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ABSTRACT

We report preliminary results of a three-dimensional simulation of the buoyant rise of a strongly twisted, kink-
unstable magnetic flux tube through a gravitationally stratified layer representing the solar convection zone. The
numerical calculations employ the well-known anelastic approximation, which is suitable for studying slow,
subsonic dynamical processes in the pressure-dominated, high-b plasma of the solar interior. This Letter inves-
tigates the case in which the initial twist of the buoyant flux tube is sufficiently high that the e-folding growth
times of the unstable kink modes are short in comparison to the rise time of the flux tube. Our simulation shows
that the flux tube becomes kinked and that the top portion of the flux tube evolves into a buckled shape with
the tube axis being deflected by more than 907 from its original orientation. We suggest that the emergence of
this buckled flux tube can give rise to a compact magnetic bipole with polarity order inverted from Hale’s polarity
law, similar to the configuration often seen in d spots.

Subject headings: MHD — Sun: interior — Sun: magnetic fields

1. INTRODUCTION

There is mounting evidence from both observations (e.g.,
Tanaka 1991; Lites et al. 1995; Leka et al. 1996) and theoretical
considerations (e.g., McClymont & Fisher 1989; Low 1996;
Moreno-Insertis & Emonet 1996; Fan, Zweibel, & Lantz 1998;
Matsumoto et al. 1998) that suggests the direct emergence of
current-carrying (or twisted) magnetic flux tubes from the solar
interior. Through careful analysis of magnetic and velocity data
of two flare-active d spot groups, Tanaka (1991) inferred a
model of the emergence of a twisted magnetic knot to explain
the evolution of the d groups. The possibility of kinked flux
tubes as the origin of d spots has recently been investigated by
Linton, Longcope, & Fisher (1996) and Linton et al. (1998a,
1998b), who performed linear and nonlinear calculations of the
kink instability of a twisted magnetic flux tube in a uniform
fluid without the effects of gravity and stratification. In an effort
to study the dynamic evolution of emerging magnetic flux tubes
in the solar convection zone, we have developed a three-di-
mensional anelastic MHD code. This code enables us to model
more realistically the nonlinear evolution of the kink instability
of a twisted magnetic flux tube as it rises buoyantly through
a gravitationally stratified layer. In this Letter, we describe the
evolution of a buoyant flux tube that has an initial twist that
is significantly above the critical limit for the onset of the kink
instability.

2. THE PHYSICAL PROBLEM AND NUMERICAL METHOD

The linear kink instability of a twisted magnetic flux tube
in the ideal MHD limit has been studied in numerous previous
investigations (see Linton et al. 1996 and references therein).
For the calculations in this Letter, the initial twisted flux tube

has the form andˆ ˆB 5 B (r)v 1 B (r)xv x

2 2B (r) 5 B exp (2r /a )x x0 (1){B (r) 5 arB (r),v x

where denotes the tube axial direction, is the azimuthalˆx̂ v
direction in the tube cross section, and r is the radial distance
to the central axis. The flux tube is uniformly twisted, with the
constant a denoting the amount of field line rotation about the
central axis per unit length of the tube. Such a twisted flux
tube is unstable to helical motion of the form

, if . Figure 1 shows thev(r) exp [i(kx 1 v)] a 1 a 5 1/ac

growth rates of the unstable kink modes for , computeda 5 4ac

by solving the Newcomb equation (see, e.g., Freidberg 1982;
Linton et al. 1996). It can be seen that there is a range of axial
wavenumbers k on either side of that are unstable.k 5 2a
Our numerical simulations have finite viscosity and resistivity,
so here we investigate only the long-wavelength range of un-
stable modes (with ), which are less affected by theFkF ! a
presence of dissipation. The maximum growth rate of the kink
modes yields an e-folding growth time of ,t ≈ 0.6(a/v )min A0

where is the initial Alfvén speed at the tube center. ThevA0

growth rates of the kink modes depend upon the value of a
(see Linton et al. 1996, in which q is used in place of a). For
example, if a is reduced to 1.2ac, then tmin is increased to

. In comparison, the typical rise time of a magnetic14(a/v )A0

flux tube through the convection zone is estimated to be
, where Hp is the pressure scale height and thet ∼ H /vrise p rise

rise velocity is ∼ (Parker 1975). If the radius1/2v (a/H ) vprise A0

of the flux tube a is ∼ , then . This com-0.1H t ∼ 30(a/v )p rise A0

parison shows that if a is sufficiently large (say above 1.2ac),
we can expect to see significant distortion of the flux tube by
the kink modes during the rise of the tube through the con-
vection zone. In this Letter, we present the simulation results
for the case in which the initial flux tube has such a high degree
of twist ( ) that the e-folding time of the fastest growinga 5 4ac
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Fig. 1.—Linear growth rate Q of unstable helical kink motion as a function
of axial wavenumber k for a twisted magnetic flux tube described by eqs. (1)
and (2), with . The asterisks represent the modes that are included ina 5 4ac

the initial perturbation of the buoyant flux tube in the simulation. The wav-
enumbers of these modes are , with , and Lxk 5 2pj/L j 5 1, 2, 3, 4, 5, 6, 7j x

being the length of the flux tube in the simulation box.

kink mode is significantly less than the rise time of the tube.
In a later paper, we will investigate the rise of flux tubes with
initial twist that is near or slightly below the critical limit for
the onset of the kink instability. It has been argued (Parker
1979; Linton et al. 1996; Emonet 1997) that as a horizontal
flux tube rises and expands, the longitudinal field decreases at
a faster rate ( , with R being the tube radius) than the22B ∝ Rx

transverse field ( ), leading to a decrease of critical ac
21B ∝ Rv

and therefore making the tube more kink unstable.
Since the dynamic timescale of interest is determined by the

Alfvén speed, which is orders of magnitude smaller than the
sound speed in the deep convection zone (the plasma b is on
the order of 105), it is advantageous to use the anelastic for-
mulation of the three-dimensional MHD equations, which cor-
responds to the limit of (i.e., the sound speed is effec-b r `
tively infinite). The set of three-dimensional anelastic equations
that we solve are given in Fan et al. (1998, eqs. [1]–[7]). For
the numerical simulations, the three-dimensional magnetic field

and momentum are written in terms of vector potentialsB r v0

so as to guarantee that they are divergence free (see, e.g.,
Glatzmaier 1984): ,ˆ ˆB 5 = # = # (Bz) 1 = # (Jz) r v 50

, where is the unit vector of theˆ ˆ ˆ= # = # (Wz) 1 = # (Zz) z
vertical direction. The background fluid is a plane-parallel, ad-
iabatically stratified polytrope (so that the fluid is marginally
stable to convection) with the total vertical height d of the
simulation domain spanning 3.45 density scale heights. The
ratio of density between the top and bottom is 0.03. The two
horizontal dimensions of the Cartesian simulation domain are
both d/2 in length. The boundary conditions for the simulation
box are periodic in the two horizontal directions and nonpe-
netrating no-stress for the velocities at the top and lower bound-
aries. We use a uniform grid of for the128 # 128 # 256

domain. The governing equations (eqs. [1]–[7]d/2 # d/2 # d
in Fan et al. 1998) explicitly include viscosity, magnetic dif-
fusivity, and thermal diffusion. Like all numerical studies that
are limited by the finite resolution of the simulation grid, the
effective values of these diffusive parameters are generally
much greater than those expected under solar conditions.
Hence, the interpretation of the numerical results will be subject
to the uncertainties of the effects of the unresolved small-scale

dynamics. For our numerical simulations, the important non-
dimensional parameters are the viscous Lundquist number

and the resistive Lundquist numberS { r v a/m S {r rv A0

, where rr is the density at the bottom of the domain,v a/hA0

is the Alfvén speed at the axis of the initial flux tube, a isvA0

the initial tube radius defined in equation (1), and m and h are
respectively the dynamic viscosity and magnetic diffusivity,
which are constant in the simulation domain. The values of

and Sr are respectively 43 and 4300. The much larger valueSv

of Sr is used to ensure that the flux “frozen-in” condition is
approximately satisfied, while the low value of ensures thatSv

sharp velocity structures do not form. We set thermal diffusivity
to a low value so that there is a negligible amount of heat
diffusion across the flux tube during its evolution. We have
done many tests to confirm the reliability of the code. One test
is a comparison of the results of our code with that used in
Linton et al. (1998a), which is a fully compressible MHD code
using very different numerical algorithms. We found that in
the absence of gravity and stratification, our code produces
results that are in good agreement (better than 2%) with that
of Linton et al. (1998a) on the nonlinear evolution of a kink-
unstable flux tube.

3. SIMULATION RESULTS

3.1. Initial Conditions

The initial flux tube is cylindrical with magnetic field profiles
described by equation (1). Such a flux tube sitting in a grav-
itationally stratified layer has a mechanical equilibrium state
in which the density difference (between the tube and the ex-
ternal medium) r1 is equal to zero, so that the buoyancy force
is zero and the gradient from the pressure perturbation p1 bal-
ances the magnetic forces: 2=p 1 (1/4p)(B · =)B 21

. The flux tube sits initially at a height of about2=(B /8p) 5 0
one-fifth of the total height of the simulation domain, and the
initial radius a of the tube is 0.085 times the pressure scale
height at the bottom.

To set the flux tube in motion, we make it buoyant by adding
an entropy perturbation to the above mechanical equilibrium
state of the tube:

′ ′ ′s 5 s (r) 1 s (r) cos (k x 1 f ). (2)O0 k j jj
kj

The entropy perturbation contains a component that is′s (r)0

constant along the tube axis (x-direction) and a set of com-
ponents that vary sinusoidally along the axis with wavenumbers

, where Lx is the length of the flux tube andk 5 2pj/L j 5j x

. These wavenumbers kj correspond to the un-1, 2, 3, 4, 5, 6, 7
stable kink modes represented by the asterisks in Figure 1. The
profiles of and are Gaussians with the peak ampli-′ ′s (r) s (r)0 kj

tudes of and are all much smaller than the peak′s (r) ∝ 1/kk jj

amplitude of . [The amplitude of the largest is 0.025′ ′s (r) s (r)0 kj

of that of .] The phases fj of each kj mode are such that′s (r)0

they all add constructively, i.e., , at the middlek x 1 f 5 0j j

cross section of the tube. The middle of the tube is thus the
most buoyant. As an average for the entire tube, the initial
field-weighted mean buoyancy acceleration is

, where rr and Hr are respectively the density20.36B /(4pr H )x0 r r

and pressure scale height at the bottom of the domain. The
variation of buoyancy along the tube axis will drive planar
undulation of the flux tube. Each sinusoidal undulating mode
can be decomposed into two helical kink modes of opposite
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Fig. 2.—A series of snapshots of the flux tube during its rise as viewed
from the side (left) and from the top (right). The color shading indicates the
absolute magnetic field strength. The marked times are in units of . Aa/vA0

cross section indicated by the green plane in panel 3a is shown in Fig. 4.

Fig. 3.—Evolution of total magnetic and kinetic energies, normalized to the
initial magnetic energy, and the evolution of the field strength–weighted mean
rising velocity of the flux tube. Here B is the absoluteAv S { ( Bv dV)/( BdV)∫ ∫z z

magnetic field strength, and V denotes volume.

handedness. The one with the same handedness as that of the
twisted field lines is unstable and will be excited.

3.2. Evolution of the Tube

Figure 2 shows several snapshots of the flux tube during its
rise. The color in the images indicates the absolute magnetic
field strength B. The marked times are in units of the Alfvén
crossing timescale . Because of the high growth rates (e-a/vA0

folding times ∼ ) of the unstable kink modes (see Fig. 1),a/vA0

the flux tube becomes kinked before it has risen any noticeable
distance. The axis of the flux tube evolves into a helix as a
result of the growth of multiple kink modes. The helix is of
the same sense of handedness as the twisted field lines of the
initial cylindrical tube. Figure 3 shows the evolution of the
total magnetic and kinetic energies in the simulation domain,
all normalized to the initial magnetic energy, and the evolution
of the field-weighted average rising velocity , which reflectsAv Sz

the mean rising velocity of the tube as a whole. The initial
kink development of the flux tube (from to roughlyt 5 0

) is similar to the results described in the simulationst 5 13a/vA0

of Linton et al. (1998b), who study the kink instability of flux
tubes in a uniform fluid without gravity and stratification. The
qualitative behavior during this stage is that the unstable kink

modes first grow exponentially, and after the linear phase that
lasts several Alfvén crossing times, the kink saturates (as in-
dicated by the first peak in the kinetic energy in Fig. 3). It can
be seen in Figure 3 that the magnetic energy drops sharply as
a result of the kink development. The decrease in magnetic
energy is partly converted to the kinetic energy of the kink
motion and partly goes to heating through direct Ohmic dis-
sipation. After the kink saturates, the kinetic energy decreases.
However, because of the presence of the driving buoyancy
force, the flux tube does not settle into a stable kinked equi-
librium as was found in Linton et al. (1998b). After a brief
decline, the kinetic energy continues to rise steadily as a result
of the buoyancy-driven acceleration of the flux tube.

After the initial stage of the rapid kink development, the
dominant modes of motion in the subsequent evolution of the
tube are its overall rise plus the kink mode of the lowest wave-
number , which causes the tube to arch (see panelsk 5 2p/L1 x

2a and 3a of Fig. 2). Furthermore, we find that as the tube
rises, the three major kinks on the tube continue to deform in
such a way as to make the tube axis at these portions rotate
farther away from the original 1x-direction (see panels 2b and
3b of Fig. 2). This buckling deformation is most prominent at
the apex of the tube. By , the tube axis at the apext 5 40a/vA0

has already been bent by more than 907 away from the 1x-
direction. Hence, we expect that the emergence of this buckled
upper portion of the flux tube should give rise to a magnetic
region with polarity orientation inverted from Hale’s polarity
law. Figure 4 shows a horizontal cross section of the upper
buckled portion of the flux tube at time (see panel 3at 5 67.2
of Fig. 2, where the green plane indicates the height of the
cross section). The contours in Figure 4 denote the vertical
magnetic field and the arrows show the horizontal field. Solid
line (dotted line) contours represent positive (negative) Bz. We
see a very tight bipolar structure with the polarity orientation
(i.e., the direction of the line drawn from the peak of the positive
pole to the peak of the negative pole) rotated by about 1457
away from the 1x-direction, which would be the normal po-
larity orientation expected from the direct emergence of the
unkinked tube. The transverse field near the neutral line is
sheared, although not as much as is often observed in d spots
where the transverse field runs nearly parallel to the neutral
line. As of the last time in Figure 2, the flux tube is still entirely
submerged beneath the surface in a pressure-dominated plasma
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Fig. 4.—Horizontal cross section of the upper buckled portion of the flux
tube at (see panel 3a of Fig. 2). The contours denote the verticalt 5 67.2
magnetic field Bz with solid line (dotted line) contours representing positive
(negative) Bz. The arrows show the horizontal magnetic field.

Fig. 5.—Diamonds show the evolution of field strength B at the apex of
the tube axis as a function of height. In comparison, the dash-dotted line
corresponds to , which describes how the axial field strength of a thin,B ∝ 1/r
horizontal (unkinked) flux tube is expected to vary with height.

and is not yet significantly affected by the impenetrable upper
boundary. The emergence of the flux tube through the surface
into the low-b plasma of the atmosphere is a complicated dy-
namical process that is beyond the scope of the current model.
Extrapolating from the structure of the rising flux tube as it
approaches the upper boundary, we speculate that the basic
reversed polarity configuration of the vertical field will be seen
at the photosphere as the tube is breaking through the surface,
but the orientation of the transverse field at the photosphere
will be more dependent upon how the field lines readjust them-
selves in the atmosphere.

Figure 5 shows the evolution of the magnetic field strength
B at the apex of the tube axis (see diamonds) as a function of
height. In comparison, the dash-dotted line shows how the axial
field strength B of a thin, horizontal (unkinked) flux tube is
expected to vary with height. For the rise and expansion of a
thin, horizontal flux tube, the quantities BR2 (axial flux, where
R is the tube radius) and rR2 (mass per unit length) are con-
served. Therefore, B should vary as 1/r, which is the result
represented by the dash-dotted line. It can be seen from Figure
5 that the kink development enhances the axial field strength
by stretching the tube axis as it evolves into a helical shape.

The evolution of the averaged rise velocity of the tubeAv Sz

can be divided into an acceleration phase and a steady rise
phase (see Fig. 3). The initial acceleration of is consistentAv Sz

with the initial buoyancy divided by an added inertia of twice
the fluid density (Lamb 1945). After the tube becomes kinked,
the buoyancy of the tube is increased substantially (by about
a factor of 2.5) due to heating and to an increase of the axial
field strength. Eventually the rise of the flux tube reaches a
steady speed as the drag force becomes comparable to the
buoyancy. The present three-dimensional simulation is more
viscous in comparison to previous two-dimensional simulations
(Fan et al. 1998). The Reynolds number Re for the flux tube
as estimated from the steady rise velocity, the radius of the
tube, and the viscosity is only ∼10, whereas in FanR ∼ 100e

et al. (1998). By considering a balance of the mean buoyancy

and drag at the steady phase of , we find an effective dragAv Sz

coefficient CD of about 3 for the tube. It is a concern that the
substantial heating (which increases the buoyancy of the tube)
experienced by the flux tube may be an artifact due to the low
Reynolds number in the simulation. However, in the limit of
large Reynolds numbers where turbulence develops, it may be
expected that the rate of dissipation of kinetic energy into heat
becomes essentially independent of the Reynolds number, sim-
ilar to the behavior of the drag coefficient CD, which reaches
a limiting value of ∼1 (Batchelor 1967; Landau & Lifshitz
1959). Therefore significant dissipation of the kinetic energy
of the kink and rise motion may still take place. On the other
hand, we note that the result of flux tube buckling does not
depend on the effect of heating. To test this, we repeated the
simulation, but this time omitting the viscous and Ohmic heat-
ing terms in the energy equation so that energy dissipation does
not result in heating and an increase in buoyancy. Although
the overall rise is slower, the flux tube still evolves into the
buckled configuration.

4. SUMMARY

Through numerical simulation, we have studied the buoyant
rise of a twisted, kink-unstable flux tube in an adiabatically
stratified layer. We find that the kink development in conjunc-
tion with the buoyant rise leads to buckling of the top portion
of the flux tube where the tube axis is being deflected more
than 907 from the original orientation. The emergence of such
a buckled flux tube can lead to the formation of a compact
magnetic bipole with polarity order reversed from Hale’s po-
larity law. The need for toroidal flux tubes to have a minimum
amount of twist (which is only ∼20% of ac) to sustain their
cohesion as they traverse through the convection zone to form
coherent active regions has been demonstrated in previous two-
dimensional simulations (Moreno-Insertis & Emonet 1996; Fan
et al. 1998). It may be the case that the subsurface origin of d
spot regions is a special class of flux tubes that through some
means have acquired an unusually high amount of twist (with
a near or greater than ac).
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