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Oblique turbulence driven by field-aligned electron
fluxes in the auroral ionosphere
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Abstract. This paper investigates how the various waves of the whistler resonance
cone compete for the free energy available in field-aligned fluxes of precipitating
electrons in the auroral ionosphere. A two-dimensional numerical simulation code,
based on the coupled pair of quasi-linear equations, is used for the investigation.
The description provided by these equations allows us to follow the nonlinear
development of the instability and analyze the interplay between the modes as
mediated by the changing distribution function. We present results for a parameter
regime corresponding to altitudes probed by sounding rockets, around 102 km and

Qe 2 wp. The presence of a halo of energetic electrons significantly affects the
evolution of the turbulence. The spectrum is shown to shift with time toward
increasingly oblique propagation angles including a substantial share of quasi-
perpendicular, short-wavelength modes close to the lower hybrid frequency.

1. Introduction

VLF emissions are routinely observed in the auro-
ral ionosphere by rockets and satellites [e.g., Beghin et
al., 1989]. The emissions, which are often accompanied
by fluxes of precipitating electrons, can be electromag-
netic or quasi-electrostatic. In the latter case the waves
have been identified as belonging to resonance cones. At
altitudes above 1000 km, where the plasma frequency
drops below the electron cyclotron frequency, w, < Q,
they belong to the whistler resonance cone [Beghin et
al., 1989; Ergun et al., 1993] with frequencies extending
from the the lower hybrid resonance (several kilohertz)
up to the plasma frequency (about one megahertz). The
electron fluxes accompanying the waves are transient,
field-aligned, and embedded in a quasi-isotropic non-
thermal halo. Presumably they form a bump which
destabilizes the waves. Figure 1 shows an example of
distribution function f(v),v.) captured by a sounding
rocket during a measurement of short-wavelength VLF
emissions in the lower hybrid frequency range. Even
though the fast time resolution of the snapshot (128 ms)
limits somewhat the particle count, hence the statistics
at large velocities, the main features are clearly seen: a
field-aligned beam in the downgoing parallel velocities
)| > 0 and low perpendicular velocities v, ~ 0, and a
quasi-isotropic halo.

Assuming that the low-frequency waves are due to
an electron beam, though, raises a paradoxical point.
It is indeed well known that Langmuir waves are the
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fastest waves to grow off a bump in the distribution
function. They may be expected to grow first and via
quasi-linear feedback to quickly remove all the free en-
ergy available, so that it seems paradoxical that any
lower-frequency waves could be seen at all. This is in
fact a fairly general point which arises whenever one in-
vokes an electron beam to excite low-frequency waves,
for example, electromagnetic ion cyclotron waves in the
aurora [Temerin and Lysak, 1987] and the solar corona
[Roth and Temerin, 1997]. Several ideas have been pre-
viously suggested to resolve the paradox.

The commonly accepted explanation, at least in the
auroral context, relies on the concept of convective
growth and goes as follows. Langmuir waves in a mag-
netized plasma acquire a large perpendicular group ve-
locity as soon as their propagation angle veers a few
degrees off the direction of the magnetic field B. Thus
the waves, which are excited in a perpendicularly finite
channel, move rapidly across the field lines and may
leave the growth region. By contrast, the lower hybrid
waves have their group velocity pointing mostly par-
allel to B and so follow the precipitating beam for a
longer time, thereby dominating the emissions in spite
of a smaller growth rate [ Maggs, 1978; Maggs and Lotko,
1981; Retterer et al., 1989].

Another idea, considered by Serizawa and Dum [1992]
is that the finite perpendicular extent of the beam it-
self may modify the dispersion relation to favor low-
frequency, oblique modes rather than Langmuir. Unless
the width L, of the beam is small in terms of parallel
wavelength, kjjLy < 100, these authors concluded, the
dispersion relation is close to the infinite beam-plasma
system, and the growth peaks for parallel propagating
modes. For auroral parameters the condition amounts
to Ly less than a few hundred meters.
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Figure 1. Example of distribution function measured
by a sounding rocket (time resolution 128 ms). The con-
tours are logarithmically spaced, two per decade. The
core around v = v; = 0 has been truncated. Note the
downgoing field-aligned beam about v ~ 3 x 10°® cm/s
and the hot halo of electrons with large v, .

An alternate suggestion explains the low-frequency,
oblique waves as being due to the so-called fan insta-
bility [Omelchenko et al., 1994]. This instability does
not require a bump but necessitates the presence of a
long flat tail in the electron distribution function; it
is driven through the anomalous Doppler resonance,
(w + Qe)/ky), instead of the main w/ky Cerenkov res-
onance. While the original model was developed in the
context of tokomak physics [Parail and Pogutse, 1976],
where the presence of runaway electrons can add the
required flat tail to the distribution function, the ap-
plication to auroral physics at 1000 km altitudes has
not been supported by detailed distribution function
measurements. Typical velocities of the electrons res-
onating with the n = —1 anomalous Doppler resonance
and with the n = 0 Cerenkov resonance are in a ratio
(w+9e)/w ~ 0.54/M/m ~ 80 for lower hybrid waves in
an oxygen plasma. Because the observed distributions
consist mainly of rapidly falling power laws (~ v~%)
[McFadden et al., 1987, the particle flux at the n = 0
resonance is many orders of magnitude larger than it is
at the n = —1 resonance. The stabilizing effect of the
Cerenkov electrons is, under these conditions, hard to
overcome.

Recently it was emphasized [Ergun et al., 1993] that
the beam is in fact a feature embedded in a nonthermal
halo (an example is visible in Figure 1); the explana-
tion for the low-frequency waves then goes as follows.
If the wavelength of the oblique waves is short enough
for some of the halo electrons to have a larger gyrora-
dius, then these electrons “see” all the possible wave
phases during one brief gyration time. As a result their
interaction with the waves is weak, even if they satisfy
the Cerenkov condition v = w/kj. In contrast, the
Langmuir waves have a very large wavelength in the
direction perpendicular to B. Hence, even energetic
electrons with a large gyroradius remain in the same
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wavefront and interact strongly with the waves. Due
to this difference, oblique waves can be unstable for a
distribution function where Langmuir waves are in fact
stable.

This last idea is quite interesting from a kinetic view-
point and may have wider applicability than the auro-
ral region. The purpose of this paper is to explore it
further, using the potential of numerical computations.
By means of simulations we investigate how the various
modes of the resonance cone compete dynamically for
the free energy available in a distribution function that
is made of a tenuous field-aligned beam embedded in a
large halo. Beyond a mere evaluation of linear growth
rates we follow the nonlinear development of the insta-
bility and analyze the interplay between the modes as
mediated by the changing distribution function. It is
shown that the spectrum ends up being dominated by
the slower growing, oblique modes.

2. Quasi-linear Model

Since the wave spectrum depends upon both kj and
k., and since at the Cerenkov resonance vy = w/ ky|
oblique and parallel modes interact differently with the
distribution function, the problem is intrinsically two-
dimensional. True, the diffusion associated with the
n = 0 term, the most important as we shall see, is ef-
fectively one-dimensional. Still, the two-dimensionality
of the spectrum and distribution function precludes the
reduction to a one-dimensional problem with a one-to-
one correspondence between spectrum and distribution
function. Electrons at a given (v,v.) depend on an
integral over the spectrum that includes all the modes
satisfying w/k = v, ie. a sinuous line in (kj, kL)
space. One can see an example of the line in Figure 2.

Rather than cope with the multiple compromises of
a two-dimensional particle-in-cell code (see Dum and
Nishikawa [1994] for an account of the limitations on
present-day supercomputers), we opted for the descrip-
tion of wave-particle interactions offered by the cou-
pled pair of magnetized quasi-linear equations. This
approach allows us to simultaneously treat the interac-
tions (at a much lower and more realistic wave level),
handle the wide range of particle densities in phase
space that is required by the problem, and follow the
evolution over timescales of the order of 10 w;?!

2.1. Coupled Pair of Equations

Let f(v),v1,t) be the electron distribution function
and Wk(k“, k. ,t) be the wave intensity spectrum (Wy =
| Ex|?); their joint evolution is modeled by numerically

integrating the set
af dak Wk 2 kJ_ vy
T z:/(2 P o J"( . )

X &(w — kv — nﬂe)j}nf,

(1)
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Figure 2. Loci of the modes (kj, k1) that satisfy the
resonance w = kj|vo for a given vo. The thin verti-
cal lines indicate four propagation angles (0°, 30°, 60°,
and 90°). From the parallel Langmuir waves to the
nearly perpendicular lower hybrid waves a whole range

of wavenumbers can simultaneously be excited. The
scale on the upper edge yields the frequency.
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oo (552)

X J(w — k”v” - nﬂe)inf, (2)

oW o
gt = t25e/ow /8w

where L, is used to denote the differential operator

n = k0/0v + (n2/v,.)0/0v). The notation in (1)
and (2) is standard, and we note only that cylindri-
cal symmetry is assumed. Because of the ordering
0 € e K Taiff, where T4, is the autocorrelation
time and 74i¢y is the diffusion time (i.e., timescale over
which f evolves), gyrotropy can be safely assumed. The
numerical discretization of (1) and (2) relies on the fi-
nite element method, which has proven convenient for
a consistent treatment of the resonant delta functions
[Appert et al., 1976; Succi, 1987]. Inhomogeneous grids
are used to allow us to cover broad ranges in v and k
spaces with sufficient resolution in the interesting re-
gions.

2.2. Dispersion Relation

At altitudes of the order of 1000 km the electron den-
sity is overwhelmingly dominated by the cold popula-
tion, therefore it is sufficient to use the cold dielectric
approximation

k w2 k2
Il P 1
e=1- (k2+M)_w2—ngk2’ 3)

where m and M are the masses of the electron and
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ion, respectively. Equation (3) provides the real fre-
quency w as well as the factor de/0w associated with
each pair (k), k1), quantities that are needed to evalu-
ate (1) and (2). Because Q, > wp, we ignore the upper
hybrid branch whose modes cannot be destabilized due
to a heavy cyclotron damping on the core [Beghin et
al., 1989]. The frequency of the electrostatic whistler
branch is explicitly given by

(02 +w?)

— 1—(1—
(4)

where 6 is the angle between the propagation angle and
B. One usually expands (4) into

UJ2=

4Q%w?(cos? 6 + m/M) Y2
(QZ + wf)?

w? = wd [1 + cos? § (M/m)], (5a)

defining the lower hybrid frequency

W = M. (5b)

1+ w2/02
With a ratio Q./wp, = 1.5, which is adopted as our
canonical value in this paper, the above expansion (equa-
tion (5a)) is accurate for § > 30°. For smaller angles
it underestimates the wave frequencies by as much as
10-20%. Using the exact equation (4), we can find in
(kyj,k.) space the loci of all the modes that satisfy the
Cerenkov condition for a fixed vo = w/k. Figure 2
displays the resulting resonant line. The normalization
used for the wavenumber, kjvo/wp, is such that the hor-
izontal axis also measures the frequency in units of w,.
The larger values of k are chosen to accommodate the
very oblique eigenmodes close to the lower hybrid fre-
quency. A massratio M/m = 400 has been assumed for
drawing the plot, so the frequencies vary by a factor of
20. This specific choice is dictated by the simulations to
be presented in section 3. For larger (and realistic) mass
ratios the lower hybrid frequency decreases further, as
indicated by (5b); hence the low-frequency, vertical sec-
tion of the resonant line comes closer to the left edge
of the plot. The thin vertical lines show four specific
propagation angles (§ = 0°, 30°, 60°, and 90°). The
frequency dependence is indicated by the scale at the
top of the plot. Let us now analyze the energy transfers
associated with various modes chosen along the reso-
nant line.

2.3. Energy Transfers

Quasi-linear theory expresses the energy transfer rate
from a set of waves Wy to a population of particle
species j as [e.g., Dum, 1978]

d3
(2m)?

For electrons (j = e), x. is the electron susceptibility
of the mode k, whose imaginary part evolves according

K;=2 Wi wi Im x;(k, wi)- (6)
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to the gradients of f determined from (1),

Im xe(k,wg) = —m (a;c__,,)z Z/dun dviv,

X J.: (k;.';)l) J(wk - k”v” - nQe) i/,,,f (7)
e

For the sake of definiteness it is convenient at this point
to examine a distribution function. An example of our
modeling is shown in Figure 3, which displays log f by
means of contour lines. The function drops by 2 orders
of magnitude every five contours. One distinguishes
three components: a Maxwellian core of density n¢ and
thermal spread v, an isotropic hot halo, and a tenuous
beam, namely, f = fo + fr + fo- The halo is described
by the generalized Lorentzian,

fr = L.5a’np(a® + vﬁ +v2)75/2 (8a)
where a is a measure of the spread and the normaliza-
tion np = [ dv|dv v fr is introduced. The beam is
described by a drifting, bi-Maxwellian

n,

— b 2/,2
fo= W exp[—0.5(v — U) /”bn]

(8b)

in which U is the drift velocity. Note how in Figure 3
the beam just emerges from the halo and produces a
positive slope df/dv); > 0 near vy ~ 20 v, for small
values of v;. For v; > T v, the halo takes over, re-
sulting in 0f/0v < 0. For each k mode the integral
over v in (7) averages the slopes and determines the
sign of Im x., indicating the direction of the energy
flow: from the wave to the electrons or vice versa. Now
the various modes along the resonant line of Figure 2

x exp(—0.5v% /vZ,),

40.

perpendicular velocity
8 8

e

parallel velocity

Figure 3. Distribution function used in the simu-
lations. Contours are logarithmically spaced starting
from 1078 up, increasing by 2 decades every five con-
tours. Here f(v),v.) consists of a Maxwellian core, an

isotropic halo in v~5, and a field-aligned beam. See
(8) for details. Velocities in units of the thermal core

velocity v, = (T/m)/2.
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have different k, ; thus they bias differently the averag-
ing process through the Bessel function Jo(kivy/Qe).
In particular, the low-frequency, oblique waves with a
large k) emphasize the features of f at small v, . This
emphasis leads to an interesting interplay between the
modes. As we shall see below, there are periods during
the simulation when growing oblique modes reduce the
positive slope in the small-v; region, leading to damp-
ing previously excited parallel modes.

Since Qc/(kjjvo) = Qe/w > 1.5, the cyclotron-shifted
resonant velocities are distant from each other. If we
assume vy ~ 20v, as suggested by Figure 3, then they
are separated by at least 30ve, so that only one other
resonance (n = 1) is important. The others, falling on
parts of the distribution where the density of electrons
is negligible, can be omitted.

For Langmuir modes with w < w, the separation
is close to 30v.. They gain energy from electrons
at v9 ~ 20v, and lose energy to electrons at vy =
(w— Q¢)/ky S —10 ve. From the characteristics of the

operator L, and from the resonant condition it can be
shown that the diffusion lines are ellipses centered on
vo/2: (v — v9/2)% + vi/2= C2. This feature indicates
that the electrons at v; < —10 v, are heated mostly in
the perpendicular direction. Accordingly, we define the
quantity

Hy(t) =2 /0 at / (-;% Wi(t') we Im xe(k,wk)l,,:E;;

which is monitored during the simulation runs to mea-
sure the amount of energy that goes into perpendicu-
lar heating. The associated cyclotron damping of the
oblique Langmuir waves is computed from the Lorentzian
tail fr and (7). Figure 4 shows the damping rate for
the ratio Qe/wp = 1.5. In (k),kL) space it forms a
clear ridge and damps preferentially modes with an-
gles around 20°. For smaller angles the Bessel function
J2(ky vy /fe) in (7) vanishes; for larger angles the fre-
quency decreases, so that the resonant velocity v, shifts
to regions of the tail with less particles, resulting in a
lesser damping. With greater values of Q. /w, the ridge
of Figure 4 weakens and moves to somewhat larger an-
gles.

For eigenmodes along the resonant line with frequen-
cies w < 0.5 w, the separation between the cyclotron-
shifted resonant velocities is larger than 60 v.. Thus
only the n = 0 term in (7) plays a role. This fact is
confirmed by a comparison of Figure 4 with Figure 2,

~ which shows the cyclotron damping to disappear for

oblique modes. Note that these modes do transfer en-
ergy slowly as a result of (1) their small value of w; (see
equation (6)) and (2) their large value of k (see equa-
tion (7)). However, because JZ(k vy /Q.) windows out
the high-v, part of the distribution, the transfer goes
from the electrons to the waves as long as a beam-like
feature keeps appearing in the field-aligned part of the
distribution function.
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Figure 4. Cyclotron damping in (k|, k. ) space. Con-
tours from 5 x 10~%w, up in increments of 5 x 10~ Cw,.
Strongest damping 1.45 x 107%w, at kg = 0.05,
kiAg = 0.02.

3. Simulation Results

Equations (1) and (2) have been integrated in time
with various initial conditions. For f(v),v.,t = 0) we
have used the distribution function depicted in Figure 3,
varying the beam and halo characteristics. The spec-
trum was set to a constant low level. The most inter-
esting cases occur when the beam is partly submerged
into the halo. We show results obtained with the fol-
lowing parameter values: nr/ng = 0.03, a/v. = 4,
mp/no = 2.1 x 107%, U/ve = 25, vy/ve = 4, and
VpL / Ve = 3.

Figure 5 displays the time history of various en-
ergy components in n7, units and a semilog scale.
Indicated are the total wave energy (thickest line)
Wiot = [ dkydk k) (wBe/dw) Wy /(3273), including the
mechanical part of the wave motion; and the changes of
kinetic energy experienced by the electrons since £ = 0,
which we split into loss in parallel energy (thick line)
and gain in perpendicular energy (thin line). The loss
in parallel energy £)| is computed directly from the sim-
ulation, while the gain H (t) is calculated with (9). At
any given time, energy is conserved, Wi, + Hy = L.
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In addition, the plot indicates the wave electrostatic
energy (thin line marked ES), which is proportional to
Wiot with a factor of proportionality remaining between
2 and 3. One basically distinguishes three phases: (1)
a rapid growth in the wave energy associated with a
decrease in the parallel kinetic energy, followed by (2)
a long period of decay, then (3) growth again associ-
ated with an additional loss of parallel kinetic energy.
As we shall see, the last phase is dominated by low-
frequency, oblique waves in the lower hybrid range. An
expanded view of the early history can be seen in Fig-
ure 6. The dashed vertical lines indicate specific times,
t1, 2, and t3, at which we show below detailed snap-
shots in (kj|, k1) space. Note that around time t3 the
quantity £ is sligthly decreasing, viz., the electrons are
in fact accelerated.

3.1. Phase 1

Figure 7 displays the wave spectrum recorded at
time ¢; when the period of linear growth is over and
the energy Wio ~ 1076 nT. The five contours denote
Wi /(8™ nA3T) between 10~3 (dotted curve) and 10, one
per decade. One observes that the spectrum forms a
band that resembles the shape of the resonant line dis-
cussed about Figure 2. Waves are growing over a broad
range of angles and hence frequencies, including a sub-
stantial share of parallel Langmuir waves. The dent in
the spectrum around @ ~ 20° is attributed to the cy-
clotron damping that reduces the net growth rate of
these oblique modes. Compare where the ridge of Fig-
ure 4 intercepts the band and note that the spectral
intensity is down by 2 orders of magnitude there.

104 F T T T T T T T T T T T T T

105 | loss parallel E
F gain perpendicular

106 ¢ 3
£ Wiot

107 £ E
F ES 3

10-8 N T L 1 P SR . L
0 2 4 6 8 10 12 14

time [105/®pe]

Figure 5. Time history of energy components in units
of nTe: loss in parallel kinetic energy of the electrons
since t = 0, gain in perpendicular kinetic energy H (t)
(equation (9)), wave total energy W;o, and wave elec-
trostatic energy ES. One distinguishes three phases:
rapid wave growth, slow wave decay, and secondary
wave growth.
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Figure 6. Expanded, early view of Figure 5 in the same
format. Times t;, t3, and t¢3 associated with Figures 7,

8, and 9, respectively, are indicated by dashed vertical
lines.

3.2. Phase 2

As the waves react back on the distribution function
partially plateauing it, growth shifts to oblique waves.
Figure 8 displays the full wavenumber mesh and shows
which modes are still growing at time t3. A dotted
line indicates a marginal growth rate of 10_7w,,. Nearly
perpendicular, lower hybrid modes grow at a rate of
the order of 10“6wp. Modes with k) Ay < 0.03 do not
grow any more, in contrast to phase 1, when the Lang-
muir modes had a typical linear growth rate of sev-
eral times 10 5w, In fact, the oblique Langmuir waves
now have a net growth rate that is negative owing to
the cyclotron damping; they are damped, and accord-
ingly, H, (t) (Figure 6) shows an increase on the order
of 10~6nT. The spectrum splits thus into purely paral-
lel and very oblique modes. Figure 9 shows an example
for time t3.

During this phase 2 an interesting interplay takes
place between oblique and parallel modes. As the for-
mer gain in intensity, they quasi-linearly diffuse the elec-
trons, acting more upon the small-gyroradius electrons
of the beam than upon the large-gyroradius electrons
of the halo. Hence they reduce the positive slopes of
f at small v; without correspondingly diminishing the
negative slopes of f at large v, . As a result the paral-
lel Langmuir waves are no longer “in equilibrium” with
the distribution function; for them the reduced distribu-
tion function appears to have a negative slope, whereby
they slowly decay. This effect shows up in Figure 6,
and more dramatically in Figure 5, as a decrease in
Wiot. We also note from Figure 5 that during the pe-
riod 3 x 10° < wpt < 6 x 10° the resonant electrons
sligthly gain parallel energy in average. It appears that
the acceleration of the halo electrons by the decaying
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Langmuir modes offsets the deceleration of the field-
aligned electrons by the growing oblique modes.

3.3. Phase 3

Aftert = 8 x 105w; ! the nearly perpendicular and
slowly growing modes at kjAg ~ 0.002 and k1)g =
1.5 k1pe Z 0.04 reach an appreciable intensity (here
P. denotes the gyroradius of a thermal electron). They
begin to dominate W;,, which rises again as seen in
Figure 5. While a plateau is dug in the distribution
function for the velocity interval 20 < vj/ve < 25,
steeper gradients form at the fronts of the plateaued
region. An example is shown in Figure 10. Growth
rates from such a distribution function are the result
of a delicate balance of positive and negative slopes.
For Langmuir modes this balance leads to intermittent
growth and damping (on the order of 10~°w,). For the
nearly perpendicular low-frequency modes the balance
leads to a slow but continuous growth (on the order
of 107%w,). For them the factor JZ(k v, /Q.) win-
dows out the high-v, part of the distribution function.
They tap their energy from the low-velocity front about
vo/ve A 20 and largely ignore the big gyroradius elec-
trons with v, /ve 2 20. Eventually, the spectrum is to-

0.08 T T T T T T T I T

0.07 - .

0.01

0.00 I | | 1 |
0.00 0.01 0.02 0.03 0.04 0.05
kjAq

Figure 7. Wave intensity spectrum at the end of the
linear growth period (t; = 7.2 x 10*w,*). Contours of
Wi /(8w nA3T) at levels 0.001 (dotted curve), 0.01, 0.1,
1, and 10.
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Figure 8. Region of growth in (k), k1) space at t; =
2.1 x 10°w;t. Only oblique modes are now growing.
Contours: 10~7(dotted), 107°, and 10~° in wy, units.

tally dominated by the waves in the lower hybrid range
of frequency; the bulk of the spectral power has shifted
toward very oblique propagating angles. We stop our
simulation run when modes with the largest k; allowed
by our mesh reach an appreciable level.

The late spectrum, as visible in Figure 11, consists
of roughly two parts: a narrow vertical strip at kjAq ~
0.002 and a bulk of modes with k3 Ag < 0.04. Similar
wave levels are found in both parts, Wi /(87nA3T) ~ 1.
Analysis shows that the modes of the strip are mainly
driven by the front in the distribution function near
vo A 20 v, (see Figure 10), whereas the modes with
k1Xa S 0.04 are left over from the beam plateauing.
The strip has a narrow breadth of Ak ~ (Avo/v}) win
where Awvg is the velocity width of the front near vy ~
20 v,. Since wyp /wp scales as the square root of the mass
ratio, it is difficult to design a mesh (even irregular as
we have it) that satisfactorily discretizes both Langmuir
and lower hybrid waves. On these grounds we have
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0.05 - -

0.04 - |~
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0.00 0.01 0.02 0.03 0.04 0.05

Figure 9. Wave intensity spectrum at t3 = 3.04 x
10

wy 1. The Langmuir component has decreased. Con-

tours of Wy /(87 nA3T) at levels: 0.001 (dotted curve),
0.01, 0.1, and 1.

performed another series of runs with the reduced mass
ratio M/m = 100 and the same distribution function.
Results are very similar except for shrunken timescales
during phases 2 and 3. Langmuir waves are present
for relatively brief times, whereas waves near the lower
hybrid frequency end up dominating the spectrum on
longer timescales.

4. Discussion

The evolution of the wave intensity and distribution
function relies on a balance between the destabilizing ef-
fect of the field-aligned beam and the stabilizing effect
of the halo. To illustrate how sensitive this balance is,
we mention here results obtained by varying the beam
density np. This parameter controls the part of the dis-
tribution function that emerges from the halo. If n; is
reduced from 2.1x 10~% to 1.8 x 10~ %, then no Langmuir
waves grow at all, and only the modes with large k are
(weakly) unstable. If it is increased to 3.1 x 10~%, the
instability is much stronger; the wave energy peaks at
a significantly larger value, Wio; ~ 10~ *nT, and mostly
consists of Langmuir modes. Because of the higher
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Figure 10. Late distribution function showing the
plateaued region. Same contours as in Figure 3. Note
the persisting positive slope f/dv > 0 at small v, .

wave intensity the effect of the cyclotron resonance be-
comes apparent on contours of the distribution function,
which display signatures of perpendicular heating near
v1 = (w— Qe)/k S —10 ve. The changes are small,
though. Accordingly, the cyclotron damping deviates
little from its linear value.

The sensitivity of the results to the balance is signifi-
cant for the analysis of the observations. The sensitivity
may explain the variability of emissions observed: some-
times these are close to the plasma frequency, some-
times they are in the lower hybrid frequency range, and
sometimes they are in both ranges simultaneously. Fur-
thermore, the relation between perpendicular width of
the beam and width of the halo controls how much the
power extends above the lower hybrid frequency.

A late spectrum extracted from the series of runs with
M/m = 100 is presented in the bottom panel of Fig-
ure 12. A format different from Figure 11 is used to
facilitate the comparison with measurements taken by
sounding rockets; we have reprojected Wy in the (w, k)
space, eliminating the independent variable k)|, which
experimentally cannot be directly measured. The fre-
quency w is normalized to wy;, and k, is normalized to
)«;1. Characteristically, the perpendicular wavenumber
is shown to increase as the frequency approaches the
lower hybrid frequency. The feature is in fact observed
in interferometric measurements that attempt to deter-
mine the wavelength of the emissions [ Delory, 1996; Er-
gun et al., 1991]. In the top panel of Figure 12 we show
the experimentally determined dependence of the av-
erage perpendicular wavenumber upon the frequency.
As the frequency decreases toward the lower hybrid fre-
quency about 3.5 kHz, the wavenumber increases. The
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Figure 11. Late wave intensity spectrum. Quasi-
perpendicular modes with large k, are excited to levels
Wi /(87nA3T) ~ 1, whereas Langmuir modes have dis-
appeared. Same contours as in Figure 9.

dashed curves indicate the resonant lines (like the one
displayed in Figure 2) associated with electrons having
different parallel kinetic energies mvZ /2. The spectrum
thus appears to be associated with electrons at a spe-
cific energy (495 eV in the particular case). In the bot-
tom panel the chain of circles marks the resonant line
associated with electrons of the lower velocity front at
vo/ve = 19 (see the distribution function in Figure 10).
Similarly, the asterisks mark the upper velocity front
at vo/ve = 25. The feature may thus be a good indi-
cation that the observed waves are indeed excited by a
field-aligned bump as in our simulations.

A moderate field is typically 20 mV/m rms, which
for conditions prevailing at 1000 km altitude (n =
4000 cm™3, T = 0.25 eV) corresponds to an electro-
static energy density E?/(8xnT) = 10~°. This value
is completely consistent with the wave level in the sim-
ulation (see Figure 5). An interesting outcome of the
present calculation is that short-wavelength lower hy-
brid waves with A & 45\; ~ 3 m can result from the in-
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Figure 12. (top) Experimentally determined wave-
number as a function of frequency. (bottom) Late sim-
ulation spectrum projected in (w, k) space. Note how
the wavenumber increases for frequencies decreasing to-
ward the lower hybrid frequency wy, (3.5 kHz in the
Figure 12 (top)). See text for details.

stability without the recourse to strong turbulence mod-
els. The essential ingredient of our quasi-linear model
is the halo of energetic electrons that plays a decisive
role in shaping the spectrum. At higher altitudes, where
the plasma frequency becomes smaller than the gyrofre-
quency, the effects we discussed in association with the
cyclotron damping are expected to disappear. The mag-
netospheric electrons, though, form an energetic halo,
so that we can speculate our main results to hold true.

Extrapolating the simulation results to a realistic
mass ratio, we expect the timescale of phases 2 and 3
to be stretched. Between M/m = 100 and M/m = 400
the timescale increased by approximately a factor of
2. This increase is in line with a transfer rate to the
lower hybrid waves proportional to the square root of
the mass ratio; from (6) and (7) one obtains roughly
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Yih & wpy/m/M. Thus stretching the scale of Figure 5
by a factor 2 might give us an idea of what the results
would be for a hydrogen plasma, and another factor of 4
would correspond to an oxygen plasma. Future simula-
tions with an improved design of the wavenumber mesh
may be able to test the point. The mesh should include
an extremely refined grid at small k)| and extend further
in k, since with time, modes with increasingly large
ky are growing. The simulations should also allow for
a very large number of time steps, the growth of these
modes being increasingly small since they tap energy
from fewer and fewer electrons of phase space. Because
the quasi-linear model is energy conserving, the wave
energy cannot keep growing ad infinitum, such that the
curve Wy, of Figure 5 will level off eventually. From
a pragmatic viewpoint, though, the growth rate may
become too small to have a practical significance in the
rapidly changing environment of the auroral region. We
note in this respect that a time of 108 wy, ! corresponds
to 200 ms for a plasma frequency of 0.6 MHz, while a
field-aligned event may typically last from 1 s to a few
seconds.

5. Conclusions

‘We have developed two-dimensional simmulations based
on the coupled pair of quasi-linear equations. From
these and a model of electron distribution function that
includes a field-aligned beam embedded in an isotropic
halo we draw the following conclusions: (1) The spec-
trum shifts with time toward increasingly oblique prop-
agation angles. Langmuir waves appear and disappear
on timescales of the order of 10 ms. On much longer
timescales the lower hybrid waves can indeed grow and
drain energy from the beam. (2) Unlike in one dimen-
sion there is no asymptotic state in which the waves are
“in equilibrium” with a plateaued distribution function:
distribution function and spectrum keep evolving. (3) A
bump can survive beyond the Langmuir timescale and
show up in cuts parallel to the magnetic field.
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