with g < g,,;, will be destroyed by hydrodynamical
forces when they begin to rise from the base of the convec-
tion zone. Tubes with g > g, o, where q,, , is ., at the base
of the convection zone, will be destroyed by kinking imme-
diately after they are formed. Therefore tubes which can
survive to rise to the photosphere and form active regions
are those with g,,;; < g < ¢, ¢, shown as the shaded regions
in Figure 5. Of these tubes (which are all stable to kinking at
the base of the convection zone) most will either remain
king stable as they rise, or will not be kink unstable for long
enough for the instability to significantly affect their
geometry. However, those few tubes with g only slightly less
than g, , will become kink unstable shortly after they begin
rising and will have enough time to go through many insta-
bility e-folding times before they emerge. These tubes, rep-
resented by the dark shading in Figure 5, are therefore the
ones which can emerge as knotted, flare-producing active
regions.

6. CONCLUSIONS

A review of active region observations shows that some
active regions appear to be formed by kinked or knotted
flux tubes (Tanaka 1991; Kurokawa 1991; Kurokawa et al.
1994). These active regions are often the sources of the
largest solar flares (Zirin 1988, p. 337) and are therefore of
particular interest. One explanation for the structure of
such flare-productive active regions is that they are flux
tubes with highly twisted fields which become kink unstable
below the photosphere. It is therefore important to under-
stand the kink mode within the context of isolated, twisted
flux tubes applied to the conditions of the solar interior. We
investigated the simplest possible case of the isolated tube
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so that we could understand the results as completely as
possible.

We analyzed the kink instability using the energy prin-
ciple, following many previous studies in tokomaks and in
the solar corona, but with important differences: the bound-
ary of the tube was coupled to the ideal flow of an external
field-free plasma; the magnetic field was assumed to be
pressure-confined; and the field pressure was assumed to be
much less than the plasma pressure, i.e., f > 1, meaning
that the fields are not generally force-free inside the tubes.
Finally, we derived growth rates simultaneously with eigen-
functions for the unstable modes, whereas most past work
has concentrated on deriving necessary or sufficient stabil-
ity conditions (e.g., Suydam 1959; Hood & Priest 1980).

We found that the unstable eigenfunctions vary signifi-
cantly over the cross section of the tube. In particular, the
displacement for unstable perturbations was found to be
largely internal, with motion at the outer edge of the tube
much smaller than internal motion, though not zero. If the
eigenfunction was forced to be constant across the tube,
resulting in a helical translation of the entire tube, we found
the tube to be stable. This means that an internal degree of
freedom must be included in models of the evolution of
twisted flux tubes to admit kinks.

For weakly twisted tubes (qR < 1), we derived growth
rates and unstable eigenfunctions analytically. We found
that unstable modes were those with axial wavelengths
close to the axial magnetic field twist length. For both
weakly and strongly twisted tubes, we solved numerically
for unstable eigenfunctions and growth rates and found that
the growth rates and range of unstable wave numbers for
strongly twisted tubes can be predicted qualitatively by
using analytical results from the weakly twisted case.

For all cases (weakly or strongly twisted) considered, we
found it was necessary for the twist g to be greater than a
critical twist g, for tubes to be kink unstable. The quantity
.. Was found to be a'/?, where a is the coefficient of the r?
term in a Taylor series expansion of the axial magnetic field
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about the tube axis (r = 0): B,(r) = Bo(1 — ar? + - -+). Due
to thermal, resistive, and viscous diffusion, it is likely that
the magnetic field will decrease smoothly to zero from the
axis to the edge of the tube, implying that & ~ 1/R?. There-
fore only strongly twisted tubes (gR = 1) will be kink
unstable.

We show that as a tube rises, g will remain uniform, and
d.. ~ 1/R will decrease, which allows tubes which are ini-
tially kink stable to become unstable as they rise. As tubes
must be kink stable to remain in equilibrium at the base of
the convection zone prior to emergence, we conclude that
kink unstable (ie., knotted, kinked) active regions form
from rising flux loops which kink after emergence begins.

For strongly twisted tubes, the growth rates are large
enough for the kink to go through one e-folding as it rises a
distance small compared to the pressure scale height. This
implies that the kink instability in strongly twisted tubes
will develop to an extent that the tubes will be visibly
deformed when they emerge into the photosphere, explain-
ing the observations of Kurokawa et al. (1994), Tanaka
(1991), Leka (1995), and others. However, our present work
consists only of a linear analysis and is generally not be
valid in the nonlinear regime. In particular, it is not clear
whether the instability will remain internal, or if in its non-
linear development the internal motion will become large
enough to extend beyond the tube boundary and essentially
turn into an external kink. To determine the complete evo-
lution of the instability, a fully nonlinear analysis needs to
be done.
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