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ABSTRACT
The motivation for the work described in this paper is to understand kink-unstable magnetic Ñux

tubes and their role in the formation of d-spot active regions. It has been proposed that, during their rise
to the photosphere, a certain fraction of convection zone Ñux tubes become twisted to the point where
they are unstable to the current driven kink instability. These kink-unstable Ñux tubes then evolve
toward a new, kinked equilibrium as they continue to rise to the photosphere, appearing as d-spot
groups upon emergence. Because of their kinked nature, these Ñux tubes could be highly susceptible to
Ñaring, explaining the very active nature of d-spot groups.

We study the kinking Ñux tube problem with a three-dimensional numerical model containing only
the most basic features of a kink-unstable Ñux tube. We build on our earlier work describing the linear
phase of the kink instability, and follow the evolution into the nonlinear regime : (1) We perform numeri-
cal simulations of constant-twist, kink-unstable Ñux tubes in an initially cylindrical equilibrium conÐgu-
ration in three dimensions, in a high-b pressure-conÐned environment. We consider many di†erent initial
conÐgurations, including the Gold-Hoyle Ñux tube. (2) These numerical calculations conÐrm the growth-
rate predictions of our earlier work, when viscous dissipation is included. They also conÐrm our velocity
proÐle predictions. (3) The Ñux tubes evolve toward new helically symmetric equilibrium conÐgurations.
(4) The timescale for saturation to the kinked equilibrium conÐguration is where is theqsat D 10/u0, u0linear growth rate calculated as in the earlier paper. (5) The cylindrically symmetric part of the kinked
equilibrium is well described by the m\ 0 Chandrasekhar-Kendall functions (i.e., the Lundquist Ðeld).
The m\ 1 helically symmetric part, however, is not well described by the m\ 1 Chandrasekhar-Kendall
functions. (6) The equilibrium kink amplitudes are not large, at less than one-third of the tube radius. (7)
The peak kinetic energy of the instability can be predicted from the initial excess perpendicular magnetic
energy. (8) The amplitudes of the kinked tubes are large enough to give a d-spot region tilt angle of up
to 30¡ away from that of an unkinked tube.
Subject headings : MHD È Sun: activity È Sun: interior È Sun: magnetic Ðelds È sunspots

1. INTRODUCTION

Solar active regions as observed in the photosphere are
regions of strong magnetic Ðeld concentration (D2 kG, as
compared to quiet-region average Ðeld strength of the order
of a few gauss). Active regions generally consist of two adja-
cent areas of opposite magnetic polarity, which, when
viewed in X-rays, are seen to be joined by coronal loops.
This leads to the commonly held interpretation that active
regions are the tops of magnetic Ñux loops which emerge
from the convection zone through the photosphere and into
the corona. The visible parts of these Ñux tubes (at the
photosphere and above) are believed to be the apices of
large )-shaped loops that have risen through the convec-
tion zone.

The source of these Ñux tubes is most likely the base of
the convection zone where di†erential rotation is thought to
generate azimuthal Ðeld from poloidal Ðeld (see, e.g.,
reviews by & Gilman TheDeLuca 1991 ; Hughes 1992).
base of the convection zone, or the convective overshoot
region, in addition to being the location of Ðeld generation,
is also believed to be the only stable place where magnetic
Ñux can live for long periods of time.
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Emerging Ñux tubes are created from this source of azi-
muthal Ðeld, and their subsequent buoyant rise has been
studied, using numerical models employing the ““ thin Ñux
tube ÏÏ approximations & Gilman(Choudhuri 1987 ; Fan,
Fisher, & DeLuca Caligari, &1993 ; Moreno-Insertis,
Schu� ssler Moreno-Insertis, & Schu� ssler1994 ; Caligari,

The success of these models at predicting and repro-1995).
ducing active region properties, such as latitude of emer-
gence, relative motion of opposite polarities after
emergence, and the angles by which the active regions are
tilted away from the equator, lends credence to the para-
digm that Ñux tubes rise through the entire convection zone
before emerging through the photosphere.

These models, however, only explain the majority of the
active regions that follow HaleÏs law p. 307).(Zirin 1988,
These active regions consist of leading and following spots
in a spot group aligned approximately parallel to the
equator. Left unexplained are some of the more unusual
active region conÐgurations, in particular, ““ island d-spots ÏÏ
(e.g., p. 337). These are active regions where theZirin 1988,
opposite polarity regions are very close to each other,
almost touching, and the spot pairs are inclined at a signiÐ-
cant angle to the equator. In contrast to normal active
regions, where the spots separate as the region evolves,
d-spots tend to rotate and remain compact as they emerge.
More than just being an anomaly unexplained by the
present rising Ñux tube models, these regions are of interest
because they are much more likely to Ñare than other active
regions (see, e.g., Tanaka 1980).
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In we discuss the evidence that these d-spots are° 2
caused by Ñux tubes which, rather than having the usual
planar )-loop structure, have been deformed into braided
)-loops. We then present the evidence, based on the topo-
logical quantities twist and writhe, that the loops have been
deformed by the current driven kink instability rather than
by helical convection zone Ñows.

This evidence motivates us to study the evolution of
rising, kink-unstable Ñux tubes in the convection zone. We
would like to learn what characterizes the shape of a kinked
Ñux tube after the instability has saturated (if it does indeed
saturate), and what the timescale for this saturation is. In
this paper we report on our investigation of a simpliÐed
version of this problem. We simulate the kink instability in
an inÐnitely long, initially cylindrically symmetric Ñux tube
in a high-b atmosphere without gravity. We expect to
obtain general characteristics of the kink instability as rele-
vant to the problem at hand from this study. While other
e†ects, such as the curvature of a Ñux tube or the expansion
of a tube as it rises through a gravitationally stratiÐed
atmosphere, may a†ect the behavior of a kinking Ñux tube,
we leave those e†ects for future studies.

We discuss the linear theory of the kink instability in ° 3,
and give a brief summary of the predictions that our earlier
linear analysis makes about the instability. In we discuss° 4
the three-dimensional numerical MHD code and the initial
conditions we used to model the nonlinear evolution of the
kink instability. In we discuss the results of the study. We° 5
compare the linear phase of the instability from the numeri-
cal simulations with the behavior predicted by our linear
stability analysis, and then discuss the nonlinear behavior
and characterize the saturation equilibrium. In we sum-° 6
marize the results and discuss their implications.

2. d-SPOTS AS KINKED )-LOOPS

A likely explanation for the morphology and activity of
d-spot active regions is that they are caused by a braided or
kinked tube rather than a simple )-loop. A braided struc-
ture would bring di†erent sections of the tube quite close to
each other, possibly even in contact with each other. This
would explain the closeness of the regions in a d-spot, as
well as their propensity to Ñare, since magnetic reconnec-
tion could occur at the regions of contact. A braided struc-
ture would also explain the orientation and evolution of
d-spots. A simple )-loop Ñux tube will be a nearly planar
object, parallel to the equator, and the footpoints which
mark its intersection with the photosphere will also lie on a
line nearly parallel to the equator. A kinked or braided
)-loop, as we envision it, would also be basically parallel to
the equator except for a critical section near the apex of the
loop which has kinked, as shown in The lineFigure 1.
joining the footpoints of this kinked or braided loop could
initially appear signiÐcantly tilted away from the equator,
as shown in the inset marked T1. This inset shows the foot-
points of the tube when the photosphere intersects the tube
at the plane marked T1 in the main Ðgure. This line would
then rotate as the tube rose further, as shown in insets T2
and T3, again representing the corresponding planes in the
main Ðgure. Several researchers have followed the evolution
and rotation of d-spots and have found footpoint orienta-
tions and rotations similar to those shown in Figure 1,
leading them to conclude that d-spot evolution is well
explained by the rising or sinking of braided structures

Figs. 1 and 6 ; et al. et(Tanaka 1991, Kurokawa 1994 ; Leka

FIG. 1.ÈSchematic picture of a rising, kinked Ñux tube. The dotted
horizontal lines represent the planes at which the tube intersects the photo-
sphere at di†erent times. These planes are plotted to the right of the main
Ðgure to illustrate how the tilt angle changes as the tube rises.

al. Fig. 3). In addition, et al. and et1996, Lites (1995) Leka
al. (1996) the magnetic Ðeld of the d-spots theyfound
observed to be highly twisted.

Proposed mechanisms for creating these braided )-loops
involve either Ñuid motions of the convection zone &(Gold
Hoyle & Sturrock or the current driven1960 ; Barnes 1972)
kink instability Fortunately, conservation of(Tanaka 1991).
magnetic helicity leads to an observable di†erence between
the two possibilities. The helicity of a Ñux tube can be
written as the sum of two terms called the writhe and the
twist & Field & Ricca The(Berger 1984 ; Mo†att 1992).
writhe depends only on the conÐguration of the tubeÏs axis,
while the twist depends only on the structure of Ðeld lines
within the tube. The sum of these two quantities (i.e., the
total helicity) is conserved under ideal MHD motion, so an
increase in writhe, for instance, must be accompanied by a
decrease in twist. A straight tube (zero writhe) with initially
left-handed twist in its magnetic Ðeld will be unstable to a
kink that deforms its axis into a left-handed helix, turning
(negative) twist into (negative) writhe while conserving heli-
city Longcope, & Fisher hereafter On(Linton, 1996, LLF).
the other hand, an initially straight tube that is deformed by
helical convective motions into a right-handed helix (adding
positive writhe) will have a left-handed twist induced on its
Ðeld lines (adding negative twist) to conserve the total heli-
city & Klapper Thus a tube writhed by(Longcope 1997).
the kink mode will always have the same sign of writhe and
twist, but the same is not true for a tube writhed by convec-
tion zone Ñows. In the latter case the Ðnal state will depend
on the sign and magnitude of the initial twist compared to
the writhe. If the induced twist is larger than the initial twist,
the Ðnal state will have opposite signs of twist and writhe. If
the initial twist is larger, then there will be little or no corre-
lation between the Ðnal twist and writhe. Any correlation in
this situation would be due to a slight preference for both
twist and kinetic helicity to be negative (positive) in the
northern (southern) hemisphere (e.g., & CanÐeldPevtsov
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Fisher, & Pevtsov but as this is only1997 ; Longcope, 1998),
a slight preference superimposed on a large scatter, it would
lead at most to a small correlation. Therefore one could test
the cause of d-spot writhe by observing the relative sign of
writhe and twist for a large number of cases. If the vast
majority had the same sign, the cause would clearly be the
kink instability. On the other hand if there were only a weak
preference, the cause could be attributed to convection zone
motions. et al. performed a study like this on aLeka (1996)
small scale, observing a few d-spots, and found them to have
the same sign of twist and writhe. While extending their
study to a larger number of d-spots is beyond the scope of
this paper, it should be possible to carry out given presently
available data.

3. THE LINEAR REGIME OF THE KINK INSTABILITY

When Ðeld lines of a Ñux tube are twisted sufficiently, the
tube spontaneously deforms into a helical shape and
thereby releases some of the magnetic energy stored in the
tension of its twisted Ðeld lines. In other words, twist is
replaced by writhe in such a way that the total magnetic
energy is decreased while the helicity remains constant.
Many authors have studied this instability in the context of
tokamak physics (see, e.g., et al.Shafranov 1957 ; Kruskal

and the solar corona (e.g., & Hoyle1958) Gold 1960 ; Anzer
& Priest Schnack, & Van Hoven1968 ; Hood 1980 ; Mikic,

In both cases, the focus has been on Ðnding the criti-1990).
cal twist for instability, because the kink instability is
expected to be catastrophic : in a tokamak, sending the hot
plasma core into the tokamak wall and destroying the con-
Ðnement, and in a coronal Ñux tube, initiating reconnection
and Ñaring.

In a previous paper we investigated the linear(LLF)
phase of the kink instability. We derived and solved the
equations for the eigenvalue problem for the linearized
momentum equation

F0(n0)\ o0
d2n0
dt2 \ J0 Â B1

c
] J1 Â B0

c
[ $p1 , (1)

where is the ideal MHD force per unit volume.F0 B0\
(0, is the unperturbed magnetic Ðeld expressed inBh, B

z
)

cylindrical coordinates, and describes a Ñux tube with an
outer radius outside of which the Ðeld is zero. B1\ $ Â (n0is the perturbed Ðeld in Eulerian coordinates, isÂ B0) o0the unperturbed density, assumed constant, is the per-p1turbed pressure, and J \ c$ Â B/4n. The velocity has been
expressed in terms of the displacement vector ) as(n0 ¿\
dn0/dt.

We solved the eigenvalue problem o0 d2n0/dt2\
using the energy method et al.u02 o0 n0\ F0(n0), (Bernstein

for cylindrically symmetric Ñux tubes conÐned by1958),
external Ðeld free plasma. We investigated tubes with con-
stant Ðeld line pitch, i.e.,

Bh
rB

z
\ q \ constant , (2)

where q is set by the choice of equilibrium, and found ana-
lytical solutions to the eigenvalue problem for weakly
twisted tubes and numerical solutions for tubes of arbi-
trarily large twist. This allowed us to Ðnd the displacement
eigenfunctions and the growth rate eigenvalues forn0 u0the kink instability of any constant-twist magnetic Ñux
tube. Our results agreed with the analysis of Roberts (1956),

who considered uniform axial Ðelds, and &Goedbloed
Hagebeuk who considered equilibria quite similar to(1972),
ours, but only in our ““ weakly twisted ÏÏ limit. The eigen-
values and eigenfunctions are related by the expression

u02\ / d3xn0* F0
/ d3xo0 o n0 o2\ / d3x[n0* Æ ($ Â B0) Â B1[ o B1 o2]

4no0 / d3x o n0 o2 .

(3)

This formulation assumes incompressible Ñow and zero vis-
cosity and magnetic resistivity.

The main results are as follows. These constant-twist
equilibria are unstable if the Ðeld-line pitch exceeds a
threshold, The threshold is where a is theq º qcr. qcr\ a1@2,
r2 coefficient in the Taylor series expansion of the equi-
librium axial magnetic Ðeld about the tube axis (r \ 0) :(B

z
)

When this criterion is violated,B
z
(r) \B0(1 [ ar2] É É É).

there are unstable helical eigenmodes, Them0P e‘(h`kz)`u0t.
most unstable of these have a helical pitch [k, which is
near (but not equal to) the Ðeld-line pitch q. The maximum
growth rate and range of unstable wavenumbers for a
strongly twisted tube can be predicted qualitatively by
using the analytical results from the weakly twisted case.
The maximum growth rate in that case is given by u0,max \

where is the Alfve� n speed on axis.vA R(q2[ qcr2 )/3.83, vAThe range of unstable wavenumbers is ([q [ *k/
2) \ k \ ([q ] *k/2), where *k \ 4qR(q2[ qcr2 )1@2/3.83.

4. SETTING UP THE NONLINEAR SIMULATIONS

4.1. Governing Equations
The governing equations for this three-dimensional, com-

pressible, dissipative MHD system are (as adapted from
& NortonDahlburg 1995)

Lo
Lt

\ [$ Æ (o¿) , (4)

o
D¿
Dt

\ J Â B
c

[ $p ] k$ Æ s , (5)

LB
Lt

\ $ Â (¿ Â B) ] g$2B , (6)

LU
Lt

\ [$ Æ (U¿) [ p$ Æ ¿] ks Æ $¿] i+2T ] 4ng
c2 o J o2 ,

(7)

p \ (c[ 1)U , (8)

$ Æ B \ 0 . (9)

Here we deÐne o(x, t) as the mass density, as the Ñow¿(x, t)
velocity, p(x, t) as the plasma pressure, B(x, t) as the mag-
netic induction Ðeld, U(x, t) as the internal energy density,
T (x, t) as the temperature, and\ cU/oC

p
q
i,j(x, t)\ (L

j
v
ias the viscous stress tensor ; c\ 5/3 is] L

i
v
j
) [ 23$ Æ ¿d

ijthe adiabatic ratio, is the speciÐc heat at constant pres-C
psure, and c is the speed of light. The thermal conductivity

(i), magnetic resistivity (g) and viscosity (k) are constant and
uniform, and the Stokes relationship is assumed (see, e.g.,

p. 131). The important dimensionlessPanton 1996,
numbers are viscous LundquistS

v
\ o0 vA L 0/k 4 the

number, resistive Lundquist number,S
r
\ vA L 0/g 4 the
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and ratio of plasma to magnetic pres-b \ 8np0/B024 the
sure. In these deÐnitions, is a characteristic density,o0 vA \

is the Alfve� n speed, is a characteristic lengthB0/(4no0)1@2 L 0(the tube radius R), and and are characteristic pres-p0 B0sure and magnetic Ðeld strength, taken as the initial values
at the center of the Ñux tube.

4.2. Initial Equilibrium
For the present simulations we concentrate on constant

twist Ñux tubes of the form [in cylindrical coordinates
(r, h, z)]

B
z
\ B0(1 [ r2/R2)p , Bh \ qrB

z
, (10)

for r ¹ R, and B \ 0 for r [ R. This proÐle has been chosen
to make the magnetic Ðeld go smoothly to zero at the outer
radius of the tube, R\ n/4. The tube is contained in a
periodic simulation box of side L \ 2n (see TheFig. 2).
exponent p allows us to vary the rate at which the magnetic
Ðeld drops o† with radius. As noted in these tubes will° 3,
be unstable when qR[ p1@2, and the growth rate will vary
as Note that this equilibrium is notu0 R/vA D (q2R2[ p).
necessarily force-free : radial pressure gradients are required
for force balance, and we initialize the pressure appropri-
ately so that the tube is initially in equilibrium. Pressure
gradients are expected to play a role in convection zone Ñux
tubes because of the high ratio of plasma pressure to mag-
netic pressure : Very minor changes in pressure areb Z 104.
therefore sufficient to balance magnetic forces. The plasma
b in our simulation is about 600, so the plasma motion will
be nearly incompressible, as is expected for the convection
zone. The Lundquist numbers are andS

v
\ 102 S

r
\ 105.

Thus both Lundquist numbers are much greater than unity,
as they are expected to be in the convection zone. Viscosity
and resistivity will therefore play only a small role for the
dynamical timescales of interest.

FIG. 2.ÈIsosurface of initial Ñux tube in simulation box. The isosurface
is for run 2 (see at half the maximum Ðeld. A representative ÐeldTable 1)
line is drawn on the surface of the tube, with q \ 5 for this run.

4.3. Initial Perturbation
To excite the kink instability, we initialize the simulation

with a helically symmetric velocity perturbation with a
magnitude The straight equilibrium Ñux tube is per-vA/140.
turbed with an initial velocity based on the weakly twisted
analytic approximation of the eigenmode. While not the
exact eigenmode, it is sufficiently close to excite the kink
instability.

4.4. Code
The simulations are performed on the Naval Research

LaboratoryÏs connection machine CM5E using a massively
parallel algorithm. The numerical code solves the three-
dimensional compressible visco-resistive MHD equations
with triply periodic boundary conditions. A description of
the code can be found in & Norton TheDahlburg (1995).
MHD variables are advanced by a de-aliased three-
dimensional Fourier collocation method with 1283 Fourier
modes (see & Picone Time is advancedDahlburg 1989).
using the second-order Runge-Kutta method, with a
Courant condition set by

dt
dx

max [&( o ¿ o] vA ] c
s
)]\ 0.3 , (11)

where dt is the time step, and dx is the collocation point grid
spacing. To prevent the occurrence of the Gibbs phenome-
non when sharp features are Fourier discretized (e.g., mag-
netic Ðeld proÐles with very small p), the initial conditions
are passed through a raised cosine Ðlter (see, e.g., etCanuto
al. For these 1283 Fourier mode simulations, 105 GB1987).
of parallel storage and 5 s per time step are used on the
NRL CM5E. The code has previously been used to explore
magnetic Ñux tube reconnection and interaction (Dahlburg
& Antiochos and magnetic Ñux tube tunneling, a1997)
multiple reconnection process by which one Ñux tube can
pass through another Antiochos, & Norton(Dahlburg,

& Dahlburg1997 ; Antiochos 1997).4

5. RESULTS

5.1. Outline of Goals
We want to understand, in as general a way as possible,

what happens to kink-unstable Ñux tubes. While we restrict
ourselves to constant-twist tubes, we make an e†ort to
study those tubes as completely as possible. From linear
analysis we found that the growth rate and eigenfunction
depend on twist (q) and the radial variation of which inB

z
,

our case is parameterized by p (see The equilibriaeq. [10]).
thus have two free parameters, p representing the Ðeld gra-
dient, and q representing Ðeld-line pitch. Because of time
limitations, we could not completely cover parameter space,
but as a compromise we chose three values of q and three
values of p and performed nine simulations corresponding
to those values. We also performed two additional p and q
pairs and a Gold-Hoyle Ðeld (see as this is aeq. [31]),
special case of the constant-twist ÐeldÈthe force-free
constant-twist ÐeldÈand has received much attention in
the literature. For each simulation, k was chosen as the
integer that gives the maximum growth rate for the tube
proÐle ; k has to be an integer so that an integral number of

4 Additional information about the latest version of the code can be
found at http ://www.lcp.nrl.navy.mil/hpcc-ess/software.html.
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wavelengths Ðts into the periodic simulation box. The
values of p chosen vary from 0.1 to 1, giving a good repre-
sentation of proÐles ranging from nearly square (p \ 0.1)B

zto parabolic (p \ 1). The values of q, varying from 2.5 to 7.5,
were chosen to give a range of twist that was large enough
to give reasonably fast growth rates and small enough to
keep k low. As the kinks we excited were periodic, all infor-
mation about them is contained within one wavelength. We
therefore chose to look at a small number of wavelengths
(low k) with high resolution rather than a large number
(high k) with low resolution. For each simulation we
compare the linear phase with the predicted linear behavior
from we Ðnd the time for saturation of each tube ; andLLF;
we characterize the saturation equilibrium of each tube.

5.2. L inear Phase
For all 12 simulations, the expected instability was indeed

excited. shows the kinetic and magnetic energy of aFigure 3
typical simulation, denoted run 2 in The kineticTable 1.
energy increases exponentially early in the simulation when

FIG. 3.ÈMagnetic energy (ME), kinetic energy (KE), and the sum of the
two (ME] KE) vs. time for run 2. The kinetic energy has been multiplied
by 5 to make it visible on the same scale as the magnetic energy. The dotted
line shows the exponential Ðt to the linear phase. The two dashed lines
show the times at which the kinetic energy Ðrst increases above, and last
decreases below 5% of the maximum. These two times are used to deÐne
the saturation time.

the instability is in its linear phase, peaks, and then
decreases to zero as the instability saturates. This same
qualitative behavior occurs in all the simulations. When the
time evolution of the kinetic energy is plotted on a linear-
log scale, the initial exponential increase appears as a
straight line. We measure the slope of this line to Ðnd the
growth rate u of the linear phase of the instability. This
measured exponential growth curve for run 2 is plotted as
the dotted line on The time axis in this plot isFigure 3.
measured in units of where is the initial Alfve� nR/vA, vAspeed of the tube on its axis.

shows the axial velocity of the tube in aFigure 4 (zü )
horizontal plane (z\ 0) during the linear phase of run 2
compared to the predicted velocity. compares theFigure 5
radial proÐles of the predicted velocities with those from the
linear phase of run 2 : which varies as cos (kz] h), atv

r
,

kz] h \ 0 ; and and which vary as sin (kz] h), atvh v
z
,

kz] h \ n/2. In both cases one can see that the linear phase
is predicted very well by our theory. The wavenumber of the
nonlinearly simulated kink is the same as that predicted,
and even in the nonlinear phase of development, the tube is
helically symmetric (except for a small amount of noise : e.g.,
typically the helical m\ 0 plus m\ 1 components [see
below] of di†er from the total by less than 5% of theB

z
B
zmaximum of B

z
).

The predicted ideal growth rates from our linear theory
for all runs and the corresponding simulation(u0 : eq. [3])

growth rates, measured as described above, are compared in
where they are plotted as plus signs. The idealFigure 6,

growth rates are consistently higher than the simulation
growth rates, varying from a factor of 1.1 to 1.9, with an rms
error in of 40%. This is to be expected, since the(u0[ u)/u
code includes viscosity which will decrease the growth rates
below their ideal values. (The resistivity is too small to a†ect
the growth rates signiÐcantly.)

To account for the e†ects of viscosity using our linear
analysis (see we now consider the viscous force foreq. [3]),
incompressible Ñow:

F1\ k$2¿ , (12)

as a Ðrst-order perturbation on the ideal force Here k isF0.
the explicit viscosity of the code. We use to Ðnd theF1

TABLE 1

KINK SIMULATION PARAMETERS AND RESULTS

Run p q k u0R/vA *x/R a6 0R da0 da1 da
i

1 . . . . . . . . . . 1 2.5 [2 0.345 0.024 3.11 0.133 0.276 0.293
2 . . . . . . . . . . 1 5 [3 1.54 0.145 2.90 0.074 0.258 0.639
3 . . . . . . . . . . 1 7.5 [4 2.91 0.154 2.42 0.064 0.182 0.923
4 . . . . . . . . . . 0.5 2.5 [2 0.474 0.050 2.94 0.072 0.307 0.295
5 . . . . . . . . . . 0.5 5 [3 1.82 0.172 2.76 0.033 0.203 0.664
6 . . . . . . . . . . 0.5 7.5 [4 3.32 0.172 2.36 0.085 0.220 0.948
7 . . . . . . . . . . 0.25 1.5 [1 0.198 0.094 2.87 0.036 4.07 0.343
8 . . . . . . . . . . 0.25 2.5 [2 0.583 0.055 2.76 0.046 0.295 0.439
9 . . . . . . . . . . 0.25 5 [3 2.06 0.178 2.29 0.034 0.190 0.747
10 . . . . . . . . . 0.25 7.5 [4 3.65 0.159 1.74 0.090 0.297 1.03
11 . . . . . . . . . 0.1 4 [2 1.59 0.344 2.19 0.025 0.324 0.761

G-Ha . . . . . . . . . 3 [2 0.267 0.021 4.79 0.241 0.195 0.368

NOTEÈp is the initial Ðeld proÐle parameter deÐned in q is the twist parameter, k is theeq. (10),
wavenumber of the instability, is the growth rate predicted from the linear theory, *x is theu0magnetic ÐeldÈweighted horizontal displacement of the Ðnal equilibrium, and is the area averagea6
over r \ 2R/3 of a calculated from the m\ 0 components of the Ðnal Ðeld and current ; da is the
standard deviation of a, calculated as in for the Ðnal m\ 0 Ðeld the Ðnal m\ 1 Ðeldeq. (26), (da0),and the initial Ðeld(da1), (da

i
).

that R for the Gold-Hoyle tube is twice that of the other tubes.a Note
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velocity in a z\ 0 slice of the tube for the linear phase of run 2 (right) compared to the velocity predicted by the stability theory (left). TheFIG. 4.Èzü
shading represents the strength of Negative velocities are shown as black, and positive velocities as white.v

z
.

Ðrst-order correction to the growth rate using perturbation
theory (see, e.g., & Hilbert The force, growthCourant 1989).
rate squared (eigenvalue), and displacement (eigenfunction)
are all expanded to Ðrst order :

F \ F0 ] F1] É É É , (13)

uk2\ u02] u12] É É É , (14)

n \ n0 ] n1] É É É . (15)

Substituting these expanded variables into the eigen-
function equation and keeping terms up toF(n)\o0uk2 n
Ðrst order, we Ðnd

F0(n0) ] F1(n0)] F0(n1) \ o0(u02 n0] u12 n0] u02 n1) .

(16)

FIG. 5.ÈRadial, axial, and azimuthal velocities during the linear phase
of run 2 (solid lines) compared with the velocities predicted by the linear
theory (dashed lines). The theoretical velocities were scaled so that the
maximum of coincided with that of the simulation. Note that variesv

r
v
ras cos (kz] h), while and vary as sin (kz] h).vh v

z

We next multiply by and integrate over all space. Then0*zeroth-order terms cancel and leave(eq. [3]),

P
d3xn0* Æ F1(n0)]

P
d3xn0* Æ F0(n1)

\ o0u12
P

d3x o n0 o2 ] o0u02
P

d3xn0* Æ n1 . (17)

Using the fact that is self-adjoint, and the fact that isF0 u02real (see p. 242) we can rewrite the secondFreidberg 1987,
term on the left-hand side :

P
d3xn0* Æ F0(n1) \

P
d3xn1 Æ F0(n0*) \ o0u02

P
d3xn1 Æ n0 .

(18)

FIG. 6.ÈComparison of the theoretical growth rates with theuthgrowth rates u measured from the simulations. The theoretical growth
rates are calculated from the linear theory. The ideal growth rates are
calculated from and the viscous growth rates are calculated fromeq. (3), eq.

The Gold-Hoyle simulation is marked GH in the second panel.(20).
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This term cancels with the second term on the right-hand
side of and we can solve for the Ðrst-orderequation (17),
correction to the growth rate,

u12\ / d3xn0* Æ F1(n0)
/ d3xo0 o n0 o2 . (19)

Writing this becomesF1(n0) \$2¿(n0) \u0$2n0,

u12 \ [ku0
/ d3x o$ Â n0 o2
/ d3xo0 o n0 o2 . (20)

This Ðrst-order correction reduces the predicted growth
rate below the ideal value. Using this formulation, we calcu-
late the reduced growth rates and plot them against the
measured growth rates as diamonds in One canFigure 6.
see that these explicit viscous e†ects account for a signiÐ-
cant part of the discrepancy between the predicted and mea-
sured growth rates, with the rms error now at 15% for a
variation of growth rates of over a factor of 30. This indi-
cates that our linear calculations from the energy method
explain the linear phase of our simulation quite well. The
remaining error may be due to numerical errors caused by
the Ðnite number of Fourier modes used in the spectral
calculations.

5.3. Nonlinear Phase
After several Alfve� n crossing times, the instability leaves

the linear phase, as indicated by the deviation of the kinetic
energy from exponential growth (see The instabilityFig. 3).
soon peaks at a level that can be predicted by the initial
azimuthal magnetic energy, as shown in Figure 7.

After reaching its peak, the kinetic energy then decreases,
in some runs oscillating several times, but always approach-
ing zero, indicating that the instability has saturated and
the tube has found a new stable equilibrium. An investiga-
tion of the energy balance throughout the simulation shows
that the instability converts magnetic energy into kinetic
energy, and this is then converted into internal energy
through viscous dissipation. There is also a conversion of
magnetic energy directly into internal energy through
ohmic dissipation. (We found the energy exchange due to
pressure work to be negligible.) This ohmic dissipation is
insigniÐcant for the more unstable runs but is quite signiÐ-
cant for the weakly unstable runs (for example, it accounts

FIG. 7.ÈMaximum kinetic energy density of the instability vs. excess
initial azimuthal magnetic energy density for each simulation. The excess
azimuthal energy is calculated by subtracting the azimuthal magnetic
energy of the marginally stable tube with the same proÐle andB

z
q \ qcr,as calculated from the stability theory, from the initial azimuthal magnetic

energy. The Gold-Hoyle tube is not plotted, as for this proÐle,q \ qcrgiving an excess azimuthal energy of zero.

for less than 1% of the magnetic energy loss in run 10 but
accounts for 55% of the magnetic energy loss in run 7). For
all runs the ohmic dissipation occurs at a steady rate
throughout the simulation and therefore appears to be
una†ected by the instability. This means the kink is not
causing the tube to form current sheets where enhanced
reconnection would take place, and the tube topology is
therefore not being changed. This Ðnal state is di†erent
from the nonlinear kink simulations which have been per-
formed on variable twist tubes by and &Baty (1996) Craig
Sneyd These studies Ðnd purely internal kinks,(1990).
meaning kinks conÐned within the mode-resonant surface
where the local twist equals the kink wavenumber. They
Ðnd that current concentrations or sheets are generated at
this mode-resonant surface, allowing reconnection to occur.
As we do not have a mode-resonant surface, we do not Ðnd
purely internal kinks or the associated current sheets and
reconnection.

shows an isosurface of the Ðnal equilibrium forFigure 8
run 2. The surface shown is that at which the magnitude of
the magnetic Ðeld is half of the maximum. This clearly
shows that this equilibrium is a kinked equilibrium with the
expected wavenumber, o k o\ 3, and that the pitch of the
kink is in the same sense as the initial Ðeld-line pitch, shown
in Again, while the tube has deÐnitely kinked, itFigure 2.
has not kinked so severely as to fold over on itself and
initiate reconnection.

One measure of the kink amplitude is the Ðeld-strengthÈ
weighted Ðrst moment of the tube cross section, deÐned as

*x 4
K / dA o B o x
/ dA o B o

K
. (21)

The top panel of shows the amplitude of thisFigure 9
moment at saturation for each of the runs. While the kink

FIG. 8.ÈIsosurface of o B o for run 2. The surface shown is the surface
where the magnetic Ðeld strength is half the maximum Ðeld strength. It can
be seen that three wavelengths of the kink are included in the simulation
box, indicating that o k o\ 3.
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FIG. 9.ÈFinal horizontal displacement of each of the simulations vs.
growth rate (upper panel), and the corresponding initial angle of emergence
(lower panel). The angle is deÐned as /\ arctan (*x o k o ) (see text). Aster-
isks are for p \ 1, plus signs for p \ 0.5, crosses for p \ 0.25, the diamond
for p \ 0.1, and the square for the Gold-Hoyle tube.

amplitudes are only a fraction (\40%) of the tube radius,
they are large enough to have a signiÐcant e†ect on the tube
geometries. To calculate the maximum degree by which a
kink instability could tilt the axis of a tube with respect to
its initial position, we return to the picture of a kinking
)-loop in We project the tube onto a horizontalFigure 1.
plane (as is done at the bottom of this Ðgure), deÐned as the
x-z plane, where the original axis of the tube lies on the
z-axis. Within this plane, the kink displaces the axis of the
tube in the x-direction. The new x location of the axis
becomes

x \ *x sin (kz) . (22)

Similarly, the vertical displacement becomes
y \ *x cos (kz). At the apex, z\ 0, of the )-loop the x
displacement of the axis is zero, and the tilt of the tube axis
with respect to the z-axis is at a maximum. The angle of tilt
/ at z\ 0 can be estimated as

tan /4
dx
dz
K
z/0

\ k *x . (23)

Knowing *x and k, we can calculate /, and this is plotted in
the bottom panel of There is only a qualitativeFigure 9.
relationship between and the tilt angle anequation (23)
actual kinked Ñux tube might form, but it is nevertheless
very illustrative of what that angle might be. The maximum
angle achieved in our simulations is D30¡, with the trend
being that tubes with larger growth rates become kinked
with larger angles. This can be interpreted as a 30¡ devi-
ation from the normal tilt a tube would have with respect to
the equator on emergence through the photosphere, and
thus supports the theory that a kink instability is
responsible for the unusual tilt angles of d-spots.

Figures and follow the evolution of the axial mag-10 11
netic Ðeld and perpendicular magnetic Ðeld in theB

z
oB

M
o

z\ 0 plane, as the tube goes from the linear phase to satu-
ration. The proÐles in these Ðgures start out cylindrically
symmetric. As the instability evolves, the helical deforma-

tion of the tube moves the proÐle to the right. At the peak of
its displacement, corresponding to the peak in the kink
amplitude plot, the proÐle takes on a kidney bean shape. It
then rebounds and eventually settles down in a more oval
or D-shaped equilibrium displaced to the right of the initial
equilibrium. Note that these displacements represent helical
displacements of the tube : the direction of the displacement
will rotate as kz] h if a di†erent z cross section is taken.

The helical deformation is also shown by the tilt of the
tube. While this cannot be seen directly in these Ðgures, the
e†ect of this tilt on the proÐle is evident : a white crescentB

zsoon appears at the right edge of the tube. This indicates
that negative Ðeld has appeared where there was none
before. This is not the result of reconnection but rather the
result of the tilt of the tube axis : the component of theBhinitial Ðeld, upon being tilted, adds to the component ofB

zthe Ðeld. The right-handed azimuthal Ðeld therefore creates
negative axial Ðeld at the right edge of the tube. Figure 12
shows the and proÐles on the x-axis at z\ 0. TheB

z
, B

y
, B

xevolution of the proÐle clearly shows how the tube isB
zstrongly perturbed at the beginning, extends beyond the

eventual kinked equilibrium, and then rebounds to settle
into the Ðnal equilibrium.

shows the saturation time for each of the runsFigure 13
versus the linear e-folding time The saturation time(1/u0).is deÐned as the elapsed time from when the kinetic energy
Ðrst increases above 5% of its maximum value to when it
last decreases below 5% of the maximum. These two times
are shown for run 2 on as the two vertical dashedFigure 3
lines. There is a clear linear relationship between the satura-
tion time and the linear e-folding time, with the tubes
(excluding the Gold-Hoyle tube) taking about 10 e-folding
times to saturate. T his general result allows us to predict
kink saturation timescales solely from a knowledge of the
initial equilibrium.

5.4. Final Equilibrium ConÐguration
The Ðnal equilibrium Ðeld for these tubes is generally

more force-free than the initial one (with the exception of
the Gold-Hoyle tube, which is force-free to begin with). A
force-free Ðeld can be written in the general form

$ Â B \ aB , (24)

where a is a function of x. This ensures that J Â B is zero.
We looked at a 4 ($ Â B) Æ B/o B o2 and found that in addi-
tion to the Ðeld becoming more force-free, the distribution
of a across the tube becomes somewhat more uniform. This
suggests that the tube might be evolving to a helically
symmetric force-free constant-a equilibrium, although,
as we show below, this is not precisely true. Helically
symmetric constant-a force-free Ðelds are given
by the ““ Chandrasekhar-Kendall ÏÏ functions B

m
(r, t)

& Kendall Each is(Chandrasekhar 1957 ; Taylor 1986). B
ma solution of with uniform a and depends on tequation (24)

as mt, where m is an integer and

t\ kz] h . (25)

We decomposed the Ðnal equilibrium Ðeld into its m com-
ponents by Fourier transformation, and found they consist-
ed of the m\ 0 cylindrically symmetric component and the
m\ 1 helically symmetric component.

Before comparing the equilibrium Ðelds with the
Chandrasekhar-Kendall functions, we investigated the
force-free, constant-a nature of the m\ 0 and m\ 1 com-
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FIG. 10.ÈSlices of axial magnetic Ðeld at z\ 0 at various times during the instability for run 2. The instability has saturated by the last frame. TheB
zshading represents the strength of Black represents positive Ðeld, and white represents negative Ðeld.B

z
.

ponents of the Ðelds separately. compares theFigure 14
components of J parallel and perpendicular to B as a func-
tion of radius for the initial equilibrium Ðeld and the m\ 0
and m\ 1 components of the Ðnal equilibrium Ðeld of run
2. This shows that while there is a signiÐcant J Â B force in
the initial equilibrium (balanced by pressure forces), the
Ðnal m\ 0 and m\ 1 equilibria are largely force-free. The
only signiÐcant forces in the Ðnal equilibrium are at the
outer edge of the tube where magnetic forces are required to
balance the excess external pressure.

shows the radial proÐle of a for the initialFigure 15
proÐle and the m\ 0 and m\ 1 components of the Ðnal
proÐle. This shows that while the initial a proÐle varies
signiÐcantly with radius, the Ðnal a proÐle for the m\ 0
component of the Ðeld is relatively constant. Thus the cylin-
drically symmetric part of the Ðnal equilibrium appears to
be a force-free, constant-a Ðeld. This holds in general for all
the p-proÐle tubes studied, as is shown in whichTable 1,
tabulates the mean values of a for the inner two-thirds of
each tube and also shows the standard deviation of a. This
normalized standard deviation is deÐned as

da 4
S/ dA[a(r, h) [ a6 ]2

a6 2A , (26)

where the integration is over the area inside a radius of
r \ 2R/3, and is the average value of a over the same area.a6
A comparison of the Ðnal da with the initial value (Table 1)
shows how much more uniform a becomes when the tube

kinks. The Ðnal m\ 1 a-proÐle in and the tabu-Figure 15
lated values of da for m\ 1 show that, in contrast to the
m\ 0 Ðeld, the m\ 1 Ðeld does not have a uniform value of
a. There appears, therefore, to be a signiÐcant di†erence
between the behaviors of the m\ 0 and m\ 1 modes.

The m\ 0 Chandrasekhar-Kendall function is also
called the Lundquist Ðeld and is written as(Lundquist 1951)

B
z
\ B0 J0(ar) , Bh \ B0 J1(ar) . (27)

This solution is compared to the m\ 0 part of the kinked
equilibrium Ðeld of run 2 in has been set hereFigure 16. B0to match the amplitude of the simulation at r \ 0, and aB

zhas been taken to be The top panel ofa6 \ 2.90/R. Figure 16
shows that the two magnetic Ðeld proÐles agree quite well
everywhere but at the edge of the tube. The bottom panel of

shows, however, that the m\ 1 Chandrasekhar-Figure 16
Kendall function solution does not match the m\ 1 equi-
librium Ðeld.

The m\ 1 mode behavior can be explained in a qualit-
ative way by noting that the helicity of each Ðeld line is
approximately conserved (in an ideal MHD tube, where the
magnetic di†usivity is zero, the local helicity would be
exactly conserved). Initially, each Ðeld line in a constant-
twist tube has the same helicity (e.g., helicity\ q \ 5 for
run 2). If reconnection does not play a large part in the
evolution, one expects the helicity to be the same for each
Ðeld line at the end of the simulation. To investigate this, we
Ðrst deÐne the coordinate s as the distance along the Ðeld
line and the vector X(s) as the vector position of the Ðeld



FIG. 11.ÈSlices of perpendicular magnetic Ðeld at z\ 0 at various times for run 2. The shading represents the magnitude of the magnetic Ðeldo B
M

o
perpendicular to the z-axis, with zero Ðeld being white.

FIG. 12.ÈProÐles of (solid line), (dashed line), and (dotted line) on the x-axis at z\ 0 at various times during the instability for run 2B
z

B
y

B
x
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FIG. 13.ÈSaturation time vs. e-folding time The saturationqsat 1/u0.time is deÐned as the time from when the kinetic energy Ðrst increases
above 5% of the eventual maximum to the time when the kinetic energy
last decreases below 5% of the maximum. See The Gold-Hoyle ÐeldFig. 3.
is not included in the Ðt.

FIG. 14.ÈComparisons of J parallel and perpendicular to B as a func-
tion of radius for the initial equilibrium and for the cylindrically symmetric
(m\ 0) and helically symmetric (m\ 1) parts of the Ðnal equilibrium. This
shows that both the m\ 0 and m\ 1 parts of the Ðnal equilibrium are
largely force-free. The m\ 1 proÐle is taken at kz] h \ 0.

FIG. 15.ÈProÐles of the force-free parameter a for the initial Ðeld
(dashed line) and the m\ 0 (solid line) and m\ 1 (dotted line) components
of the Ðnal Ðeld of run 2 ; a for m\ 1 is shown at kz] h \ 0.

FIG. 16.ÈFinal Ðeld equilibrium components, m\ 0 and m\ 1 (solid
lines), compared to the Chandrasekhar-Kendall Ðts (dashed lines). It is clear
that the m\ 0 Chandrasekhar-Kendall function Ðts the m\ 0(eq. [27])
equilibrium quite well, while the m\ 1 Chandrasekhar-Kendall function
does not Ðt the m\ 1 equilibrium. Note that the m\ 1 components of B

zand vary as cos (kz] h), while varies as sin (kz] h). This explainsBh B
rwhy in at kz] h \ 0 is essentially zero.B

x
, Fig. 12,

line at s with respect to the origin of coordinates. We then
calculate the helicity of each Ðeld line as the sum of the
Ðeld-line twist (Tw) and the Ðeld line writhe (Wr). The
writhe is deÐned as

Wr (X) 4
1
4n
P
0

LP
~=

`=
ds ds@

t ü (s) Â t ü (s@) Æ [X(s)[ X(s@)]
o X(s) [ X(s@) o3

(28)

(see, e.g., & Klapper This is integrated overLongcope 1997).
the same Ðeld line twice, and is the unit tangent vector attü(s)
s. The limits on the Ðrst integral go only from zero to L
because we are calculating the writhe per length of the simu-
lation box rather than of the whole (inÐnitely long) Ðeld
line. The second writhe integral extends to inÐnity because
the writhe of any section of Ðeld line is a†ected by the
location of the entire Ðeld line. In practice, since this e†ect
drops o† as 1/distance2, we only calculated the second inte-
gral from [2L to 3L . We tested this abbreviated integral on
perfectly helical Ðeld lines, where Wr (X) is known analyti-
cally, and found that the calculated values of Wr di†ered
from the true values by less than 1%.

The twist of a ribbon deÐned by the curve X(s) and a unit
spanwise normal vector (i.e., the vector lying within theNŒ (s)
ribbon and normal to its axis) is given by

Tw4
1
2n
P
0

L
dsNŒ Â

dNŒ
ds

Æ t ü . (29)

For a thin Ñux tube & Ricca have shownMo†att (1992)
that the sum of Tw and Wr is the helicity. However this is
difficult to prove for a general Ñux tube, and is difficultNŒ (s)
to deÐne for a general Ðeld. We therefore use a proxy for the
twist :

Tw (X)4
1
c
P
0

L
ds

J Æ B
o B2 o

. (30)
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FIG. 17.ÈTwist (dashed line), writhe (dotted line), and
helicity\ Tw] Wr (solid line) for three magnetic Ðeld conÐgurations at
y \ z\ 0. The initial Ðeld and the Ðnal Ðeld are for run 2 and the Lund-
quist Ðeld has aR\ 2.90. Note that the Ðnal Ðeld has been shifted to the
right by the displacement of the kink.

This expression is valid for a constant twist tube ( i.e., for the
initial state of most of our runs) but is only approximate for
a general magnetic Ðeld proÐle. Nevertheless it gives us a
way of estimating the behavior of twist as the tube evolves.

The initial Ðeld-line helicity for run 2, along with Wr and
Tw, is plotted in the top panel of For compari-Figure 17.
son, the helicity for a number of Ðeld lines that intersect the

at the Ðnal equilibrium are plotted in the center paneltü -axis
of the same Ðgure. While the helicity is no longer exactly its
initial value, it is signiÐcantly closer to it than is that of the
Lundquist solution. The helicity of the Lundquist Ðeld is
shown in the next panel. At the center of the tube, the
helicity is too low by a factor of 2.5, so the m\ 1 part of the
equilibrium must play a large role in bringing the helicity
close to its initial value. At the edge of the tube, the helicity
of the Lundquist Ðeld tends to inÐnity, which is a reason
why the m\ 0 equilibrium Ðeld does not match a Lund-
quist Ðeld proÐle near the outer edge of the tube. The other
reason is that the outer edge of the tube needs magnetic

FIG. 18.ÈPredicted Gold-Hoyle dispersion relation (growth rate asu0a function of wavenumber k) for a cuto† radius of qR\ 3n/2. For a larger
cuto† radius the curve is the same except near k/q \ 0, where the growth
rate is somewhat larger.

forces to counteract the excess external gas pressure. Note
that as the calculation of twist is approximate. No signiÐ-
cance should be attached to the exact values of helicity
calculated ; only the trends are meaningful.

We interpret these results to mean that the cylindrically
symmetric part of a kink-unstable Ñux tube approaches a
Lundquist Ðeld when the tube kinks. However, as the local
helicity must be approximately conserved in these low-
resistivity conditions, the tube is forced to take on an addi-
tional m\ 1 component. This component, when added to
the m\ 0 component, gives each Ðeld line a helicity close to
its initial helicity. The m\ 1 Chandrasekhar-Kendall func-
tions do not satisfy this helicity conservation condition, and
the m\ 1 component of the kink equilibrium Ðelds are
therefore quite di†erent from the Chandrasekhar-Kendall
functions. It is interesting that in this kinked equilibrium
the balance between twist and writhe has been rearranged
so that writhe contributes more to the helicity than it did
initially, presumably because this is energetically favorable.

5.5. Gold-Hoyle Simulation
The initial equilibrium for the Gold-Hoyle simulation is

B
z
\ B0

1 ] q2r2 , Bh \ qrB0
1 ] q2r2 . (31)

For this equilibrium Ñux tube q deÐnes the only scale
length. The Ðeld never goes to zero, so there is no clear
choice of where the outer edge of the tube should be. We
choose to make this outer edge lie at r \ R\ n/2, giving

Note that for this equilibrium, ourB
z
(R)/B

z
(0)\ 0.043.

simple instability criterion predicts marginal sta-qcr \ a1@2
bility. Upon numerical integration of the eigenfunction
equation (see of however, we Ðnd an instability° 4 LLF),
with a nonzero, though small, growth rate. Since q deÐnes
the tube uniquely, and also sets the size scale for the
problem, the normalized growth rate will be a func-u0/qvAtion only of the normalized wavenumber k/q. This function
is plotted in This Ðgure shows a growth rateFigure 18.
proÐle similar to that calculated for Gold-Hoyle tubes by

Schnack, & Van Hoven and by Robb,Mikic, (1990) Craig,
& Sneyd In the numerical simulation, the growth(1990).
rate is a factor of 2 smaller than predicted (as seen in Fig. 6).
The tube also takes an extraordinarily long time to saturate,
compared to the other tubes : in contrast to theqsat D 30/u0factor of 10 for the other tubes. In addition, the magnetic
proÐle does not change much, the displacement is one of the
smaller ones for any simulation (see and a does notFig. 9),
become much more uniform than it was initially.

6. DISCUSSION

It has been suggested by et al.Tanaka (1991), Kurokawa
and et al. that d-spot active regions are(1994), Leka (1996)

formed by kinked Ñux tubes. We have pursued this sugges-
tion by performing an investigation of highly twisted, kink-
unstable Ñux tubes. Our objective is Ðrst to develop a clear
understanding of how the nonlinear kink instability evolves,
and second to see how well the kink mode evolution does in
terms of explaining some properties of d-spot regions. In the
model, we propose that the Ñux tubes become unstable to
the current driven kink instability during their rise through
the convection zone. They then evolve into a kinked equi-
librium and continue rising to the surface. Our linear study

indicates that as the tube expands upon rising(LLF)
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through the gravitationally stratiÐed convection zone, it
becomes more kink-unstable. This leads us to postulate that
the apex of a rising Ñux tube will be the most likely location
of a developing kink. Thus, as shown in most ofFigure 1,
the Ñux tube may still be in a simple ) shape, while the apex
has been deformed into a helical conÐguration. This helical
apex, upon emerging into the photosphere and above, will
create a bipolar magnetic region that behaves di†erently
from those formed by an unkinked tube. The opposite-
polarity regions will remain close to each other as the tube
rises farther, and they will rotate about one another. In
contrast, as a normal )-loop rises farther, the opposite pol-
arities will separate from each other and will not rotate.

Our earlier study was devoted to the investigation(LLF)
of the kink instability in the convection zone, i.e., in a high-b
environment. That paper studied the linear instability of
convection zone Ñux tubes, and found that those Ñux tubes
could be unstable for a large range of magnetic proÐles. In
this paper, we modeled the nonlinear behavior of these
kinking Ñux tubes. Our three-dimensional MHD code veri-
Ðed the results of our linear study, showing that tubes we
expected to be unstable in fact did become unstable, and
grew at the predicted growth rates and with the predicted
velocity proÐles. With this same code, we then explored the
nonlinear evolution of the instability, allowing us to Ðnd
saturation times and kinked equilibrium proÐles. For the
range of tubes studied (with the notable exception of the
Gold-Hoyle tube), the saturation time was approximately
10 linear e-folding times, where this e-folding time is pre-
dicted by our linear theory. The Ðnal equilibrium of the
kinked tube is characterized by a cylindrically symmetric
constant-a, force-free Ðeld plus a nonconstant-a, force-free
m\ 1 Ðeld, which ensures that the local helicity is approx-
imately preserved, since there is an absence of signiÐcant
reconnection.

For the range of magnetic Ðeld proÐles investigated, we
found the kink amplitudes to be rather small, about 10%È
40% of the tube radius. While not large enough to initiate

reconnection, this does indicate that the tube geometry can
be signiÐcantly distorted by the kink instability. Most
important, the tubes reached a helical equilibrium, indicat-
ing that it is reasonable to expect tubes to emerge through
the photosphere with kinked shapes. In other words, what
we Ðnd suggests signiÐcant changes in tube orientation
away from, e.g., Hale conÐgurations, but we do not see 90¡
or 180¡ changes in orientation. We can say that kinks have
the same sign of writhe as of twist, in contrast to what
would occur if observed kinked tubes came about through
external plasma motions.

In the future we will study kinking Ñux tubes in a more
realistic convection zone environment by allowing them to
expand as they evolve. This is meant to simulate the expan-
sion a buoyant Ñux tube experiences as it rises into lower
pressure regions of the convection zone. Our linear stability
calculations indicate that the expansion of Ñux tubes can
make them more kink-unstable. We therefore believe that
studying the evolution of an initially kink-stable Ñux tube
as it expands to an unstable state and then kinks will be an
important part of our study. We also plan to study a Ñux
tube as it evolves under the inÑuence of multiple unstable
modes (i.e., modes of di†erent wavenumbers). The presence
of multiple modes will be more realistic in that it would
break the helical symmetry we have in the simulations
reported on here, and it would potentially produce a tube
with a localized kink, as shown in Figure 1.
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Computing and Communications Program, NSF grants
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