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FLUX-TUBE TWIST RESULTING FROM HELICAL TURBULENCE: THE &-EFFECT
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ABSTRACT
Recent observational studies suggest that active region magnetic Ñux emerges in a twisted state and

that the sense of twist depends weakly on solar hemisphere. We propose that this twist is imparted to
the Ñux through its interaction with turbulent velocities in the convection zone. This process, designated
the &-e†ect, operates on isolated magnetic Ñux tubes subjected to bu†eting by turbulence with a non-
vanishing kinetic helicity Su Æ $] uT. The &-e†ect leads to twist of the same sense inferred from obser-
vation and opposite to that predicted by the a-e†ect. A series of numerical calculations are performed to
estimate the magnitude of the &-e†ect in the solar convective zone. The results compare favorably with
observations in both mean value and statistical dispersion. We Ðnd a further relationship with total mag-
netic Ñux that can be tested in future observations. The model also predicts that twist is uncorrelated
with the tilt angle of the active region.
Subject headings : MHD È plasmas È Sun: magnetic Ðelds

1. INTRODUCTION

A number of recent observational studies of the solar
magnetic Ðeld have begun to reveal trends in its hand-
edness, or chirality. The chirality of the magnetic Ðeld has
been inferred by a number of means including the morphol-
ogy of Ðlaments Billamoria, & Tracadas(Martin, 1994),
morphology of coronal loops & Kumar in situ(Rust 1996),
measurements of Ñux ropes and interplan-(Burlaga 1988),
etary Ðelds Evenson, & Matthaeus Each of(Bieber, 1987).
these methods reveals a tendency for chirality of one sense
in the northern hemisphere and the opposite sense in the
southern hemisphere. The tendency appears with di†erent
degrees of dominance in the di†erent studies. The cause of
this hemispheric tendency is still uncertain and is the topic
of this work.

CanÐeld, & Metcalf hereafterPevtsov, (1995, PCM)
inferred the handedness of active region magnetic Ðelds
using vector magnetogram measurements. Maps of all three
components of the magnetic Ðeld at a single height z can be
used to calculate the vertical component of the electric
current density
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where x and y are the horizontal coordinates. Averaging the
ratio over an active region leads to a quantity charac-J
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This quantity is referred to as ““ helicity ÏÏ in but herePCM,
we will call it twist. The deÐnition of is motivated byapcmanalogy to a force-free magnetic Ðeld +] B \ aB. In fact,

is a direct measure of the relative signs of the verticalapcmcurrent and Ñux at the photosphere. A positive value corre-
sponds to Ðeld lines that twist in a right-handed sense as
they cross the photosphere.
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Pevtsov, CanÐeld, & Metcalf measured for 245 mag-apcmnetograms of 69 di†erent active regions The vector(PCM).
magnetograms were measured with the Haleakala Stokes
Polarimeter between 1991 and 1995. An(Mickey 1985)
extended data set, using 203 active regions, is shown in

It indicates a small but statistically signiÐcantFigure 1.
tendency for left-handed twist in the northern(apcm\ 0)
hemisphere and right-handed twist in the southern hemi-
sphere. This is consistent with trends in chirality inferred by
other means et al. but is by far the least pro-(Zirker 1997)
nounced tendency among these. The dispersion about the
trend can be quantiÐed by the rms departure from the linear
trend, m~1.*apcm^ 1.28] 10~8

The data set may provide insight into the state ofPCM
Ñux prior to its emergence, insight not provided by other
morphological or interplanetary estimates of chirality. The
use of photospheric measurements to probe the sub-
photospheric Ðeld was explored by et al. in anLeka (1996)
earlier study. They obtained vector magnetograms, using
the Imaging Vector Magnetograph et al. to(Mickey 1996),
follow the evolution of several emerging active regions.
These revealed that as an active region emerged, and its net
unsigned Ñux increased, the net unsigned vertical current
increased as well. In fact, these two quantities were roughly
proportional throughout the process of emergence. This led
Leka et al. to conclude that the active region was carrying
current prior to its emergence. In other words, the twist in
the active region Ðeld was present in the Ñux below the
photosphere. By extension, we believe that the from theapcmsurvey reÑects a twist in subphotospheric Ñux andPCM
that the sense of twist has a hemispheric tendency.

We seek a theoretical model explaining the origin of twist
in subphotospheric magnetic Ñux tubes. Such a model must
predict values of with a hemispheric tendency, on topapcmof a large degree of statistical scatter (dispersion) The*apcm.
origin of the hemispheric tendency is most likely related to
solar rotation, either directly (e.g., through the Coriolis
force) or indirectly (e.g., through di†erential rotation or
kinetic helicity).

Emerging Ñux is deÑected by the Coriolis force causing a
““ tilt ÏÏ (relative to east-west) in the observed bipole, known
as JoyÏs law. It has recently been shown &(Longcope
Klapper hereafter that this tilt will twist the Ðeld1997, LK)
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FIG. 1.ÈMeasured values of for 203 active regions. (a) plottedapcm apcmagainst the solar latitude of the active region. Error bars denote the varia-
tions in di†erent observations of the same active region. A linear Ðt to the
data (solid line) m~1 and the 2 p errors (dashedapcm \ [2.7] 10~10hdeglines) reveal the hemispheric tendency. (b) A histogram of the data after the
linear Ðt has been subtracted. The dashed curve is a Gaussian with zero
mean (the Ðt has been removed) and a width m~1.*apcm \ 1.28] 10~8

lines within the Ñux tube. Longcope & Klapper predict
values

apcm ^ [n3 ot ot
4d

, (2)

where d is the polar separation and t is the tilt angle (in
radians) deÐned to be positive (negative) in the northern
(southern) hemisphere when adhering to JoyÏs law. Accord-
ing to this model, the Coriolis force leads to a value of apcmwith the correct sign. This theoretical calculation neglected
the possible propagation of twist, as torsional Alfve� n waves,
during emergence. Propagation would only decrease the
value in which presently predicts values just aequation (2),
bit too small : m~1 (t\ 10¡ andapcm \[2 ] 10~9
d \ 100 Mm). Nor is the dominant statistical scatter
accounted for by this model.

In addition to a large-scale tilt, the Ñux tube will accumu-
late random distortions from the convection zone (CZ)
turbulence. This can give rise to twist through a mechanism
we call the &-e†ect. Turbulence in the solar CZ is believed
to possess a nonvanishing kinetic helicity Su É +] uT (see

There is a hemispheric dependence in the kinetic° 4.1).
helicity, due ultimately to the Coriolis force acting on the
turbulent Ñuid. We will model the interaction of CZ turbu-
lence with the rising Ñux tube to demonstrate that the &-

e†ect results in a value of consistent with values foundapcmby The large amount of statistical dispersion willPCM.
occur naturally in a process driven by turbulence.

The emergence of an active region has been successfully
modeled as the buoyant rise of an isolated magnetic Ñux
tube A nonlinear set of dynamical equations(Parker 1975).
for a buoyant Ñux tube was proposed by andSpruit (1981)
has been improved and applied by subsequent investiga-
tors. This model has successfully predicted, and obser-
vations have conÐrmed, the JoyÏs law relationship between
t and solar latitude h & Choudhuri(DÏSilva 1993 ; Caligari,
Moreno-Insertis, & Schu� ssler as well as separate1995),
relationships between t and total active region Ñux ' (Fan,
Fisher, & McClymont Fan, & Howard1994 ; Fisher, 1995)
and between the statistical dispersion *t and active region
Ñux '. The Ðrst two relationships result from the Coriolis
force acting on the rising, expanding tube. The last relation-
ship was studied by & Fisher hereafterLongcope (1996, LF)
by considering the e†ect of convection zone turbulence on a
nearly horizontal Ñux tube.

Recently, the possible e†ect of twist on the dynamics of
thin-Ñux tubes has been investigated & Schu� ss-(Ferriz-Mas
ler & Mo†att In particular, the nonlinear1990 ; Chui 1995).
dynamical Ñux tube equations of Spruit have been gener-
alized to include the twisted magnetic Ðeld within the tube

The theoretical relation in between tilt(LK). equation (2)
angle t and is found using these model equations. Thisapcmexplanation, however, seems inadequate for the data in

for reasons described earlier.Figure 1,
In this work the same twisted Ñux tube equations are

used to explore the e†ect of turbulence on the generation
and evolution of Ñux tube twist. As in a nearly straight,LF,
horizontal tube is bu†eted by a random velocity Ðeld, rep-
resenting the CZ turbulence. The random velocity Ðeld is
assumed to have a nonzero kinetic helicity, Su É +] uT, as
is believed to be the case in CZ turbulence. We show below
that the kinetic helicity gives the Ñux tube distortions of a
roughly helical nature. This leads, in turn, to a net twist in
the Ðeld lines : the &-e†ect.

While the end result resembles that of the a-e†ect in mean
Ðeld electrodynamics & Ra� dler(Mo†att 1978 ; Krause

the &-e†ect is di†erent in several important respects.1981),
First, no dissipation or turbulent di†usion is necessary in
the &-e†ect, nor is magnetic helicity changed. Second, the
&-e†ect occurs in tubes with a strong magnetic Ðeld, while
the a-e†ect is believed to be ““ quenched ÏÏ by a signiÐcant
Lorentz restoring force & Yuan Most(Bhattacharjee 1995).
importantly, the sign of the &-e†ect is opposite that of the
a-e†ect, and thus it agrees with the hemispheric tendency of
PCM.

We perform quantitative calculations to estimate the
magnitude of twist resulting from the &-e†ect. The magni-
tudes found are consistent with those from In addi-PCM.
tion to an average twist scaling roughly linearlySapcmT,
with solar latitude, there is a statistical dispersion *apcmwhose magnitude can be 10 times greater than the mean ;
this is also consistent with observations from (seePCM Fig.

We Ðnd a further relationship between and the1). SapcmT
Ñux of the tube ' ; evidence of this relationship can be
sought in future observations. Finally, we Ðnd no signiÐcant
correlation between the twist and the bipolar tilt angle t.

The next section presents the dynamical equations for the
evolution of the axis of a nearly straight rising Ñux tube.
These equations are the same for twisted or untwisted Ñux
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tubes. introduces Ñux tube twist as described bySection 3
Longcope & Klapper This leads to an extended set of(LK).
dynamical equations that include the &-e†ect. In the full set
of dynamical equations the turbulent velocity appears as an
external driving term. presents a model for thisSection 4
driving term based on properties of turbulent velocity in the
CZ, including its kinetic helicity. In this model turbu-° 5
lence is applied to the dynamical equations from °° and2 3
to yield numerical values for apcm.

2. THE RISE OF A NEARLY STRAIGHT FLUX TUBE

A thin-Ñux tube can be described as a curve in space, r(l),
parameterized by distance, l, along itself. The instantaneous
velocity of a tube element is denoted by the vector u \ (u, v,
w) while the velocity of the external medium at the same
point is denoted by ue \ (ue, ve, we). An equation for that
component of the velocity perpendicular to the tubeÏs local
tangent is & Gilman(Spruit 1981 ; Choudhuri 1987)
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where a is the radius of the tubeÏs cross section and is theC
Dcoefficient of aerodynamic drag. The local tangent vector, t ü,

and curvature vector, j, are deÐned as

t ü 4
Lr
Ll

, j 4
L2r
Ll2 .

The total time derivative is taken in a frame following the
local tube element. The vertical coordinate, z, increases
downward, denoting depth beneath the photosphere. The
coordinate system is right-handed.

This equation describes the acceleration of each section
of the tube due to the various forces acting on it. The Ðrst
term on the right-hand side of represents theequation (3)
buoyancy force. The di†erence between internal and exter-
nal mass densities, do 4 oi[ oe, is assumed to be much
smaller than either of them: o \ oe ^ oi. Gravity acts with
an acceleration g \ g(z) in the downward direction ; in(zü -)

the force is projected into the plane perpen-equation (3)
dicular to For a buoyant tube (do \ 0) the actual acceler-t ü.
ation will be upward.

The second term represents the magnetic tension
resulting in a net force in the direction of the tubeÏs curva-
ture, perpendicular to Its coefficient is the square of thet ü.
wave speed of transverse tube waves

v
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where B\ '/na2 is the magnetic Ðeld strength of the tube.
This speed is slower by a factor of 1/21@2 than the speed of
transverse Alfve� n waves because of the e†ect of displacing
external Ñuid & Ryutova(Ryutov 1976).

The Ðnal term represents the aerodynamic drag as the
tube slips through the external medium At a(Parker 1975).
high Reynolds number the coefficient of drag approaches a
limit of order unity for simplicity we will(Batchelor 1967) ;
henceforth take C

D
\ 1.

The Coriolis force has been neglected in inequation (3)
order to study the &-e†ect in isolation from other sources of

Ñux tube twist. In a Ñux tube rising as an )-loop the
Coriolis force tilts the apex giving rise to JoyÏs law. This tilt
gives rise, in turn, to the twist calculated by In theLK.
present work, however, we seek an alternative source of
twist, arising not from JoyÏs law, but from turbulence. To do
this we consider a strictly horizontal Ñux tube, not an
)-loop. JoyÏs law does not occur in such a conÐguration,
nor can the Coriolis force be introduced self-consistently.

Notably missing are any forces related to twist of the
magnetic Ðeld within the tube. was originallyEquation (3)
proposed for untwisted Ñux tubes, i.e., tubes in which all
Ðeld lines were parallel to the axis r(s). Recently, the equa-
tions were generalized to include the e†ect of twisted Ñux

The additional terms resulting from twist were found(LK).
to be smaller than those in by a factor ofequation (3)

where is the axial distance over which a ÐeldDa2/L
w
2 , L

wline wraps once about the axis (Ferriz-Mas & Schu� ssler
1990 ; If a limit known as weak twist, the e†ectLK). a > L

w
,

of twist on the axial dynamics can be neglected and
can be used to solve for the evolution of theequation (3)

axis. The twist does not a†ect the axis, but it will be shown
below that the axis does a†ect the twist. We will henceforth
assume we are always in the weakly twisted limit.

In the absence of external Ñow (ue \ 0) equation (3)
admits a simple solution describing the rise of a perfectly
straight horizontal Ñux tube :

r0(l) \ [l, 0, z0(t)] ,

in Cartesian coordinates. The tube rises at a rate deter-vffmined by the balance of buoyancy and aerodynamic drag
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where the various properties of the tube, such as its radius a
and its over-density do, depend on depth. The details of this
solution were presented in and are reviewed brieÑy inLF
Appendix A. For the present, however, we will take toz0(t)be known. This in turn means that all properties of the tube
can also be written as known functions of time : a(t), do(t),
and so on.

The external velocity can be introduced as a small pertur-
bation giving rise to small changes in the straight,r1(x, t)
horizontal axis. At this order we have replaced the length
coordinate l by x, which is the length in the zeroth-order
solution. The equation of motion (3) can be expanded to
next order to give
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The right-hand side consists of the perpendicular com-
ponents of the external velocity evaluated at the position of
the unperturbed axis

v8 e(x, t) 4 ve[x, y \ 0, z\ z0(t), t] , (7a)

w8 e(x, t) 4 we[x, y \ 0, z\ z0(t), t] . (7b)

neglects several terms involving gravity andEquation (6b)
parallel Ñow. These terms are the basis of the Parker insta-
bility, so they are arguably signiÐcant. On the other hand,
the zeroth-order solution is meant to represent a tube
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undergoing the Parker instability ; by discarding such terms
from the Ðrst-order equations we are trying to isolate the
e†ects of turbulence from the rise itself.

Equations and are linear inhomogeneous equa-(6a) (6b)
tions for displacements from the horizontal. Solutions can
be sought as a Fourier series

y1(x, t) \ ;
k

y
k
(t)eikx, v8 e(x, t) \ ;

k
v8
k
e(t)eikx , (8)

and likewise for and Replacing these inz1(x, t) w8 e(x, t).
equations and leads to independent equations for(6a) (6b)
each Fourier mode
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These are equations for driven, damped harmonic oscil-
lators. The damping coefficient is a function of time given
by
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Horizontal perturbations with are over-k \ kcr, M4 j/vAdamped. This critical wavenumber will change over time as
the tube rises.

The tube is initialized to be perfectly straight, y
k
(t \ 0)\

and allowed to deform because of the inÑu-z
k
(t \ 0) \ 0,

ence of the external velocities. These velocities are due to
turbulent convection and will be modeled as random noise.
The properties of this noise derive from the properties of the
turbulence surrounding the rising tube. The horizontal and
vertical distortions will be correlated only in so far as the
random driving velocities and are.v8 e w8 e

3. TWIST AND WRITHE

3.1. Evolution of T wist in a T hin T ube
The Ñux tube, whose axis is r(l), consists of individual

Ðeld lines that twist about this axis. Within a given cross
section of the tube each Ðeld line is assumed to twist with
the same pitch q(l) (positive for right-handed twist). In a
locally cylindrical coordinate system, (-, /, l), the tubeÏs
internal Ðeld must therefore be

(B–, BÕ, B
l
)^ (0, q-B

l
, B

l
) , (11)

where In addition to u, the velocity ofB
l
(l) \ '/[na2(l)].

the tubeÏs center, there is an internal spinning motion

(v–, vÕ, v
l
) ^ (0, u-, 0) , (12)

where u(l) is the angular frequency of spinning about the
axis. Detailed deÐnitions of q(l) and u(l) are presented by
LK.

The twist q(l) of Ðeld lines about the axis, is quite distinct
from any twist that might be present in the axis itself.

shows a horizontal Ñux tube whose axis isFigure 2
deformed into an )-loop with a left-handed sense of pitch.
Such a twist might be caused by the Coriolis e†ect in the
southern hemisphere of the Sun. Along the outside of the
tube are shown representative Ðeld lines. In this example the
Ðeld lines twist about the axis in a right-handed sense, in
spite of the left-handed twist of the axis. We will show below
that this is natural for a tube that is initially straight and
untwisted.

One consequence of the twist q(l) is an axial torque on
any cross section of the tube. For a tube whose pitch is

FIG. 2.ÈHorizontal Ñux tube whose axis r(l) is deformed into a left-
handed )-loop. The Ðeld lines twist about the axis in the right-handed
sense : q(l) [ 0. The tube was initially straight and untwisted. The axis was
distorted sufficiently rapidly that twist has not propagated to the ends.

constant, the torques on each element balance. An axial
variation in q(l), however, leads to unbalanced torques
causing the angular frequency u to change according to

du
dt

\ [2a~1 da
dt

u] vA2
Lq
Ll

. (13)

The Ðrst term on the right-hand side arises from the chang-
ing moment of inertia of an expanding or contracting tube.
The second term arises from torque imbalance. No mecha-
nism has been included for the external Ñow to exert a
torque directly on the tube. Such an e†ect would require
some form of viscous stress on the surface of the tube ; we
ignore such a possibility.

Geometry alone dictates the time evolution of twist q(l)
of a Ñux tube or of a ribbon & Tabor(Klapper 1994).
Accounting for the simultaneous inÑuences of axis motion,
as well as the spinning, yields

dq
dt

\ [fq ] Lu
Ll

] &(l, t) . (14)

The Ðrst term on the right-hand side accounts for a change
in twist q as the axis stretches. The di†erential rate at which
the axis stretches is

f4
d ln (dl)

dt
\ t ü Æ Lu

Ll
. (15)

The second term expresses the increase in twist if the two
ends of a tube element are spinning di†erently. The third
term,

&4
ALt ü
Ll

]
dt ü
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Æ t ü
B

\ (t ü ] j) Æ Lu
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, (16)

depends only on the conÐguration and evolution of the axis.
It is the only term between equations and that is(13) (14)
not linear in either u or q ; as such it can be considered the
source of twist.

It may not be obvious how the motion of a tubeÏs axis can
twist the Ðeld lines that compose it. This is a purely geo-
metrical e†ect, and it can be appreciated by considering
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magnetic helicity. The magnetic helicity, H, of a closed Ñux
tube is a geometric quantity that is strictly conserved under
any ideal plasma motion. It has been shown that for a
thin-Ñux tube the helicity can be decomposed into a part
involving local twist and a part involving only the axis

& Field & Ricca(Berger 1984 ; Mo†att 1992)

H4
P

A Æ B dx \ '2
2n

(Tw] Wr) . (17)

The total twist, Tw, is simply an integral of the local twist q

Tw\
Q

q(l)dl . (18)

The writhe, Wr, represents a helicity contribution from the
axis alone involving a double integral

Wr \ 1
2
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o rA [ r@ o3 , (19)

where and so on. (Conventional deÐnitions ofr@4 r1(l@)these quantities include a prefactor of 1/2n.) By time di†er-
entiating Tw and using the equation forequation (14), q5 ,
gives

d(Tw)
dt

\
Q Adq

dt
] fq

B
dl\

Q
&(l)dl\ [d(Wr)

dt
, (20)

where we have used the fact that dH/dt \ 0. Remarkably,
while Wr itself is a double integral, its time derivative is a
single integral whose density is [&. This can also be veri-
Ðed (with some e†ort) by direct di†erentiation of equation

Thus &(l) represents the local exchange of ““ writhe(19).
density ÏÏ for twist density q.

The rate of extension, f, is related to the change in radius,
a. Since the mass of a tube element, dM \ na2odl, is con-
served, we Ðnd

d ln (dM)
dt

\ 0 \ d ln (a2)
dt

] d ln (o)
dt

] d ln (dl)
dt

.

This allows us to write

2a~1 da
dt

\ [f] vff
"o

, (21)

where is the density scale height at the present depth."o(z)

3.2. A Nearly Straight T ube
Applying equations and to the horizontal rising(13) (14)

tube we Ðnd &\ f\ 0. This means that a tube may riser0remaining untwisted : Considering the per-q0\ u0\ 0.
turbed tube, the terms f and & are both second order in
small quantities :
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Since & is the source term it follows that both q and u are
also second-order quantities. To this order equations (13)

and can be rewritten(14)
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where is a function of time through the depthco 4 vff/"odependence of and Expressing q(x, t) and u(x, t) asvff "o.Fourier series with time-dependent coefficients yields
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The source term can be expressed in terms of the Fourier
coefficients of the axis perturbations
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) . (26)

Equations and are the equations for torsional(25a) (25b)
Alfve� n waves that propagate at (added mass does notvAa†ect torsional motion). The waves damp at a rate cobecause of the rise of the tube. In this sense & is a source
term for torsional Alfve� n waves.

The spatially averaged twist of the Ñux tube is given by
the k \ 0 component, for which the equation takes theq0,much simpler form
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(27)

(any k \ 0 Fourier coefficient must be purely real). This can
be easily solved ; if the tube is initially untwisted, q

k
(0)\ 0,

the solution is

q0\ [;
p
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*) . (28)

It is also possible to place the Fourier expansion of the
nearly horizontal axis into for writhe and Ðnd,equation (19)
to leading order,

Wr \
P
~=

=
Wr0@ dx , (29)

where the average writhe density is given by

Wr0@ \ ;
p

p3 Im (y
p
z
p
*) . (30)

The total writhe of the inÐnitely long Ñux tube diverges, as
does the total twist. The average twist density in the tube
naturally cancels out the average writhe density since the
helicity of the tube must be zero.

The expression quantiÐes the helical nature ofIm (y
p
z
p
*)

the axis in direct analogy to the circular polarization in a
transverse wave (see, e.g., ° 7.2). Consider anJackson 1975,
axis that forms a helix of right-handed pitch p and ampli-
tude R

r1(x) \ R[cos (px)yü ] sin (px)zü ] . (31)

The Fourier coefficients for this case are simply y
p
\ y~p

\
and Placing these in12R z

p
\ [z~p

\ [(i/2)R. equation
gives(30)

Wr0@ \ 12R2p3 . (32)
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The writhe density of a helix is positive if it is right-handed,
thus it will create negative (left-handed) twist in the Ðeld
lines. If the axis were deformed into a helix from a straight
untwisted tube then givesequation (28)

q0\ [12R2p3 ,

in agreement with An arbitrary axis can beLK. r1(x)
decomposed into right-handed and left-handed helices of
varying pitches, just as an arbitrary transverse wave packet
can be decomposed into right and left circularly polarized
components. According to the writhe densityequation (30),
is then the sum of the writhe densities of each helical com-
ponent. The average twist is just the opposite of the writhe
density.

Thus, a rising Ñux tube, initially untwisted, can be twisted
by the action of turbulence if the Ðnal deformed axis has a
net helical pitch. The axis is deformed through the action of
random turbulence, so the Fourier coefficients and willy

k
z
kbe random. On average, there will be a net twist if there is

some statistical correlation between these coefficients

Sq0T \ [;
k

k3 Im Sy
k
z
k
*T , (33)

where the averaging SÉ É ÉT is over di†erent realizations of
the turbulent velocities. As noted above we can expect a
statistical correlation between and only if there is suchy

k
z
ka correlation in the turbulent velocities and In partic-v8

k
e w8

k
e .

ular, producing a nonvanishing value of requiresIm Sy
k
z
k
*T

that be nonvanishing. This implies a ““ circularIm Sv8
k
e w8

k
e*T

polarization ÏÏ of the turbulent velocity, otherwise known as
kinetic helicity.

shows the random perturbations to a model ÑuxFigure 3
tube that has risen from the base of the CZ (z\ 200 Mm) to
a depth of z\ 160 Mm. It has been subject to turbulence
with It is apparent from Figures andIm Sv8

k
ew8

k
e*T [ 0. 3b 3d

that the axis of the tube has a right-handed sense of twist :
positive writhe and Im Sy

k
z
k
*T [ 0.

3.3. T he a-E†ect and the &-E†ect
We argue above that turbulence with nonvanishing

kinetic helicity can cause the Ðeld lines in a Ñux tube to

FIG. 3.ÈAxis of a Ñux tube at a depth of z\ 160. The horizontal (a)
and vertical (c) perturbations are plotted against x. The same tube is shown
in projection in (b) and (d). From the point at x \ 0 (asterisk) thesey1-z1curves progress roughly counterclockwise, indicating a positive writhe.

develop twist. By referring to this twist corre-equation (11)
sponds to a component of the Ðeld, which is locallyBÕ,azimuthal, relative to the primary axial component InB

l
.

treatments of mean Ðeld electrodynamics it is customary to
phrase this generation process in terms of the a-e†ect

& Ra� dler SpeciÐcally, the a-(Mo†att 1978 ; Krause 1981).
e†ect is a change in the axial component of the average
vector potential

LSA
l
T

Lt
\ [cSE

l
T \ [aSB

l
T , (34)

where we omit the terms because of the mean velocities (i.e.,
shear). This deÐnition is such that positive a twists the Ðeld
in the right-handed sense. When applied to an isolated Ñux
tube, however, this equation predicts an azimuthal Ðeld BÕconcentrated mostly at the tubeÏs surface, where B

l
(-)

changes most rapidly. is derived for a mag-Equation (34)
netic Ðeld dominated by a smooth nonstatistical component
that varies over large scales. It is not clear that this tradi-
tional analysis applies to an isolated tube with strong mag-
netic Ðeld & Yuan(Bhattacharjee 1995).

The twist in our Ñux tube is more directly related to the
axial current density

J
l
\ 1

-
L

L-
(-BÕ) \ 2qB

l
, -\ a . (35)

There is also a narrow layer of return current along the
surface -\ a. In analogy to the a-e†ect we shall consider a
change to due to the turbulence alone :J

l

LSJ
l
T

Lt
\ 2Sq5 TB

l
\ 2S&0TB

l
, (36)

ignoring the return current layer. The Ðnal expression
results from using inside the aver-equation (27), q5 0\ &0,ages. Thus, the e†ect of turbulence is to generate a current,
rather than a vector potential ; we refer to this as the &-
e†ect. The coefficient is once again deÐned so that positive

leads to right-handed twist.S&0TIt is important to note that twists the Ðeld linesS&0T [ 0
in the right-handed sense only because the axis is being
twisted in the left-handed sense (see Fluid motionsFig. 2).
with a right-handed sense will deform a Ñux tube in a left-
handed sense This is expected in a rising,(Mo†att 1978).
expanding Ñow, being acted on by the Coriolis force in the
southern hemisphere of the Sun. That is to say, right-
handed Ñuid motions produce left-handed writhe in the Ñux
tube. This leads, by conservation of helicity, to right-handed
twist and therefore to a value in the southernS&0T [ 0
hemisphere. Thus, the &-e†ect should produce J/B[ 0 in
the southern hemisphere (and J/B\ 0 in the northern
hemisphere). These relations, along with the hemispheric
variations in related quantities, are summarized in Table 1.

We present this brief comparison with the a-e†ect simply
because it is another well-known source of twist in MHD.
In fact, the a-e†ect and the &-e†ect are very di†erent pheno-
mena. The a-e†ect relates the evolution of any magnetic
Ðeld to the Ñuid velocity within that Ðeld ; it is derived from
the standard induction equation. The &-e†ect pertains only
to magnetic Ðeld in the form of isolated Ñux tubes. It relates
the evolution of the Ðeld inside the tube to the Ñuid velocity
outside the tube. It follows only from global geometric con-
straints (i.e., magnetic helicity) after assuming a form for the
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TABLE 1

SUMMARY OF THE SIGNS (L^) OF VARIOUS QUANTITIES ASSOCIATED

WITH TWIST AND HELICITY AND THE HANDEDNESS (R OR L)
OF HELICAL FIELD LINESa

North South
Quantity Solar Hemisphere Solar Hemisphere

Su Æ $ Â uT . . . . . . . . . [ ]
a . . . . . . . . . . . . . . . . . . . . . ] [
Im Sv8

k
ew8

k
e*T . . . . . . . . . ] [

Flux tube axis . . . . . . R L
JoyÏs law . . . . . . . . . . . . R L
S&0T . . . . . . . . . . . . . . . . [ ]
J
l
/B

l
. . . . . . . . . . . . . . . . [ ]

apcm . . . . . . . . . . . . . . . . . [ ]

a The signs reÑect the Coriolis e†ect on turbulence in the bulk of
the CZ; rising, expanding material will develop retrograde rotation,
while sinking, contracting material will develop prograde rotation.
Some theoretical studies indicate that several of these signs are
reversed in a layer near the bottom of the CZ. None of the signs is
expected to change with solar cycle.

internal Ñuid motions (i.e., As in all thin-Ñux tubeeq. [12]).
models we lack a self-consistent mechanism(Spruit 1981)
for maintaining the form of the assumed Ñuid motion.
(Interestingly, & Yuan have proposedBhattacharjee 1995
an internal ““ hyper-resistivity ÏÏ mechanism that drives
““ internal ÏÏ Ñows in the presence of a strong magnetic Ðeld.
It conserves helicity and can produce chirality of either sign.
Further investigation might shed light on possible relations
of this to the &-e†ect.)

The a-e†ect is most frequently invoked in magnetic
dynamo models, where it ampliÐes existing magnetic Ñux.
The &-e†ect does not change the Ñux ' of the Ñux tube,
which is constant by hypothesis. Thus, the &-e†ect cannot
generate the observed magnetic Ñux. Rather, it may reconÐ-
gure the Ñux that is generated below the CZ, quite possibly
by the a-e†ect itself. While much work has been done on the
efficacy of the a-e†ect in this generation process, it would
seem to have the wrong sign to explain the handedness of
the emergent Ðeld.

4. CONVECTIVE TURBULENCE MODEL

4.1. Properties of the T urbulence
We wish to estimate the expected magnitude of the &-

e†ect on a rising Ñux tube. During its rise, this Ñux tube is
acted on by the turbulent velocity Ðeld of the solar CZ. We
model this velocity Ðeld by generating and asv8 e(x, t) w8 e(x, t)
random functions whose properties reÑect those expected of
turbulence in a rotating frame. As in we use the mixing-LF
length formalism as a guide.

For homogeneous turbulence the correlation between
di†erent components of the velocity spectrum is character-
ized by the tensor '

ij
(k)

Su
i
e(k)u

j
e*(k@)T \ '

ij
(k)d(k [ k@) . (37)

If the turbulence is incompressible and isotropic but not
mirror symmetric then the tensor has the general form'

ij

'
ij
(k) \ E(k)

4nk2 (d
ij
[ kü

i
kü
j
) ] iF(k)

8nk3 v
ijs

kü
s

(38)

where is the Kronecker delta, is the(Mo†att 1978), d
ij

v
ijsLevi-Civita symbol, and is the ith component of the unitkü

ivector While homogeneity, isotropy and incom-kü \ k/k.

pressibility are routinely assumed in the theoretical investi-
gation of turbulence, they do not obviously apply to the
solar CZ. Quite remarkably, however, some numerical
simulations suggest that the most anisotropic elements are
strong down Ñows that occupy only a small fraction of the
CZ volume. The remainder of the volume, and thus the
majority of the CZ, contains turbulence of a largely iso-
tropic nature & Nordlund et al.(Stein 1989 ; Cattaneo

This isotropic turbulence contains scales equal to or1991).
smaller than the scale height and therefore can be con-
sidered approximately incompressible. In light of these
facts, and because it simpliÐes the model considerably (i.e.,
permitting Fourier analysis), we use the homogeneous, iso-
tropic, incompressible turbulence expression of equation
(38).

The functions E(k) and F(k) are called the energy spec-
trum and helicity spectrum. They are deÐned such that their
integrals give the total energy (per unit mass) and the kinetic
helicity, respectively,

12So ue(x) o2T \ 12
P

'
ii
(k)dk \

P
0

=
E(k)dk , (39)

Sue Æ $] ueT \ [
P

ik
r
v
irj

'
ij
(k)dk \ [

P
0

=
F(k)dk (40)

(repeated indices are summed over). If deÐned according to
the sign of F(k) is opposite to the kineticequation (38)

helicity gives this sign incorrectly ; this error(Mo†att 1978
seems to have been propagated in the literature).

For the spectrum of CZ turbulence we will adopt a simple
model we call the shell model. At any given depth the turbu-
lence is taken to be homogeneous, isotropic, and incom-
pressible and to be characterized by the local mixing-length
velocity and mixing length Furthermore, the spec-vm.l. lm.l..trum is taken to be a monochromatic spherical shell in
wavenumber space ; all motions are strictly at the mixing
length. Thus, the energy spectrum is given by

E(k) \ 32vm.l.2 d(k [ km.l.) , (41)

where The factor of arises from our inter-km.l.4 2n/lm.l.. 32pretation that the mixing length velocity represents thevm.l.rms velocity in one direction only : The heli-vm.l.2 \S(we)2T.
city spectrum will be taken to be

F(k)\ 3hvm.l.2 km.l. d(k [ km.l.) , (42)

where h is a dimensionless parameter. Realizability requires
that oF(k) o¹ 2kE(k) which places the con-(Mo†att 1978),
straint o h o¹ 1. The kinetic helicity of the turbulence is
therefore

Sue Æ $] ueT \ [3hvm.l.2 km.l. . (43)

The parameter h reÑects the kinetic helicity in the turbu-
lence, thus it should reÑect the inÑuence of the Coriolis
force.

The correlations between the driving functions andv8
k
e w8

k
e

can be found by integrating the three-dimensional spectra
over and For the continuous wavevectors this givesk

y
k
z
.

Su
i
e(k

x
)u

j
e*(k

x
@ )T \ d(k

x
[ k

x
@ )
P

'
ij
(k)dk

y

] dk
z
] d

kx,kx{ *k
x

P
'

ij
(k)dk

y
dk

z
,
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FIG. 4.ÈCharacteristics of the rising Ñux tube as a function of depth z, plotted vertically with the top (z\ 0) at the top of the plots. (a) Characteristic
frequencies : j (solid line), (dashed line), (dot-dashed line), and 2 (dotted line). (b) Characteristic lengths in megameters : (solid line), aco 1/t

c
)

_
sin 30¡ lm.l.(dotted line), and the critical damping lengths for shear and torsional Alfve� n waves ( dashed line ; dot-dashed line, respectively). (c) Kinetic2n/kcr, M : 2n/kcr, O

:
helicity coefficient h(z) for model H with and h \ 10¡ (dot-dashed line). Also shown are at h \ 10¡ (solid line) and h \ 3¡, 30¡ withh6 \ 0.5 h6 \ 0.2, 1 h6 \ 0.5
(dashed line). (d) Comparison with model B (solid line) for at h \ 3¡, h \ 10¡, and h \ 30¡. Note that this uses linear axes. Broken and dashed linesh6 \ 0.5,
correspond to the same curves in (c).

where the Ðnal expression is the version for discrete spectral
modes separated by Performing the integral for the*k

x
.

cases of i \ j\ 2 and i \ j\ 3 gives

Sv8
k
e v8

k{
e*T \ Sw8

k
e w8

k{
e*T \ 3vm.l.2

8km.l.

A
1 ] k2

km.l.2
B

] *kd
k,k{ , o k o¹ km.l. , (44)

where the index k is used for to correspond to the nota-k
xtion from the remainder of the paper. did not assumeLF

incompressible turbulence and found a slightly di†erent
correlation ; the discrepancy in the Ðnal results is approx-
imately 10%. Note that even though the homogeneous
turbulence is localized to the wavenumber wheno k o\ km.l.,the spectrum is projected onto the there is energy atk

x
-axis

all lower wavenumbers.
The case where i \ 2 and j \ 3 gives the correlation

between velocity components

Sv8
k
e w8

k{
e*T \ 3ihvm.l.2 k

4km.l.2 *k d
k,k{ , o k o¹ km.l. . (45)

These correlations are the properties characterizing the
turbulent velocity Ðelds that are relevant to the rising Ñux
tube.

Appendix B describes the algorithm for generating pseu-
dorandom functions and satisfying the abovev8

k
e(t) w8

k
e(t)

properties. These functions are used as inputs for the axis
evolution equations and whose solutions are used,(9a) (9b),
in turn, as inputs for the twist evolution equations and(13)

The properties of the random functions depend on the(14).
local values of and h, which are discussed below.km.l., vm.l.,

4.2. Properties of the Convection Zone
The parameters and are standard features ofkm.l. vm.l.mixing length theory. We take these, and other atmospheric

functions of depth, from the CZ model given by Spruit
because this same model has been used in several(1974)

previous theoretical investigations Fisher, & DeLuca(Fan,
Fisher, & McClymont compared1993 ; Fan, 1994 ; LF). LF

their results when a di†erent CZ model was used and found
little di†erence.

The kinetic helicity of CZ turbulence is not as well under-
stood theoretically. To assign a value to the parameter h we
reason as follows. Kinetic helicity in CZ turbulence arises
through the action of Coriolis forces on upwelling-
expanding or downÑowing-contracting gas. If the rotation
were absent, or the upwelling did not interact with it, the
Ñuid motion would not be helical. Thus, at solar latitude h
we expect it is positive in the northern hemi-h D )

_
sin (h) ;

sphere. For the Coriolis force to be e†ective, the rotation
timescale must be smaller than the eddy timescale (when
this is not the case, as it is not in an ordinary bathtub, the
Coriolis force has negligible e†ect). In CZ turbulence the
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eddy turnover time is Thus, we look fortm.l.4 1/(vm.l. km.l.).the inverse of the Rossbyh D 2tm.l.)_
sin (h) 4 Ro~1,

number Ruzmaikin, & Sokolo† Finally,(Zeldovich, 1983).
even when completely dominated by rotation it is not pos-
sible for h to exceed unity. Placing an upper bound of h6 ¹ 1
we propose a simple form we call model H:

h \ h6Ro~1
Jh6 2] Ro~2

. (46)

This model endows the kinetic helicity with the following
limiting forms et al.(Zeldovich 1983) :

Sue Æ $] ueT \
G[2vm.l.)_

sin (h) ,
[h6 vm.l.2 km.l. sgn (h) ,

Ro~1> 1 .
Ro~1? 1 .

(47)

Several numerical simulations of compressible turbulence
in a rotating atmosphere have shown a kinetic helicity that
changes sign near the bottom boundary (Glatzmaier 1985 ;

et al. This is attributed to the horizon-Brandenburg 1990).
tal expansion of descending material encountering a lower
boundary. In particular, Brandenburg et al. found that

Sue Æ $] ueT
2)vm.l.

was roughly sinusoidal with depth over the single density
scale height of their simulation. To mimic this behavior we
propose model B

h(z) \ h6Ro~1
Jh6 2 ]Ro~2

]
Gsin Mln [o(z)/o0]N ,
1 ,

o(z) º e~1o0 ,
o(z) \ e~1o0 ,

(48)

where is the density at the base of the convectiono0\ o(Z0)zone. This form is chosen to provide a layer, one density
scale height deep, in which the kinetic helicity has the sign
opposite to that characteristic of the hemisphere.

We will explore the efficacy of the &-e†ect in turbulence
characterized by both model H and model B, with a range
of values of Model H has the advantage of being straight-h6 .
forward and having fewer ad hoc elements. Model B con-
tains a layer of reverse kinetic helicity that is theorized to
exist in the solar CZ. It would seem that this layer might
a†ect the amount of twist imparted to the Ñux tube and
perhaps even change its sign. In fact, we will Ðnd that choice
of model and choice of have very little e†ect on the Ðnalh6
twist. For this reason, we will limit our consideration to
these two models and one free parameter.

The properties of the model CZ are summarized in
This depicts a Ñux tube with '\ 1021 Mx andFigure 4.

kG. The di†erent helicity models are compared inB0\ 30
Figures and Note that Ro~1 increases rapidly at the4c 4d.
very bottom where the eddy turnover time increases. In
almost all cases this is the only place that comes intoh6
e†ect. The bottom density scale height spans the depths 119
Mm \ z\ 200 Mm; this is where model B di†ers from
model H.

5. RESULTS OF THE MODEL

5.1. T he Numerical Calculations
The implementation of the above model proceeds as

follows. First, the parameters are set, consisting of ', theB0,latitude h, and the kinetic helicity model (H or B) with its

parameter All runs use an initial magnetic Ðeld strengthh6 .
kG, since this has been found to be reasonable inB0\ 30

other simulations et al.(Fan 1993 ; LF).
The zero-order rise is solved up to a minimum depth Z

f
.

We adopt a value Mm, since beyond this the radiusZ
f
\ 30

of the Ñux tube makes thin equations unlikely to be valid.
The equations of the Ðrst-order axial evolution equations

and are solved using the zeroth-order solution and(9a) (9b)
a single realization of the random functions andv8

k
e(t) w8

k
e(t).

This realization is generated using the algorithm described
in Appendix B, which uses a pseudorandom number gener-
ator. Integration of equations and results in(9a) (9b)
Fourier coefficients and at depth The super-y

k
(1) z

k
(1) Z

f
.

script here indicates that these are but a single realization of
the random Ðelds. An example of these solutions is shown in
Figure 3.

These Ðrst-order equations are then solved repeatedly
using di†erent realizations of and each time. Thisv8

k
e(t) w8

k
e(t)

gives N di†erent values for each Fourier coefficient, e.g., y
k
(i) ,

i \ 1, 2, . . . , N, which can be used to estimate ensemble
averages, e.g.,

So y
k
o2T ^ SSo y

k
o2TT

N
4

1
N

;
i/1

N
o y

k
(i) o2 . (49)

The calculated average is only an approximationSS É É É TT
Nto the theoretical ensemble average S É É É T. The approx-

imation naturally improves as the sample size N is
increased.

Each realization of the tube axis, is then usedy
k
(i)(t), z

k
(i)(t),

to Ðnd in the twist equations and Inte-&
k
(i)(t) (25a) (25b).

grating these equations gives a realization of the tubeÏs
twist, and spin, The Ðrst of these can be used toq

k
(i) , u

k
(i) .

estimate the mean twist This quantity can also beSq0T.
estimated using purely axial information

Sq0T ^ SSq0TT
N

^ [;
k

k3 Im (SSy
k
z
k
*TT

N
) . (50)

These two estimates for are found to agree very well.Sq0TThe value of changes during rise according toSq0T shows the values of andequation (27). Figure 5 SSq0TT
Nas a function of depth z (increasing downward).SS&0TT

NThe runs were done for '\ 3 ] 1021 Mx, kG,B0\ 30
h \ 10¡, and a turbulence of model H with Theh6 \ 0.2.

FIG. 5.ÈEvolution of twist for a Ñux tube with '\ 3 ] 1021 Mx, at
h \ 10¡ latitude. Turbulence is generated with model H and Theh6 \ 0.2.
averages are estimated from N \ 1000 runs. Shown are (solid line)SSq0TT

Nin units of 10~3 Mm~1 and (dashed line) in units of 10~8 Mm~1SS&0TT
Ns~1.
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averages are based on N \ 1000 realizations. Both quan-
tities increase slowly in the lower half of the CZ and much
more rapidly thereafter. At the depth Mm,z\ Z

f
\ 30

where the simulation is stopped, SSq0TT
N

\ [4.1] 10~3
Mm~1.

The mean twist at a position x along the tube is found
from averaging its Fourier expansion

Sq(x)T \;
k

Sq
k
Teikx \ Sq0T

since for The typical departure from thisSq
k
T \ 0 k D 0.

mean is characterized by the dispersion *q

(*q)24 Sq2(x)T [ Sq(x)T2\ ;
k

So q
k
o2T [ Sq0T2 . (51)

There is an intrinsic dispersion *q in the twist because of
the statistical nature of the &-e†ect ; it is not an error.

shows numerical estimates of each of the spectraFigure 6
for the tube from Raw averages, such asFigure 5. So y

k
o2T,

depend on the spacing of wavenumbers *k \ 2n/L , where L
is the length of the horizontal tube. (In all the runs here
L \ 1200 Mm, but this is not relevant to the results. See the
discussion in of We plot spectral densities such as° 4.1 LF).

SSo y
k
o2TT

N
*k

,

which are independent of L . A sum of over kSSo y
k
o2TT

Nthen corresponds to an integral of the density over a contin-
uous wavenumber k.

shows the spectral energy densities of the axialFigure 6a
perturbations

k2SSo y
k
o2TT

N
*k

,
k2SSo z

k
o2TT

N
*k

,

as reported by The vertical perturbationsLF. (SSo z
k
o2TT

N
)

are larger because of the higher drag in theirequation (9b) ;
density is the higher curve. shows the correlationFigure 6b

density

k3 Im (SSy
k
z
k
*TT

N
)

*k

in the lower curve. The integral of this curve gives the esti-
mate of Mm~1 from the lastSSq0TT

N
\ [4.1] 10~3

expression in The upper curve shows theequation (50).
theoretical maximum of this quantity

k3SSo y
k
o2TT

N
1@2SSo z

k
o2TT

N
1@2

*k
(52)

for comparison. A ratio of the two curves gives the degree of
correlation between the perturbations

Im (SSy
k
z
k
*TT

N
)

SSo y
k
o2TT

N
1@2SSo z

k
o2TT

N
1@2 ,

which is at the level of ^9% here.
Figures and show the spectral densities of the6c 6d

source and the twist

S&(k) 4
SSo&

k
o2TT

N
[ SS&0TT

N
2 d

k,0
*k

, (53)

S
q
(k) 4

SSo q
k
o2TT

N
[ SSq0TT

N
2 d

k,0
*k

, (54)

respectively. According to the integral ofequation (51) S
q
(k)

provides an estimate of the scatter. Here we Ðnd that
*q ^ 5.0] 10~2 Mm~1 is approximately 10 times larger
than the mean Sq0T.

The numerical estimate has an error whichSSq0TT
N

p
q
,

decreases for increasing sample size N. Denoting by K the
half-width at half-maximum of the main peak in weS

q
(k),

FIG. 6.È(a) Axial energies (bottom line) and (top line). (b) The cross correlation (bottom line) and its theoreticalk2So y
k
o2T/*k k2So z

k
o2T/*k k3ImSy

k
z
k
*T/*k

maximum (top line) from (c) The spectral density of the source term. (d) The spectral density of the twist.eq. (52). S&(k) S
q
(k)
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FIG. 7a FIG. 7b

FIG. 7.ÈSpectral densities (a) and (b) during the rise of the tube. The tube is the same as in The curves represent the depths, from bottomS&(k) S
q
(k) Fig. 6.

to top, z\ 150, 100, 70, 50, and 30 Mm.

can estimate the error as

p
q
4
ASSq02TT

N
[ SSq0TT

N
2

N [ 1
B1@2

^
1

JN

A*k
K
B1@2

*q .

(55)

This is smaller than the intrinsic dispersion *q because the
N runs represent multiple independent samples of the twist
q(x). The twist is correlated with a length so eachl

k
\ 2n/K

tube contains independent samples of theL /l
k
\ K/*k

twist. N independent Ñux tubes then give an estimate of
with the error above. For the run being consideredSq0T p

qMm~1, which is 5% of the mean.p
q
^ 2 ] 10~4
The shape of the twist spectrum reÑects that of itsS

q
(k)

source The nature of the relation is further elucidatedS&(k).
by plotting the spectral densities at increasing depths z (Fig.

This reveals that the source function increases in magni-7).
tude as the tube rises. The twist spectrum also grows as the
tube rises.

5.2. Variation of Parameters
Simulations of the nature described above are conducted

for Ñux tubes with varying parameters. Each simulation
consists of N \ 1000 realizations yielding errors akin to
those just explored. For ready comparison to the obser-
vations from we convert the twist q into ““ helicity ÏÏPCM,

using to giveapcm equation (35)

SapcmT 4 2Sq0T , *apcm4 2*q . (56)

First we consider a Ñux tube whose Ñux is of typical
magnitude '\ 3 ] 1021 Mx. We use model H with h6 \ 0.2
and vary the latitude h. shows in units ofFigure 8 SapcmT
10~8 m~1 for comparison with The statisticalFigure 1.
errors in each data point are all m~12p

q
^ 0.04] 10~8

(smaller than the diamonds) as in A linear ÐtFigure 6.
(dotted line)

SapcmT ^ [5.8] 10~10hdeg m~1 , (57)

is not within the error bars, indicating that the actual
dependence on latitude is only approximately linear. This
approximate Ðt is about twice as large as that observed by

The power lawPCM (Fig. 1a).

SapcmT \ [3.03] 10~8(sin h)3@4 m~1 (58)

(dashed line) more accurately Ðts the results of the simula-
tions.

The solid lines in show deÐning theFig. 8 SapcmT^ *apcmexpected range of values. The dispersion is indepen-*apcmdent of latitude to within statistical errors. In fact, the spec-
tral densities at each latitude, including h \ 0, areS

q
(k)

indistinguishable from one another. This is an important
and possibly observable feature of the &-e†ect. Each mode

is driven by the local turbulence. Its variance reÑects theq
klevel of turbulence, which is independent of latitude. Only

depends on cross correlations that are latitude depen-Sq0Tdent.
The next series of runs explores the Ñux dependence of

the &-e†ect. shows for Ñux tubes ofFigure 9a o SapcmT o
varying Ñuxes ' at latitudes of 10¡, and 30¡ (the absol-2¡.5,
ute value is shown since in the northernSapcmT \ 0
hemisphere). A single Ðt

SapcmT \ [5.64] 10~8(sin h)3@4'21~0.69 m~1 , (59)

is made to all three curves is the Ñux in units of 1021('21Mx). This Ðt includes the latitude dependence from
Each data point represents N \ 1000 trials,equation (58).

and the statistical errors are only a signiÐcant fraction of the
mean at The dispersion (solid line) dependsh \ 2¡.5. *apcmon ' but not on latitude.

The Ðnal sets of runs explore the dependence on the
kinetic helicity model. shows the variation inFigure 9b

FIG. 8.ÈMean helicity of a 3] 1021 Mx Ñux tube as a functionSapcmT
of latitude. Values from simulations are shown as diamonds. Solid lines
show and broken lines show (seeSapcmT^ *apcm SapcmT^ *a6 pcm eq. [66]).
Two Ðts are shown as dotted and dashed lines.
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FIG. 9a FIG. 9b

for various parameters. (a) Against Ñux ' for model H and at latitudes of (squares), 10¡ (diamonds) and 30¡ (triangles).FIG. 9.Èo SapcmT o h6 \ 0.2 2¡.5
Dashed lines are the single Ðt The dispersion (solid line) does not depend on latitude. (b) Against values of for model H (diamonds) and(eq. [59]). *apcm h6
model B (squares). Dashed line is a Ðt Statistical errors, m~1, are independent of or model type.(eq. [60]). 2p

q
^ 0.02] 10~8 h6

with for model H (diamonds) and model Bo SapcmT o h6
(squares). The Ñux tube has '\ 3 ] 1021 Mx and is at a
latitude of h \ 10¡. The two models are indistinguishable
regardless of This may seem remarkable since model Bh6 .
contains the opposite sign of kinetic helicity in the bottom
half of the CZ. The top of the CZ, however, contributes
almost all of the twist to the tube since the amplitude of the
turbulence increases so much with decreasing depth (see,
e.g., A Ðt to the data,Fig. 5).

SapcmT \ 0.92] 10~8[1[ 0.05(ln h6 )2] m~1 , (60)

is shown primarily as a guide. Note, however, that for h6 º
0.1 the level of twist does not vary greatly. Because of this
low sensitivity we have chosen to forego the investigation of
still other models of kinetic helicity in CZ turbulence.

FIG. 10.ÈPlots of tilt angle and twist for N \ 1000 realizationst6 (i) a6 pcm(i)
of a Ñux tube with '\ 3 ] 1021 Mx at h \ 10¡. Histograms of each vari-
able are shown along the corresponding axis. The mean of each is indicated
by a dotted line. The histogram of is Ðt by a Gaussian of widtht6 *t6 \
5¡.99.

5.3. Relation between T wist and T ilt Angle
The results above show the average properties of the Ñux

tube twist. For each realization it is possible to evaluate
at a single point, say x \ 0, taken to represent the topapcmof an emerging Ñux tube (LF)

apcm(i) \ 2q(x \ 0) \ 2 ;
k

q
k
(i) . (61)

The apex of this tube deviates from its mean direction for(xü
the horizontal tube ; JoyÏs law is not present in the model)
making a tilt angle t

tan t(i)\ dy
dx
K
x/0

\ ;
k

iky
k
(i) . (62)

The arbitrariness of the tube apex (x \ 0) is necessary
because the zeroth-order solution is a horizontal tube
rather than an arched )-loop with a deÐnite apex.

An idealized active region consists of two points on the
photosphere, straddling the apex, separated by a distance d.
Following we Ðx d using the empirical relation ofLF
Howard (1992)

d \ d@'21] d0 , (63)

where d@\ 46.6 Mm and Mm. (For thed0\ 25.0
'\ 3 ] 1021 Mx Ñux tube we Ðnd d \ 165 Mm). Taking
the poles to be located at x \ ^d/2 gives a bipole whose tilt
is

tan t6 (i)\ d~1[y(x \ d/2) [ y(x \ [d/2)]

\;
k

iky
k
(i) sin (kd/2)

kd/2
. (64)

Similarly, we deÐne a mean twist by averaging over thea6 pcmregion [d/2 ¹ x ¹ d/2

a6 pcm(i) 4 2d~1
P
~d@2

d@2
q(x)dx \ 2 ;

k
q
k
(i) sin (kd/2)

kd/2
. (65)

It can be quickly veriÐed that however,Sa6 pcmT \SapcmT,
the dispersion in will be less than that ina6 pcm apcm,

(*a6 pcm)2\ 2 ;
k

So q
k
o2T
Csin (kd/2)

kd/2
D2

, (66)

as shown by the broken lines in Figure 8.
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Each realization of the turbulent velocity results in values
of and is a scatter plot showingt6 (i) a6 pcm(i) . Figure 10
N \ 1000 realizations of a tube with '\ 3 ] 1021 Mx at
h \ 10¡, using model H with The tilt angles have ah6 \ 0.2.
Gaussian distribution with width about a mean*t6 \ 5¡.99
of consistent with (in the tilt angle isSt6 T \ 0.0, LF LF t6
lamentably denoted by a). The twists are distributed about
a mean of m~1 with the dispersionSapcmT \ [0.82] 10~8
of m~1. The histogram on the left can*a6 pcm\ 3.81] 10~8
be directly compared to in whichFigure 1b *apcm\ 1.28
] 10~8 m~1.

The individual tilts and twists, and appear com-t6 (i) a6 pcm(i) ,
pletely uncorrelated with one another. SpearmanÏs rank
order correlation test yields o \ 0.02, which is consistent
with uncorrelated data at a 49% conÐdence level. In an
actual Ñux tube the apex will tilt because of Coriolis force,
giving rise to a mean consistent with JoyÏs law.St6 T D 0
This mean will naturally depend on latitude, as does Sa6 pcmT.
Thus, the tilt angle and measured twists will be correlated
by the mutual dependence of their mean values on latitude.
Each of these variables exhibits signiÐcant scatter in addi-
tion to their mean values. The model above indicates that
the scatter will be uncorrelated. Recent analysis of the PCM
data set provides a preliminary indication that this may be
the case & CanÐeld(Pevtsov 1998).

6. DISCUSSION

This work has presented a mechanism by which twist can
be introduced into an isolated subphotospheric Ñux tube. A
helical deformation of the tubeÏs axis (writhe) will cause the
Ðeld lines within the tube to twist about the axis in the
opposite sense. This is a geometric consequence of the con-
servation of magnetic helicity and has been noted by pre-
vious investigators & Field & Ricca(Berger 1984 ; Mo†att

Here we note that the handedness of the twist,1992 ; LK).
and not of the writhe, determines the sign of since theapcmelectric current depends on the curl of the Ðeld.

The Coriolis e†ect helically deforms the Ñux tube axis
directly on the large scale characteristic of the CZ depth.
This deformation is manifest in the bipolar tilt angle
described by JoyÏs law. In addition, turbulence of the CZ
can introduce helical deformation on small scales (at the
mixing length) if the turbulence contains a nonvanishing
kinetic helicity ; we call this the &-e†ect. Both of these
helical deformations will be of the handedness appropriate
to explain the twist observed by This sense isPCM.
opposite to that of the well-known a-e†ect, which therefore
must disagree with these observations.

We believe that small-scale helical deformations, due to
convective turbulence, are the most signiÐcant source of
twist in active region Ñux tubes. The source term for mag-
netic twist, & in involves three spatial deriv-equation (16),
atives, so it will be dominated by small scales. As further
evidence, the measurements of show a large statisticalapcmdispersion (larger than the measurement errors), suggesting
a turbulent or random origin.

We have performed a simple calculation to estimate the
amount of twist the &-e†ect may produce. This involved a
straight horizontal tube that is distorted by turbulent
velocities as it rises through the CZ. The distortions are
treated as small perturbations. These assumptions are made
to simplify the calculation and give a Ðrst estimate of this
new phenomenon. The model does include a back reaction
by the Lorentz force, an aspect often omitted from treat-

ments of the a-e†ect. Furthermore, the turbulent velocity is
endowed with a kinetic helicity whose spectrum and ampli-
tude vary with depth.

The results of these simulations indicate that the &-e†ect
is signiÐcant enough to account for the observed active
region twist. Our estimated values of and its sta-SapcmT
tistical dispersion are about twice as large as*a6 pcmobserved values. Its variation with latitude is consistent
with observations. Given the crudeness of the model, this is
a very encouraging agreement. It is likely that these values
will decrease with some of the improvements to the model ;
a more realistic turbulence spectrum would distribute the
Ñuctuations more broadly in wavenumber, and an )-loop
would permit propagation of twist away from the apex.

The model also suggests several signatures of the &-e†ect
that might be tested with future observations. First, the
mean twist scales inversely with active region Ñux

SapcmT D '~0.69 . (67)

Such inverse scaling is common in Ñux tube models, since
larger Ñux tubes rise more rapidly, providing less time for
the actions of turbulence or of the Coriolis force. Similar
Ñux scalings, predicted in t and *t, were conÐrmed to exist
in Wilson sunspot data et al. Second, the(Fisher 1995).
dispersion is found to be independent of latitude. The*apcmdispersion depends on the amplitude of Ñuctuation induced
by the turbulence and not on its correlation properties.
Most CZ models predict turbulence whose amplitude does
not vary with latitude, even while correlations, such as
kinetic helicity, do vary. Finally, Ñuctuations in areapcmfound to be uncorrelated with Ñuctuations in tilt angle t.

Our model relies on several approximations that are
subject to a posteriori veriÐcation. As in Longcope & Fisher

we introduced the turbulent velocity ue as a small(LF)
perturbation to the drag on the rising tube. This was prem-
ised on the assumption so that the tube risingvm.l.> vffthrough a static atmosphere, at can be used as a lowestvff,order solution. Comparing with we Ðnd thatvff(z) vm.l.(z)this scaling holds except near the very bottom of the CZ. It
stands to reason that this scaling should hold since the
mixing length velocity is found from the buoyant freevm.l.rise of a Ñuid parcel that exchanges heat much more e†ec-
tively than the Ñux tube does (the Ñuid parcel completely
thermalizes over a single scale height, and the Ñux tube rises
essentially adiabatically). After this, we approximate the dis-
tortions to the tube, and to be small enough toy1(x) z1(x)
permit linearization. At least for this is equivalent toy1(x)
making a small angle approximation for the tilt angle t as
studied by Inspection of reveals thatLF. Figure 10
ot o\ 15¡ for the medium Ñux tube ('\ 3 ] 1021 Mx), well
within the scope of the small angle approximation. Since the
dispersion scales inversely with Ñux, *tD '~3@4 we(LF),
expect the almost straight approximation to be violated
only for smaller Ñux tubes : '\ 1021 Mx.

By far the most questionable approximation is the treat-
ment of the lowest order Ñux tube as perfectly straight
instead of as an )-loop. The e†ects of this approximation
are investigated in more detail by The apex of anLF.
)-loop is horizontal, so there is some validity to the model.
In truth, however, the approximation was made in order to
yield a more tractable model and arrive at preliminary esti-
mates of this new e†ect. Better estimates of twist due to the
&-e†ect will come from using a more accurate treatment of
the Ñux tube. This would almost certainly entail full nonlin-
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ear simulations using the full versions of the twist equations
and Given the statistical nature of the problem it(13) (14).

will be necessary to do N D 1000 runs at any given param-
eters.

Further improvements can be sought in more realistic
models of CZ turbulence. We have used the shell model
because it is simple and because there is little ambiguity in
the introduction of kinetic helicity. While more sophisti-
cated models of compressible turbulence have been devel-
oped & Mazzetelli these models do not yet(Canuto 1991),
include rotation. Without a good model for the helicity
spectrum F(k) it would seem to be difficult to improve on
the shell model.

The &-e†ect is only one possible mechanism for the intro-
duction of twist. Other investigators have proposed origins
such as zonal jets or di†erential rotation. It(Rust 1994)
would be instructive to estimate the magnitudes of thatapcmeach such mechanism might produce. Making such quanti-
tative comparisons with observation should discriminate

among the models. It has also been proposed that twist is
present in a Ñux tube even before it rises ; that twist is pro-
duced by the solar dynamo Fisher, & Arendt(Longcope,

& Emonet Zweibel, &1996 ; Moreno-Insertis 1996 ; Fan,
Lance Barring great strides in an understanding of1998).
magnetic dynamos, the best evidence for this hypothesis
may come by eliminating all other mechanisms.
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APPENDIX A

THE RISE OF A HORIZONTAL FLUX TUBE: THE LOWEST ORDER

The lowest order solution consists of a straight, horizontal Ñux tube rising through a static atmosphere. This was(t ü \ xü )
studied in detail by Below we outline the solution used byMoreno-Insertis (1983). LF.

Neglecting inertia, the tube rises at its terminal velocity determined by a balance of upward buoyancy and downward drag :

vff4
AK do

o
K gan
C

D

B1@2
. (A1)

This terminal velocity depends on the tubeÏs present depth, which is itself determined by the rise,z\ z0,

dz0
dt

\ [vff(z0) . (A2)

Since the internal and external mass densities are approximately equal (o do o> o), the tubeÏs radius is an explicit function of
depth, where and are the radius and (external) mass density at the beginning of the rise and o(z) isa(z) \ a0[o0/o(z)]1@2, a0 o0the mass density of the local atmosphere.

The tubeÏs relative overdensity, do/o, is determined by instantaneous balance of pressure between the inside and the outside
of the tube, pe \ pi] B2/8n, which can be expanded about small di†erences of density and temperature to give

do
o

] dT
T

] B2
8np(z)

\ 0 . (A3)

The magnetic Ðeld, B, can be found readily from the Ñux, ', and the tube radius, a(z). The temperature di†erence, dT , will
evolve both through the adiabatic expansion of the tube, compared with the superadiabatic temperature gradient of the CZ,
and also through thermal di†usion,

d
dt

dT \ T (z)
H

p
(z)

(+[ +ad)vff(z) [
1
qth

dT , (A4)

where is the radiative cooling time for a cylindrical Ñux tube Chow, & McClymont For Ñux tubes largerqth (Fisher, 1989).
than 1020 Mx this timescale is typically very long and the tubeÏs thermal relaxation is unimportant (Moreno-Insertis 1983 ;

et al.Fisher 1989).
Both equations and can be simultaneously integrated in time to yield the entire zeroth-order solution. The(A2) (A4)

external atmosphere determines functions o(z), p(z), and so on. These are taken from the model of as in TheSpruit (1974) LF.
initial temperature di†erence is speciÐed in terms of the fraction 1[ v, by which it counteracts magnetic buoyancy :

dT (Z0) \ [(1 [ v)T0
B02

8np0
. (A5)

For v\ 1 the tube would begin at the same temperature as its surroundings while for v\ 0 the tube(Moreno-Insertis 1983),
would be in mechanical equilibrium (do \ 0) until the e†ects of thermal di†usion came into play. All runs use the value
v\ 0.5.



No. 1, 1998 FLUX TUBE TWIST 431

APPENDIX B

GENERATING THE EXTERNAL VELOCITY FUNCTIONS

To generate the random functions and we use the algorithm from The velocity functions must each havev8
k
e(t) w8

k
e(t) LF.

properties of homogeneous turbulence with moments reÑecting the conditions at the present depth. In addition they must be
correlated with one another to endow the turbulence with kinetic helicity. As a Ðrst step we generate an uncorrelated random,
complex function and through the previous algorithmm

k
(t) g

k
(t)

m
k
(t) \ vm.l.(t)Fk

[km.l.(t)]Wk
[q(t)] , (B1)

g
k
(t) \ vm.l.(t)Fk

[km.l.(t)]W k
{[q(t)] . (B2)

The randomness derives from the complex functions and which are independent of one another and areW
k
(q) W

k
{ (q),

exponentially correlated in their argument

SW
k
(q)W

k
*(q@)T \ exp ([o q[ q@ o) , (B3)

and likewise for To produce velocity functions with the local correlation time we deÐne q(t) asW
k
{ (q). t

c
(t)

q(t)4
P
0

t dt@
t
c
(t@)

. (B4)

Thus, and are spatial white noise but have a Ðnite correlation time. The real and imaginary parts of each areW
k

W
k
{

uncorrelated with one another and have the same distribution.
The spatial structure is provided by the Ðlter function This is deÐned with reference to for the shellF

k
(km.l.). equation (44)

model

oF
k
(km.l.) o2 \ 3

8km.l.

A
1 ] k2

km.l.2
B
*k , o k o¹ km.l. (B5)

and vanishes for This Ðlter function has the propertyo k o[ km.l..
;
k

oF
k
(km.l.) o2\ 1 , (B6)

so that the With this Ðlter the average magnitude is;
k

So m
k
o2T \ vm.l.2 .

So m
k
o2T \ 3vm.l.2

8km.l.

A
1 ] k2

km.l.2
B
*k , o k o¹ km.l. . (B7)

The complex functions and have identical moments but are not correlated with one another. We seek velocities, alsom
k

g
kwith identical moments, but also with the cross correlation

Sv8
k
ew8

k
e*T

So v8
k
e o2T \ 2ihk/km.l.

1 ] k2/km.l.2 4 i sin (c
k
) , (B8)

where is an angle deÐning the degree of cross correlation. Correlated velocities are constructed by mixing andc
k

m
k

g
kaccording to the prescription

v8
k
e \ 1

J2
(m

k
eick@2[ g

k
e~ick@2) , (B9)

w8
k
e \ 1

J2
(m

k
e~ick@2] g

k
eick@2) . (B10)

This deÐnition can be seen to give the correlations

Sv8
k
e v8

k
e*T \ Sw8

k
e w8

k
e*T \ So m

k
o2T ,

Sv8
k
e v8

k
eT \ Sw8

k
e w8

k
eT \ Sv8

k
ew8

k
eT \ Sm

k
2T \ 0 ,

Sv8
k
e w8

k
e*T \ [Sw8

k
e v8

k
e*T \ i sin (c

k
)So m

k
o2T .
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