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ABSTRACT
We study the current-driven kink instability with a three-dimensional MHD spectral code, under con-

ditions appropriate for the convection zone of the Sun. Our goal is to determine whether the kink insta-
bility can explain the unusual morphology of certain ““ d-spot ÏÏ active regions. The characteristics of these
d-spots are unusually large tilt upon emergence, subsequent rotation, compactness during their lifetime,
magnetic shear that develops along the neutral line of their vertical magnetic Ðeld, and unusually high
Ñare activity. We Ðnd that highly twisted tubes perturbed with a single unstable kink mode evolve to a
new helical equilibrium with Ðnite amplitude. This kink would produce an active region that emerged
tilted and then rotated and so is suggestive of d-spot behavior. It would not, however, produce other
characteristics of d-spots such as compactness and shear. We then investigate the kink instability in
tubes perturbed simultaneously with several unstable modes at di†erent wavelengths. These tubes
develop a concentrated kink at the point at which the modes interact constructively. We show that such
a concentrated kink would Ðrst emerge highly tilted, rotate during its subsequent emergence while
remaining compact, and develop strong shear along its magnetic neutral line, in agreement with d-spot
observations. In addition we Ðnd that very strong concentrated kinks develop a current sheet at which
the magnetic Ðeld reconnects, causing Ðeld lines near the center of the tube to become knotted. This
reconnection could be related to the high Ñare activity of d-spots.
Subject headings : MHD È Sun: activity È Sun: interior È Sun: magnetic Ðelds È sunspots

1. INTRODUCTION

Sunspots are concentrations of magnetic Ðeld observed in
the photosphere of the Sun. They are typically tens of thou-
sands of kilometers in diameter and consist of a dark region,
or umbra, with magnetic Ðeld of several kilogauss sur-
rounded by a brighter penumbra of somewhat lower mag-
netic Ðeld. Both the umbra and penumbra are darker in
white light than the quiet photosphere, and the Ðeld
strengths in the umbra and penumbra are typically 2 orders
of magnitude higher than the average Ðeld strengths in the
quiet photosphere. Sunspots often emerge into the photo-
sphere as small pairs of opposite magnetic polarity spots
that grow over the course of several days into a full-sized
sunspot group. A fully developed spot group typically con-
sists of one or more ““ leading ÏÏ polarity spots, with several
““ following ÏÏ spots of the opposite polarity trailing behind,
in that sense of the SunÏs rotation. Together with the
coronal magnetic loops that connect them and other associ-
ated magnetic features, these are called ““ active regions.ÏÏ

It is well known observationally that the magnetic axis of
most active regions remains only slightly tilted (D6¡)
toward the equator, with the leading spots lying closer to
the equator. In addition, for a given solar cycle and a given
hemisphere (north or south), the polarity of the leading
portion of the spot group tends to be the same for most
active regions, as Ðrst noted by Hale et al. (1919) and as laid
out in the so-called Hale-Nicholson law. The special class of
active regions called d-spot active regions are an exception
to these rules. These are active regions in which sunspot
umbrae of opposite polarity exist within the same penum-
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bra 1960) and are therefore much more compact(Ku� nzel
than normal active regions. They are often highly tilted
away from the east-west orientation, sometimes so much
that they have an inverse Hale-Nicholson conÐguration,
and their magnetic Ðeld is often sheared along the magnetic
neutral line at the juxtaposition of the two opposite polarity
spot groups (Zirin & Liggett 1987 ; Lites et al. 1995). In
addition they are often observed to rotate about one
another as they evolve (Leka et al. 1996 ; Tanaka 1991).
These active regions are of particular interest because they
are known to be much more Ñare active than normal active
regions. For example, Tanaka (1980) found that 90% of the
d-spots with inverted polarity he studied had Ñare activity,
and Sammis & Zirin (1998) studied a set of 18,215 GOES
Ñares and found that 50 of 64 regions for which X1 or larger
Ñares occurred were d-spot regions.

In this paper we study a possible mechanism, the current
driven kink instability, for the formation of ““ island d-
spots,ÏÏ that is, regions that emerge as d-spots rather than
being created from the collision of previously emerged
umbrae.

An active region is believed to be the manifestation in and
above the photosphere of the apex of a magnetic Ñux tube
that arches into the corona from the convection zone. The
two opposite polarities of a bipolar active region are created
by the intersection with the photosphere of the two legs of
this arched Ñux tube. The fact that the two polarities are
made up of a number of separate spots is likely due to the
fact that the emerged portion of the Ñux tube has frag-
mented. As the Ñux tube Ðrst emerges, a normal active
region appears as two close, small regions of opposite
polarity. As the tube emerges further, the spots coalesce and
grow until they encompass the whole cross section of tube,
and the magnetic polarities separate as more of the arch
emerges into the corona. The usual explanation for the
Hale-Nicholson law is that the source of the Ñux tubes,
likely to be at the base of the convection zone, consists of a
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magnetic Ðeld parallel to the equator that breaks o† into
Ñux tubes and rises to the surface, with the Ñux tubes
keeping approximately the same orientation parallel to the
equator during their rise and emergence.

The morphology of d-spots suggests that the Ñux tubes
that create these active regions have undergone some
change during their rise so that they do not evolve as
normal spot groups do. These tubes have been distorted so
that their apex does not emerge parallel to the equator and
so that the sunspot pairs they create do not separate as the
tube emerges, resulting in a rotated, compact active region.
This, together with observations of d-spots rotating during
their evolution, indicates that the legs, rather than forming a
simple arch, are wrapped or knotted around each other. In
Linton et al. (1998) we studied the kink instability, which
distorts magnetic Ñux tubes with twisted Ðeld lines into a
helical shape, as a potential source for these unusual d-spot
conÐgurations. We found the kink distorts the tubes studied
into a helical equilibrium with amplitude large enough to
generate moderate tilt in an active region. Our goal in this
paper is to continue our study of the kink instability as it
applies to rising convection zone Ñux tubes and to continue
exploring how the emergence of a kinked Ñux tube relates to
the formation and evolution of a d-spot active region. We
review the kink instability in ° 2 and discuss the nonlinear
code we use to simulate the instability in ° 3. We present our
numerical results, where we Ðnd that concentrated kinks
can develop on sufficiently twisted Ñux tubes, in ° 4. We
present our conclusions about the evolution of a rising,
kinking convection zone Ñux tube and compare these con-
clusions with the simulations of Fan et al. (1999) in ° 5. Then
we discuss the implications of these results, namely that
concentrated kinks can create spot regions that strongly
resemble d-spot active regions, and we discuss the predic-
tions these results imply about the sense of d-spot rotation
relative to the sense of magnetic twist in ° 6.

2. REVIEW OF THE KINK INSTABILITY

The current-driven kink instability was Ðrst proposed by
(1950) as a dynamo mechanism, in analogy with theAlfve� n

observed kink instability in twisted wires. It occurs in tubes
in which the Ðeld lines are highly twisted and converts Ðeld
line twist into helical deformations of the tube axis, or
““ writhe ÏÏ (Mo†att & Ricca 1992), to reduce the magnetic
energy (see ° 5.4 of Linton et al. 1998). A Ñux tubeÏs suscep-
tibility to the kink instability depends on the interplay of
the stabilizing axial Ðeld tension, which works to keep the
tube straight, and the destabilizing azimuthal Ðeld pressure
force, which acts to bend the tube (see Kruskal & Schwarzs-
child 1954). The linear stability of various Ñux tube proÐles
has been widely studied in both nuclear fusion (see, e.g.,
Shafranov 1957 ; Suydam 1959) and solar applications (see
review in Priest 1982, p. 259 ; and Linton, Longcope, &
Fisher 1996), and it has been well established that the ratio
of the azimuthal to axial Ðeld is the key measure of the kink
instability of a tube. Tubes with magnetic Ðeld B(x) \
[0, in cylindrical coordinates become kinkBh(r), B

z
(r)]

unstable when the twist

q 4
Bh
rB

z
(1)

becomes larger than some critical value qcr.

In Linton et al. (1996), we studied the linear instability of
uniform-twist [q(r) \ constant] inÐnitely long Ñux tubes to
kink perturbations of the form n(r)ei(kz`h)`ut, where n is the
displacement eigenfunction, and u is the growth rate eigen-
value. The critical twist for instability is well approximated
by where a is a measure of the radial proÐle of theqcr\ a1@2,
axial Ðeld, taken from the Taylor series expansion : B

z
(r)\

The tubes are unstable to a Ðnite rangeB0(1 [ ar2] É É É ).
of wavenumbers k centered about k \ [q. The fact that k
and q have opposite signs has the important implication
that the helical sense of the kink (right- or left-handed) is
determined by the sign of the twist. In the small twist limit,
q2> R~2, where R is the external tube radius, the limits
of the unstable wavenumber range can be written as
k/q \ [1 ^ %, and both % and the maximum growth rate

scale asumax

% P
umaxR

vA
P R2(q2[ qcr2 ) . (2)

Here the growth rate has been normalized by the tube
crossing time where the speed is givenAlfve� n R/vA, Alfve� n

by and and are the magnetic ÐeldvA2 \ B0/(4no0) B0 o0strength and density on the tube axis. We plot several dis-
persion relations in Figure 1, calculated as in Linton et al.
(1996), for highly twisted tubes with Ðeld proÐles given by
what we will call an ““ a-proÐle : ÏÏ

B
z
\ B0

A
1 [ r2

R2
Ba

, Bh \ qrB
z
, (3)

for r \ R, and B \ 0 for r [ R. The magnetic forces in these
nonÈforce-free conÐgurations are balanced by radial pres-
sure gradients. The magnetic proÐles for the curves labeled
A through D have a \ 0.25 and have normalized twist qR

FIG. 1.ÈDispersion relations for Ðve a-proÐle Ñux tubes (eq. [3]).
Curves A, B, C, and D are for a \ 0.25 with qR\ 1.96, 2.95, 3.93, and 5.89,
respectively. The curve marked 1 is for a \ 1 with qr \ 5.89. The four
modes n \ 1, 2, 3, and 4 are marked on each curve with asterisks.
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varying from 1.96 to 5.89. The curve labeled 1 is for an
a \ 1, qR\ 5.89 proÐle. A Taylor series expansion of the
axial Ðeld in equation (3) shows that the r2 coefficient a
equals a/R2, so the critical twist is For theseqcr \ a1@2/R.
proÐles so should vary asq2R2? qcr2 R2 \ a, umaxR/vAq2R2 if the weak twist results can be extended to this range
of twist. In fact, for a variation in q2R2 of a factor of 9 for
the a \ 0.25 tubes in Figure 1, varies by a factorumaxR/vAof 6.4, so while relation (2) does not hold exactly, it is a
reasonable approximation. Note that this has a very impor-
tant implication if the tube expands homologously as it rises
through the convection zone, meaning that the Ðeld proÐle
scales so that only the values of R and change in equa-B0tion (3). As the tube expands, the proÐle A (qR\ 1.96) tube
will eventually evolve to a proÐle D (qR\ 5.89) tube, and
its dispersion relation will evolve accordingly. Thus simply
by expanding, tube A will become more kink unstable. For
tubes with subcritical twist, this e†ect will be even more
dramatic : the critical twist for homologously expandingqcrtubes scales as 1/R (e.g., for eq. [3]) while theqcr\ a1@2/R
twist q remains constant (see Linton et al. 1996, ° 5),
meaning that tubes that are initially kink stable can become
unstable as they rise. This increased kink instability due to
expansion can be explained by noting that, assuming mag-
netic Ñux conservation and homologous expansion, B

zdecreases as 1/R2, while only decreases as 1/R.BhNote that for highly twisted tubes the unstable range in k
space also expands approximately as predicted by relation
(2) and therefore eventually extends to k º 0. The tube is
stable at k \ 0, and the instability is weakened as k
approaches zero, but for sufficiently highly twisted tubes
instability does appear for positive k values. For the
a \ 0.25 tube proÐles shown in Figure 1 we Ðnd that
positive-k unstable modes appear for qRº 2.24. We will
discuss these modes again brieÑy in ° 4.1, but as they only
appear at very high twist, long after negative-k modes have
become unstable, we do not investigate their nonlinear
evolution in this paper.

The marginally stable point at k/q \ [1 occurs when the
kink pitch exactly equals the Ðeld line pitch, meaning the
kink is in resonance with the Ðeld lines and the tube is
marginally stable. This resonance phenomenon is impor-
tant in nonÈuniform-twist tubes. The marginally stable
point in the dispersion relation then manifests itself as a
marginally stable surface in the tube, called the mode reso-
nant surface, where the local twist exactly equals the wave-
number of the kink. In this case, the kink is an ““ internal
kink ÏÏ that occurs within this cylindrical surface, initially
leaving the tube outside the surface undisturbed. The non-
linear evolution of the internal kink has been extensively
studied in two and three dimensions in the tokamak liter-
ature (see Waddell et al. 1976 or Sykes & Wesson 1976 for
early results). These studies Ðnd that the helical deformation
of the kink pushes the tube into the mode resonant surface,
where a current sheet develops. The Ñux inside the mode
resonant surface, where q [ o k o , then reconnects at the
current sheet with Ñux outside the surface, where q \ o k o
(see, e.g., Aydemir, Wiley, & Ross 1989 ; Baty 1997), e†ec-
tively smoothing out the twist proÐle and earning this insta-
bility the name ““ resistive kink.ÏÏ The reconnected Ñux tube
then returns to a cylindrical conÐguration with essentially
uniform twist (see, e.g., Waddell et al. 1976 ; Aydemir et al.
1989 ; or Fig. 7d of Vlad & Bondeson 1989). In the convec-
tion zone, it is possible that these internal or resistive kinks

will be suppressed by the low resistivity of the convection
zone. If they do occur, however, we expect that they will
cause cylindrically symmetric twisted Ñux tubes with nonÈ
uniform-twist proÐles to tend toward cylindrically sym-
metric uniform-twist tubes, as in equation (3). In either case,
the tubes will then be unstable to the external kink, which
we study here with uniform-twist tubes. As shown in Linton
et al. (1998), these externally kinked tubes will evolve to a
kinked equilibrium and will thus preserve evidence of the
kink as the tube rises to the photosphere.

Recently it has become possible to simulate the kink
instability in three dimensions numerically (see, e.g., Gals-
gaard & Nordlund 1997 ; Matsumoto et al. 1998 ; Lionello
et al. 1998 ; Fan et al. 1998b, 1999 ; and Linton et al. 1998,
1999). In Linton et al. (1998), we studied the nonlinear evol-
ution of the kink for a number of di†erent Ñux tubes with a
range of twist values and axial Ðeld proÐles. We numerically
simulated single-mode (wavelength) instabilities in twisted
tubes embedded in a high plasma-b environment, meant to
represent convection zone conditions. We focused on
modes near the peak of the dispersion relation, uDumax,arguing that modes with the highest growth rate were the
best candidates for producing large kinks. The growth rates
of the kinks studied agreed very well with those predicted
by the linear theory in Linton et al. (1996) (see Linton et al.
1998), and the kinks stopped evolving and reached new
equilibria in about 10 linear growth times, indicating that
tubes will have sufficient time to kink during their rise
through the convection zone. The tubes evolved to right-
handed helical equilibria for these right-hand twisted tubes,
as predicted, with amplitudes of up to R/3. We concluded
that such a helical Ñux tube would generate a spot region
which would emerge tilted away from the east-west direc-
tion and then rotate, as a d-spot does. The fact that right-
(left-) hand twisted tubes develop right- (left-) hand twisted
kinks allows us, if the sign of the twist is known, to predict
the sense of both the initial tilt and rotation that an emerg-
ing kinked region would have (see discussion in ° 6). Our
goal here is to extend our study of the kink instability to
other regions of k-space. We simulate kinks at longer wave-
lengths and then simulate the interaction of multiple kink
modes in a tube. We then study how this a†ects the kink
amplitude and morphology and how this relates to d-spot
characteristics. We present results of the single-mode simu-
lations at long wavelengths in ° 4.1, results of the multiple-
mode simulations in ° 4.2, and results of multiple mode
simulations for tubes with di†ering amounts of twist in ° 4.3.

3. SIMULATIONS

We performed three-dimensional magnetohydrodynamic
simulations of the kink instability using a visco-resistive,
periodic, spectral code on a 1283 grid. The governing equa-
tions for this compressible MHD system are (as adapted
from Dahlburg, Antiochos, & Norton 1997)

Lo
Lt

\ [$ Æ (o¿) , (4)

o
D¿
Dt

\ J ] B
c

[ $p ] k$ Æ s , (5)

LB
Lt

\ $] (¿] B) ] g+2B , (6)
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LU
Lt

\ [$ Æ (U¿)[ p$ Æ ¿] ks Æ $¿] i+2T ] 4ng
c2 o J o2 ,

(7)

p \ oRT \ (c[ 1)U , (8)

$ Æ B \ 0 . (9)

Here is the Ñow velocity, p(x, t) is the plasma pres-¿(x, t)
sure, T (x, t) is the temperature, U(x, t) is the internal energy
density, J 4 (c/4n)$] B is the current, is theq

i,j(x, t)
viscous stress tensor, R is the ideal gas constant, c\ 5/3 is
the adiabatic ratio, and c is the speed of light. Uniform
thermal conductivity (i), magnetic resistivity (g), and vis-
cosity (k) are assumed, with a viscous Lundquist number

of 120, a resistive Lundquist numberS
v
4 o0 vA R/k S

r
4

of 1.2] 105, and of 600. In these deÐni-vA R/g b 4 8np0/B02tions, is the initial pressure at the center of the Ñux tube.p0For a 1021 Mx, 105 G Ñux tube at the base of the convection
zone, we estimate the actual values of these dimensionless
numbers to be and b \ 105, where theS

v
\ 1012, S

r
\ 1010,

resistivity is taken from Stix (1989, p. 253), the viscosity is
taken from Priest (1982, p. 81), and the values of the pres-
sure, temperature, and density are taken from Table 6.1 of
Stix (1989). For most runs, the magnetic Ðeld is given by
equation (3) with a ratio of tube radius R to the tube length
L of 1/8. As this is not a force-free conÐguration, the initial
equilibrium is created by setting the plasma pressure proÐle
so that the pressure gradient balances the magnetic forces.
For more details on the code, which was run on the Naval
Research LaboratoryÏs CM500e, see Dahlburg et al. (1997).

At the start of each run, we perturb the equilibrium
proÐle with one or more helical velocity proÐles [¿(x) \

where n(r) is the linear kink eigenfunctionv0 n(r)ei(h`kz)],
calculated as in ° 2 of Linton et al. (1996), and the amplitude

is set to The wavenumber k is chosen so that thev0 vA/140.
tube is kink unstable according to linear stability calcu-
lations (see Fig. 1). The multimode simulations are given
initial perturbations consisting of the superposition of these
velocity proÐles for several unstable k values.

In addition to the a-proÐle tubes, we also simulated one
constant-twist tube where had a Gaussian proÐle :B

z
B
z
\

This allowed us to compareB0 exp ([r2/R02), Bh \ qrB
z
.

our code to the anelastic MHD code used by Fan et al.
(1998b, 1999) for an identical simulation. As was the case for
the other tubes, the Ðeld was set to zero outside a Ðnite
radius, r/L \ 5/16, where L was the tube length. We set

to 5/64, and to 4. The instability was excited byR0/L qR0giving the tube a helical velocity perturbation of wavenum-
ber k \ [6n/L .

The anelastic code of Fan et al. (1998b, 1999) Ðlters out
sound waves and is suitable for studying slow, subsonic
dynamic processes in a gravitationally stratiÐed layer of
high-b plasma (see, e.g., Gilman & Glatzmaier 1981). The
main advantage of the anelastic code is that it can take into
account the e†ects of gravity and stratiÐcation, which our
periodic code cannot, and can therefore accommodate a
kink-unstable Ñux tube as it rises and expands in a convec-
tion zoneÈlike environment. On the other hand, our code
solves the fully compressible MHD equations and is less
dissipative than Fan et al.Ïs code(vA R0/g \ 75,000)

For this run, the gravity was turned o† in(vA R0/g \ 4300).
Fan et al.Ïs code, and the resistivities in both codes were
changed to so that the two simulationsvA R0/g \ 15,000,
could be compared. As the kink we are simulating is ideal

and incompressible in the linear limit, the evolution should
be nearly identical in the two simulations. However, if the
presence of sound waves becomes important in the nonlin-
ear stages of the kink evolution, we might expect to see a
di†erence between the two simulations. We found good
qualitative agreement between the two codes for the linear
and nonlinear kinetic energy evolution and the Ðnal equi-
librium of the kinked tube. We measured the linear e-
folding time of the instability and found a time of

for Fan et al.Ïs code and a time of0.38Rrms/vA 0.39Rrms/vAfor our code, a di†erence of less than 3%. We also found
that the overall behavior of the tube was the same as that of
an a-proÐle tube.

4. RESULTS

4.1. Single-Mode Kinks
In Linton et al. (1998) we performed a number of simula-

tions in which we perturbed a twisted equilibrium tube with
a single unstable kink mode lying near the peak of the tubeÏs
dispersion relation. We measured the amplitude of the dis-
placement *x of the Ðeld weighted center of mass of the
tube,

*x 4
K / dA o B o x

/ dA o B o

K
, (10)

where the integral is taken over a plane perpendicular to the
initial tube axis. Taking the y-z plane to be parallel to the
plane of the photosphere, the displacement of the tube rela-
tive to the axis, or the east-west direction, will bezü

y \ *x sin (kz) . (11)

This then gives a maximum tilt / for the kinked tube that
satisÐes

tan /4
dy
dz
K
y/0

\ k *x . (12)

We found a maximum displacement for the modes studied
of *x D R/3 and a corresponding maximum tilt angle of
/D 30¡. In addition, we found that, while a variation in q
or a gave the predicted variation in the linear growth rate of
the kink, it did not have a noticeable e†ect on *x (see Fig. 9
of Linton et al. 1998). We now extend these single-mode
kink simulations of Linton et al. (1998) to include modes
that lie away from the peak of the dispersion relation. We
simulate an a-proÐle tube for a \ 0.25 and qR\ 5.89 in
four single mode simulations at n \ 1, 2, 3, and 4, where
n 4 [kL /2n (see runs 1È4 in Table 1). The dispersion rela-
tion for this tube is shown in Figure 1 as the dashed line
labeled D, and these four modes are indicated on that curve
with the asterisks. Magnetic Ðeld isosurfaces of the resulting
kinked tubes are shown in Figure 2, from which one can see
that the amplitude of the kink increases dramatically as n
decreases from 4 to 1. The displacements and corresponding
tilt angles for these kinks are shown in Table 1. The n \ 1
kink in particular has a very large displacement *x of
almost 2R.

We calculated the magnetic energy released as the di†er-
ence between the initial and Ðnal integral of the(E

B0) (E
Bf

)
magnetic energy density over the whole simulation volume,
where

E
B
4
P

d3x B2
8n

. (13)
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TABLE 1

INITIAL AND KINKED TUBE PARAMETERS

Run ProÐle qR q
cr

R n E
r
/E0 "0 " *x/R /

1 . . . . . . . D 5.89 0.5 1 0.33 3.5 0.83 1.9 56
2 . . . . . . . D 5.89 0.5 2 0.45 3.5 0.66 0.67 47
3 . . . . . . . D 5.89 0.5 3 0.49 3.5 0.45 0.33 38
4 . . . . . . . D 5.89 0.5 4 0.50 3.5 0.23 0.16 27
5 . . . . . . . D 5.89 0.5 1, 5 0.5 3.5 0.15 . . . . . .
6 . . . . . . . D 5.89 0.5 3, 4 0.5 3.5 0.27 . . . . . .
7 . . . . . . . D 5.89 0.5 1È4 0.52 3.5 0.17 . . . . . .
8 . . . . . . . D 5.89 0.5 1È7 0.52 3.5 0.23 . . . . . .
9 . . . . . . . A 1.96 0.5 1È4 0.13 1.2 0.25 . . . . . .
10 . . . . . . B 2.95 0.5 1È4 0.23 1.8 0.39 . . . . . .
11 . . . . . . C 3.93 0.5 1È4 0.36 2.3 .21 . . . . . .
12 . . . . . . 1 5.89 1. 1È4 0.34 1.8 0.18 . . . . . .

NOTE.ÈThe proÐles correspond to the labels in Fig. 1. These are given by eq. (3), where q
is the twist, and a \ 0.25 for all but proÐle 1, for which a \ 1. The critical twist is calculated
as where R is the external tube radius. n \ [kL /2n, where k is the wavenum-qcr\ a1@2/R,
ber of the kink, and L is the length of the tube. The ratio is the magnetic energyE

r
/E0released during the kink over the initial magnetic energy. The global force-free parameter "

is deÐned in eq. (30) : is the initial value, and " is the Ðnal value. The helical kink"0displacement *x is calculated as in eq. (10), and the tilt angle / this produces is calculated in
eq. (12). These two parameters are calculated only for the four single-mode kinks, as they are
poorly deÐned for multiple-mode kinks.

The plot of this energy release versus mode number in
Figure 3a, where the single-mode kinks are plotted as aster-
isks, shows that this displacement is not energetically favor-
able : the energy released by the kink decreases with
decreasing n. The n \ 2, 3, and 4 kinks appear to have
released sufficient magnetic energy, about 50% of the initial
magnetic energy, to have reached an equilibrium state, but
as we will discuss below, the n \ 1 kink has not.

The kink involves a stretching of the tube, a writhing of
the tube into a helical shape, and motions within the tube.
The tube is stretched because the new helical axis of the
tube is longer than the initial, straight axis, and the e†ect of
this stretching on the total magnetic energy can be esti-
mated in a straightforward fashion with the following sche-
matic analysis. Although this analysis does not represent
the entire e†ect of the kink, we present it to give some
insight into what is happening.

Assume the tube starts out cylindrically symmetric with
axis area nR2, and length L . When it kinks to a helicall ü\ zü ,
conÐguration with wavenumber k and axial displacement
*x, the axis becomes wherel ü@\ (zü ] k *xhü )/i,

i 4 J1 ] k2*x2 . (14)

The axial length becomes

L@\ iL , (15)

and the cross-sectional area perpendicular to assumingl ü@,
local cylindrical symmetry about the axis, becomes nR@2.
We write the initial Ðeld as

B
l
\ B0 f (r/R) , Bh\ qrB

l
(16)

in which case, the Ðnal Ðeld becomes

B
l
@ \ B0@ f (r@/R@) , Bh@ \ q@r@B

l
@ , (17)

where the cylindrical coordinates (r, h) and (r@, h@) are taken
in the plane perpendicular to the local axis. (Note the
assumption that the Ðeld can be written in the same way for
both the cylindrical and kinked tubes is violated for the true
kink because the internal motion will rearrange the Ðeld.)

The axial Ñux, which is conserved, is

'
l
\
P
0

R
B
l
2nr dr \ 2B0 nR2

P
0

1
f (f)f df4 2B0 nR2I1 , (18)

for the initial cylindrical tube, and is

'
l
\
P
0

R@
B

l
@ 2nr@ dr@ \ 2B0@ nR@2

P
0

1
f (f@)f@ df@\ 2B0@ nR@2I1 ,

(19)

for the Ðnal helical tube, where f4 r/R, and f@4 r@/R@. We
calculate the azimuthal Ñux as the Ðeld perpendicular to the
surface extending from r \ 0 to R along the length of the
tube :

'h\
P
0

RP
0

L
Bh dr dl \ B0 qR2L

P
0

1
f (f)f df\ B0 qR2L I1 .

(20)

The Ñux through this surface is conserved when the tube
kinks, and is

'h\
P
0

R@P
0

L@
Bh@ dr@ dl@\ B0@ q@R@2L@

P
0

1
f (f@)f@ df@

\ B0@ q@R@2L@I1 . (21)

The third conserved quantity is the mass M in the tube
which, assuming o \ constant for this high-b plasma, gives

M/o \ L nR2\ L@nR@2 . (22)

From conservation of axial Ñux, azimuthal Ñux, and mass,
we Ðnd that

R@2 \ R2
i

, B0@ \ iB0 , q@\ q
i

. (23)

The writhe of the tube will have an e†ect on q that is not
taken into account here (see Longcope & Klapper 1997 for
a discussion of twist and writhe). This e†ect will be smaller
for smaller writhe, or larger wavelength of the kink, so we
expect this calculation to Ðt the actual kink behavior best at
small k.
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FIG. 2.ÈIsosurfaces of for four single-mode kinks with a \ 0.25 and qR\ 5.89 (proÐle D). (a) : n \ 1 kink at (b) : n \ 2 kink ato B o2\ o B omax2 /6 t \ 7R/vA.
(c) : n \ 3 kink at (d) : n \ 4 kink at Note all but the n \ 1 kink are in equilibrium at the time shown.t \ 3R/vA. t \ 8R/vA. t \ 10R/vA.

Now we can compare the energy for these two tube con-
Ðgurations : the magnetic energy for the cylindrical tube is

E
B
\ 1

8n
P
0

RP
0

L
2nr dr dlB02(1] q2r2) f 2

A r
R
B

\R2L B02
8

CP
0

1
2f 2(f)f df] q2R2

P
0

1
2f 2(f)f3 df

D

4
R2L B02

8
[I2] q2R2I3] , (24)

and when the cylindrical tube evolves to its Ðnal helical
state, the energy is

E
B
@ \ 1

8n
P
0

R@P
0

L@
2nr@ dr@ dl@B0@2(1] q@2r@2) f 2

A r@
R@
B

\ R@2L@B0@2
8

CP
0

1
2f 2(f@)f@ df@] q@2R@2

P
0

1
2f 2(f@)f@3 df@

D

\ R@2L@B0@2
8

[I2] q@2R@2I3] . (25)

Substituting equations (15) and (23) into equation (25), we
Ðnd that

E
B
@

E
B
\ i2I2] q2R2I3/i

I2] q2R2I3
. (26)

The axial magnetic energy therefore increases quadratically
with the extension factor i, and the azimuthal energy
decreases with i~1. The interplay of these two gives an
energy minimum at

i \
Aq2R2I3

2I2

B1@3
, (27)

therefore giving an optimal displacement *x for each kink
mode with wavenumber k, subject to the constraint that

i.e., that For the a-proÐle tubes, the integralsi Z 1, L@ Z L .
and becomeI2 I3

I2\ 1
2a ] 1

, I3\ 1
(2a ] 2)(2a ] 1)

. (28)

We plot the energy release predicted by equation (26) versus
the optimal displacement predicted by equation (27) for the
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FIG. 3.ÈMagnetic energy released by the kink see eq. [13])(E
Bf

[ E
B0 ;

vs. kink mode n in (a) and vs. *x, the Ðeld weighted displacement of the
tube in (b). All are proÐle D tubes. The asterisks in (a) represent the single-
mode kinks. The crosses in (a) connected by dotted lines represent the
multiple-mode kinks : a cross marks each mode present in that kink. Note
that the n \ 1 kink simulation appears twice : once while it is only an n \ 1
kink, not in equilibrium, and once after it has saturated as an n \ 1 and
n \ 5 multimode kink. The asterisks in (b) show simulation results for the
single-mode kinks, and the diamonds show the predicted results for single
mode stretching-unstable kinks. Each point in (b) is labeled with its mode
number n.

a \ 0.25, qR\ 5.83 proÐle tube at n \ [1,2,3,4] as the dia-
monds in Figure 3b. The asterisks in this Ðgure show the
energy release and displacement found for each of these
modes from the simulations. The additional e†ects of writhe
and internal motion allow each of the tubes to reach a lower
energy kink, at a lower displacement. But these four modes
do follow the predicted trend that the displacement
increases with decreasing n. In fact, in the low-n limit, as the
displacement gets very large, the actual kink behavior
approaches that predicted by this analysis, indicating that
the writhe and internal motion become less e†ective at
reducing the magnetic energy as the kink wavelength
increases.

The above argument gives a critical twist for the kink,
namely a twist at which it is energetically favorable for the
tube to get longer. The tube length is constrained to be
L@º L , so i º 1. Setting i \ 1 in equation (27), we Ðnd a
critical twist for this stretching-unstable kink of

qcr,st \ 2Ja ] 1/R . (29)

This is the same critical twist that Parker (1979, p. 172) Ðnds
by arguing that a tube will become kink unstable when the
net magnetic tension drops to zero. As this part of the kink
decreases the magnetic energy by stretching the tube, it does
not depend on the sign of k relative to q. When q [ qcr,st,positive-k kink modes should become unstable. This
explains the appearance of positive-k modes in the linear
stability calculation (Fig. 1) when qR[ 2.24 for a \ 0.25
tubes. Equation (29) gives for these tubes,qcr,stR\ 2.236
and so we conclude that the positive k modes in Figure 1
are stretching-unstable kink modes. This stretching-

unstable kink stability limit contrasts with the stability limit
for the general kink (i.e., including internal motion and
writhe) of Twisted tubes become unstable toqcr R\ a1@2.
stretching-unstable kinks only at signiÐcantly higher twist
values than that required for a general kink. This agrees
with the linear prediction of Linton et al. (1996) (° 3.1) that
weakly twisted tubes (q2> R~2) are stable to solid body
kinks, which stretch the tubes, but are unstable to internal
kinks, which do not stretch them.

In addition to releasing more magnetic energy, we also
Ðnd that the kinked tube becomes more force-free as n
increases from 1 to 4. To illustrate this, we measure the
component of the current perpendicular to and parallel to
the magnetic Ðeld and take the ratio of the two, which we
will call the ““ global magnetic force parameter ÏÏ " :

"4
/ d3x o J ] B o

/ d3x o J Æ B o
\ / d3x o J o o B o sin t

/ d3x o J o o B o cos t
, (30)

where the integrals are taken over the volume of the tube
where and t(x) is the angle between B ando B o2[ o B omax2 /6,
J. As t(x) ] 0, "] 0, and the tube becomes force free. We
plot " for these single-mode kinks as the asterisks in Figure
4. This shows that, whereas this ratio was initially 3.51 for
these tubes (proÐle D), it becomes less than 1 for the kinked
tubes, varying from just over 0.8 for n \ 1 to just over 0.2
for n \ 4. As this is a high-b plasma, small pressure Ñuctua-
tions (relative to the background pressure) can create pres-
sure gradients that easily balance magnetic forces, but in
spite of this, the Ðeld becomes more force free. We do not
have an explanation for this but note it as an interesting
result of the simulation. In summary, we Ðnd that all the
single-mode kinks studied for this Ðeld proÐle release sig-
niÐcant magnetic energy and become much more force free.
The higher n, higher growth rate modes develop lower
amplitude kinks, release more magnetic energy, and become
more force free than lower n, lower growth rate modes.
Figure 2 shows that these high n mode tubes, such as n \ 3
and n \ 4, have large pitch angles and are tightly wound: a
tube with one of these kinks at its apex would therefore
create a tilted spot region as it Ðrst emerged and would

FIG. 4.ÈGlobal magnetic force parameter ", deÐned in eq. (30), vs.
mode n for proÐle D tube kinks. The initial value of " for a proÐle D tube
is 3.51. As in Fig. 3, the asterisks represent the single-mode kinks, and the
crosses connected by dotted lines represent the multiple-mode kinks : a
cross marks each mode present in that kink.
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isosurfaces of the n \ 1 kink simulation (a) at soon after the n \ 5 mode has been excited and (b) at afterFIG. 5.È o B o2\ o B omax2 /6 t \ 9.6R/vA t \ 24R/vAthe kinks have saturated.

remain compact and rotate as it emerged further, repro-
ducing several of the observed d-spot characteristics.

4.2. Multiple-Mode Kinks
Our single-mode kink study is valuable in that it allows

us to test our linear predictions and to study how the devel-
opment of the kink depends on the wavenumber of the
excited mode. However, the nonlinear interaction of several
simultaneous modes in a kinking tube may produce con-
Ðgurations rather di†erent from those generated by single-
mode kinks. As tubes in the convection zone will be
constantly bu†eted by turbulent convective motions, they
will be exposed to a large number of modes and are much
more likely to be excited by multiple modes than a single
mode. It is thus important to study multimode kinks. In
fact, we found in our simulations that even in single-mode
kink simulations, additional modes are sometimes excited
by either numerical noise or a nonlinear coupling between
modes. While the n \ 1 kink results in a very large ampli-
tude, it does not saturate at a new equilibrium as the higher
wavenumber kinks do. Soon after the time step shown in
Figure 2a, the n \ 5 mode begins to a†ect the evolution of
the n \ 1 kink. An illustration of this mode early in its
evolution and a picture of the Ðnal equilibrium for the tube,
a combination of the two modes, are shown in Figures 5a
and 5b, respectively. The n \ 5 mode signiÐcantly decreases
the amplitude of the n \ 1 mode. It also gives the tube a
larger pitch, about 90¡, and increases the complexity of the
tube. The time evolution of the kinetic and magnetic energy
of the tube are shown in Figure 6. This shows both the
initial peak in the kinetic energy due to the n \ 1 mode at

and the second peak due to the n \ 5 mode att \ 6R/vA One can also see how both modes contribute tot \ 12R/vA.
the decrease in magnetic energy (see discussion below).

We performed a number of simulations wherein several
modes are simultaneously excited at the beginning of the
simulation (see runs 6È8 in Table 1). To simplify the study of
these simultaneously excited kink modes, we again
restricted our study to the tube equilibrium given by
qR\ 5.89 and a \ 0.25 discussed above. In the Ðrst simula-
tion, we excited the n \ 3 and n \ 4 modes with amplitudes

and respectively. The x and y components of thev0 v0/2,
perturbation velocity on-axis are shown in Figure 7a, from
which one can see that the interaction of the modes leads to
a beating with the perturbation at a maximum at the mid-
point of the tube and decreasing toward the ends. The Ðnal
kinked state, shown in Figure 8, exhibits a similar beating :
the kink is concentrated near the tube midpoint and the
ends of the tube are relatively unkinked. This is the major
e†ect of this type of multimode excitation.

How do tubes excited by more complex perturbations
evolve? To determine this, we then simulated a four-mode
(n \ 1, 2, 3, and 4) and a seven-mode (integers n \ 1
through n \ 7) kink. For these two simulations, the pertur-
bation amplitude for each mode of wavenumber k was set
to This approximates a turbulent Kolmogorovv0/ o k o .
spectrum for which the amplitude of modes of wavenumber
k are proportional to o k o~5@6 (see, e.g., Landau & Lifshitz
1987, p. 134). This is the spectrum derived for a neutral Ñuid,
i.e., where the magnetic Ðeld is zero, and we argue it is valid
here in this high-b environment of the solar convection zone
in which the magnetic Ðlling factor is believed to be small.

FIG. 6.ÈKinetic energy and magnetic energy vs. time for the(E
K
) (E

B
)

n \ 1 kink simulation. Notice the second peak in the kinetic energy where
the n \ 5 mode is excited.
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FIG. 7.ÈInitial velocity perturbation on the tube axis : the solid curve is
and the dashed curve is (a) : The n \ 3 and 4 kink :v

x
, v

y
. v

x
\

. (b) :v0[cos (6nz/L ) ] cos (8nz/L )/2], v
y
\ v0[sin (6nz/L ) ] sin (8nz/L )/2]

The seven-mode (n \ 1 to 7) kink : v
x
\ v0 £

n/17 cos (2nnz/L )/n, v
y
\

v0 £
n/17 sin (2nnz/L )/n.

(Note it has been argued by Kraichnan that this neutral
Ñuid spectrum should instead be o k o~3@4 [see Montgomery
1989, p. 125]). The initial perturbation velocities on-axis for
the seven-mode simulation are shown in Figure 7b, from
which one can see that the perturbation is highly concen-
trated near the central cross section of the tube.

We Ðnd that the instability proceeds in a very similar
fashion in both of these simulations, as illustrated by the
nearly identical isosurfaces for the seven-mode simulation
in Figure 9b and for the four-mode simulation in Figure
10d. Owing to the interaction of the many modes, these
tubes develop a concentrated kink at their midpoint while
the rest of the tube remains largely unkinked. The kink near
the center of the tube is so violent that the tube folds over
on itself and quickly develops a concentrated current sheet

isosurface of the n \ 3 and 4 multimode kinkFIG. 8.È o B o2\ o B omax2 /6
at t \ 7R/vA.

near the center of the kink activity, which leads us to infer
that two di†erent sections of the tube have come into
contact. Figure 9 shows the development of this current
sheet and of the tube as the kink evolves. Here isosurfaces of

are plotted in the left-hand half of eacho B o2\ o B omax2 /6
panel, while isosurfaces of are plotted in theo J o2\ o J omax2 /3
right-hand half. In Figure 9a, the kink has just started to
form, and the concentration of largest current is at the edge
of the tube along its entire length, where the magnetic Ðeld
drops quickly to zero and the Lorentz force balances the
large pressure gradient. In Figure 9b, the kink has already
doubled over on itself, and a strong current sheet has devel-
oped at the inferred contact point. While the concentrated
current at the edge of the tube still exists as before, it now
lies below the isosurface threshold value since the magni-
tude of the current in the new sheet is almost 3 times greater
than that in this boundary current. We infer that the new
current concentration occurs where the Ðeld in one section
of the tube, pointing in one direction, has been forced into
contact with the Ðeld of another section of the tube, point-
ing in a di†erent direction, resulting in a rapid change in the
direction of B over a short distance. In such a conÐguration,
if the resistivity is nonzero, Ðeld lines will ““ break ÏÏ and
““ reconnect ÏÏ to Ðeld lines on the opposite side of the current
sheet, thus rearranging their topology, and possibly also the
morphology of the Ñux tube. For a discussion of the gener-
ation of current sheets and reconnection, see the review by
Low (1990) and Chapters 9 and 10 of Parker (1994). Such a
release of magnetic stresses through Ðeld line reconnection
is often cited as the source for coronal Ñares and the associ-
ated reconÐguration of coronal magnetic Ðelds (see, e.g.,
Manoharan et al. 1996 or the recent review by Tsuneta
1996).

As shown in Figure 9, there is ample evidence from the
rapid change of the tube morphology that reconnection is
occurring. Figures 9b and 9c show highly distorted, rapidly
evolving Ñux tube isosurfaces and current isosurfaces. By
Figure 9d, the tube is evolving more slowly, indicating it is
near a new equilibrium conÐguration, and the current has
decreased signiÐcantly, though there is still a concentrated
sheet at the center of the tube. We also Ðnd evidence of
reconnection through topological changes of Ðeld lines. All
Ðeld lines were initially helical, winding around the axis a
total of 7.5 times over the length of the tube, but as shown
by the representative Ðeld line traces in Figure 11, Ðeld lines
near the center of the Ðnal tube equilibrium are knotted.
The Ðeld line shown in Figure 11a has been knotted into a
single overhand knot, while the Ðeld line shown in Figure
11b has a double overhand knot (Turner & van de Griend
1996). We traced a number of other Ðeld lines, starting from
z\ [L /2 at various points along the axis, and found, asyü
shown in Figure 12, that they are singly or doubly knotted
near the center of the tube and unknotted near the edge of
the tube. The accuracy of these Ðeld line trajectories was
tested by reducing the step size of the second-order Runge
Kutta Ðeld line integration (see, e.g., Press et al. 1986, p. 550)
until the resulting traces converged. We have not, however,
tested them by changing the resolution of the simulations
themselves.

The dependence of the kink on the mode or modes
excited raises the interesting question of the uniqueness of
the Ðnal kinked conÐguration of the tube. Three of the
single-mode kinks, n \ 2, 3, and 4, the n \ 3 and 4 two-
mode kink, and the n \ 1 mode kink (after the n \ 5 mode
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isosurface (left half of each panel) and isosurface (right half of each panel) for the seven-mode (n \ 1È7) kink.FIG. 9.È o B o2\ o B omax2 /6 o J o2\ o J omax2 /3
(a) : (b) : (c) : and (d) : B is normalized by the initial Ðeld strength on axis, J is normalized byt \ 2.4R/vA, t \ 2.7R/vA, t \ 3.4R/vA, t \ 9.8R/vA. B0. cB0/(4nL ).

has entered and saturated) all appear to reach di†erent
equilibrium states, each also di†erent from the seven- or
four-mode kink equilibrium. With the exception of the
n \ 1 mode, the initially perturbed kinks therefore seem to
have released sufficient magnetic energy that no further
kink modes are excited. The magnetic energy loss of the
multimode kinks are plotted in Figure 3a with crosses at
each mode of the kink connected by a dotted line. This
Ðgure shows that almost all simulations mentioned above
released about half of the initial magnetic energy of this
particular Ðeld proÐle. The n \ 1 kink released only about
32% and had sufficient free magnetic energy remaining to
support an additional unstable mode. The n \ 5 mode was
then excited and released an additional 18% of the initial
magnetic energy. The tube then appears to have evolved to
a stable equilibrium for which, as in the other stable equi-
libria, about 50% of the initial magnetic energy has been
released. In addition, Figure 4 shows that all of the kinked
tubes have evolved to a signiÐcantly more force-free state
than they were in initially.

These kinks all appear to have evolved to a Ðnal state in
which about half of the initial magnetic energy has been
released and in which they are all at about the same force-
free level, as measured by " (eq. [30]). Apparently, the
initial equilibrium state can evolve to a number of di†erent
Ðnal states that are each roughly equivalent and locally
stable. In the convection zone, however, a kink like the four-
or seven-mode kink is more likely to occur, as the tube will
constantly be bu†eted by turbulent convection zone
motions and therefore will be exposed to a large number of
unstable modes. As the four- and seven-mode simulations
produce very similar results, we argue that they represent
the evolution of the tube when a large spectrum of unstable
modes is excited. In the next section, we therefore extend
our study of the multimode kink, as represented by the
four-mode kink.

4.3. Dependence of the Multimode Kink on the Field ProÐle
As the linear stability of the kink depends on qR and on

a, we now explore the nonlinear dependence of the multi-
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isosurface of four-mode (n \ 1, 2, 3, and 4) kinks for proÐles with a \ 0.25 and qR\ 1.96 (a), qR\ 2.95 (b), qR\ 3.93 (c), andFIG. 10.È o B o2\ o B omax2 /6
qR\ 5.89 (d). The tubes are shown at times and respectively. Note that the tube in panel D has not yet reached an36R/vA, 14R/vA, 17R/vA, 3R/vA,
equilibrium state. It continues to evolve much like the kinking tube in Fig. 9.

mode kink on these parameters. The tubes we simulated
have q2R2? a, so we expect variations in qR to have a
more signiÐcant e†ect on the kink behavior than variations
in a. We therefore concentrate on simulations with varying
qR values and perform only one simulation with a di†erent
a value. To investigate the multimode kinkÏs dependence on
qR, we simulated four di†erent a-proÐle tubes with a \ 0.25
and qR\ 1.96, 2.95, 3.93, and 5.89, which we denote,
respectively, proÐles A, B, C, and D (see runs 7 and 9È11 in
Table 1). Note that each of these tubes has a ratio R/L of
1/8. The dispersion relations for these four tubes are shown
in Figure 1, from which one can see how qR is predicted to
a†ect the instability, as discussed in ° 2. We perturbed each
of these tubes with the four modes n \ 1, 2, 3, and 4, which
are indicated on Figure 1 by the asterisks on each curve,
and with amplitudes proportional to 1/n as described in
° 4.2. Isosurfaces of these tubes after they kink are shown in
Figure 10, where all but the proÐle D tube have saturated.
We found that while proÐle D gives a highly concentrated

kink that leads to reconnection soon after the time shown,
as discussed in ° 4.2, proÐle C gives a concentrated kink that
is not severe enough to cause reconnection, proÐle B gives
only a weakly concentrated kink, and proÐle A does not
give a concentrated kink. Thus the linear predictions of an
increase in instability with qR translate in the nonlinear
regime into an increase in the extent of the concentrated
kink produced by the interaction of many modes. We inter-
pret this increase in kink extent with increasing qR as rep-
resenting the increased kinking an unstable tube will
experience as it rises through the convection zone and
expands with q remaining constant (see ° 5).

To test our concentrated kink results on a di†erent tube
proÐle, we then simulated one four-mode kink for a \ 1 and
qR\ 5.89 (see run 12 in Table 1). This tubeÏs dispersion
relation lies between the proÐle D and proÐle C curves on
Figure 1, and one would therefore expect the kink to be
intermediate in extent between that of the proÐle D and
proÐle C tube kinks. The Ðnal equilibrium of this kinked
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FIG. 11.ÈRepresentative magnetic Ðeld lines from the Ðnal state of the seven-mode kink (Fig. 9d). The traces shown are Ðeld lines initiating at (a) : x \ 0,
y \ 0, and z\ [L /2 and (b) : x \ 0.19R, y \ 0, and z\ [L /2. These Ðeld lines were initially helical (see Fig. 2 of Linton et al. 1998)

FIG. 12.ÈNumber of knots in Ðeld lines traced from points along the
y-axis at z\ [L /2. Doubly knotted Ðeld lines look like the Ðeld line of
Fig. 11b (double overhand), while singly knotted Ðeld lines look line the
Ðeld line in Fig. 11a (overhand).

isosurface of a four-mode (n \ 1, 2, 3, and 4)FIG. 13.È o B o2\ o B omax2 /6
kink for an a \ 1, qR\ 5.89 proÐle. t \ 8R/vA.

tube is shown in Figure 13. This tube shows the same char-
acteristic concentrated kink shape as those shown in Figure
10. It has not kinked enough to reconnect as the proÐle D
tube does, but it is more severely kinked than the proÐle C
tube.

As the periodicity of our code does not allow us to
include gravity, we cannot simulate the e†ect of hydrody-
namical forces acting on a kinking tube as it rises. It has
been shown by Moreno-Insertis & Emonet (1996) and Fan,
Zweibel, & Lantz (1998a) that a tube with sufficient twist
will remain intact as it rises but will not remain cylindrically
symmetric. Rather, the twist concentrates in the upper part
of the tube cross section. A comparison of our results with
the kink simulations of Fan et al. (1999), however, shows
that this does not signiÐcantly a†ect the evolution of the
kink instability. In their paper, they studied several isolated,
kinking Ñux tubes rising in a gravitationally stratiÐed atmo-
sphere. The most kink unstable tube proÐle in their simula-
tions is initially close to our a \ 1 and qR\ 5.89 tube,
although slightly less twisted (qR\ 4) and therefore less
unstable. Early in its evolution, this tube, shown in Figure 5
of Fan et al., evolves to a state much like that of our a \ 1
and qR\ 5.89 tube, shown in Figure 13. However, as the
tube in Fan et al.Ïs simulation expands and becomes more
unstable as it rises into Ñuid of lower density, it evolves into
a buckled shape. This buckling is di†erent from the evolu-
tion of our proÐle D tube, which is initially signiÐcantly
more kink unstable and evolves into a knotted conÐgu-
ration owing to reconnection. This di†erence is mainly due
to the presence of up-down asymmetry produced by the
buoyancy and stratiÐcation in Fan et al.Ïs code and to the
slow evolution of their tube to a highly unstable state,
which we discuss further in the next section.

5. RISE OF A KINKING CONVECTION ZONE FLUX TUBE

Based on this nonlinear study of the kink instability and
our linear stability predictions from Linton et al. (1996), we
propose the following scenario for the development of a
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kink-unstable Ñux tube as it rises through the convection
zone. We do not address the issues of magnetic Ðeld gener-
ation by the solar dynamo or the creation of a Ñux tube
from the dynamo source region near the base of the convec-
tion zone. Rather we start from the point at which a twisted
Ñux tube has broken o† from that region and starts to rise
toward the solar surface. We do not know in what way the
Ñux tube has gained its twist or what proÐle the twist in the
tube has taken. However, we argue in ° 2 that a uniform-
twist Ñux tube is representative of twisted solar Ñux tubes
for the purposes of the kink instability.

A magnetic Ñux tube is unstable to the external kink only
when its twist (q) is greater than the critical twist for(qcr)that tube. For example, consider a Ñux tube at the base of
the convection zone with an a-proÐle magnetic Ðeld (eq.
[3]) with a \ 0.25. The critical twist for this proÐle is qcr\a1@2/R\ 0.5/R, so any tube with qR\ 0.5 will be stable and
will not kink. However, as the apex of the tube rises, both q
and a will remain constant if the rising portion of the tube
expands homologously, so remains constant as RqcrRincreases, and the critical twist decreases. If we take the
twist in our example tube to be q \ 0.5/R at the base of the
convection zone, the tube will initially be marginally stable
but will become kink unstable soon after it begins to rise
and expand. This explains the simulations of Fan et al.
(1999) : their gravitationally stratiÐed simulation box is deep
enough to allow a tube to expand by about a factor of 3
before it has risen to the top. They Ðnd that tubes at the
base of the simulation box need to have twist greater than
half the critical value to become unstable and go through at
least one e-folding of the instability before they near the top
of the simulation box. Hence, a Ñux tube that initially has

does not exhibit kinking before it reaches the topq \ 0.5qcrof the box, while a Ñux tube with does exhibitq \ 0.9qcrkinking, albeit very slight, as it nears the upper boundary
(see Fig. 4 of Fan et al. 1999).

Once the tube has expanded enough for the critical twist
to be negligible compared to the actual twist, equation (2)
predicts that the normalized growth rate will scale as R2,
and thus expansion will continue to increase the tubeÏs
instability. This does not mean the kink will evolve faster :

will scale as 1/R, so the growth rate an external observervAsees will not increase. Rather, it means the instability the
tube experiences will become more severe, and the Ðnal
state of tube will be more signiÐcantly kinked. Figure 10
shows how this increased instability a†ects the kink evolu-
tion : the four-mode kink gets increasingly severe as qR is
increased from proÐle A to proÐle D. Finally, it undergoes
such a violent kink that it folds over and reconnects. As an
example, we consider a marginally stable tube with
qR\ 0.5 and a \ 0.25 and trace its evolution as it rises and
expands. Once the apex of the tube has risen enough to
expand by about a factor of 4 it will be the equivalent of
tube A in Figure 10. It will be continually bu†eted by con-
vection zone motions and will therefore be exposed to a
large range of kink modes. For positive twist tubes, negative-
k kink modes will be unstable and will therefore be excited
but will result in mostly internal motion, as the twist is not
yet large enough to give large-amplitude kinks (see tube A
in Fig. 10). By the time the apex has expanded by a factor of
6, it is equivalent to proÐle B, and so larger amplitude kinks
can form, and a concentrated kink begins to develop. At
this point, positive-k modes also become unstable, but as the
negative-k modes are already well developed, we argue that

they will dominate. This is important because the sign of the
kink will be observable as the sense of tilt and subsequent
rotation of the spot region when the tube emerges, as we
discuss in ° 6. As we follow the evolution, the tube evolves to
a kink as for proÐle C when it has expanded by a factor of 8
and develops a kink severe enough to cause reconnection,
as for proÐle D, by the time it expands by a factor of 12. The
density decreases by about 6 orders of magnitude from the
base of the convection zone to the photosphere, so a rough
estimate, based on mass conservation within the tube, gives
a radial expansion factor of 100. This indicates that a radial
expansion factor of at least 12 as a tube rises to the surface
is reasonable, and thus a tube that was initially marginally
stable could produce a concentrated kink and a current
sheet during its rise to the photosphere.

The results of Fan et al. (1999), however, do provide a
cautionary note for this scenario. Their most unstable tube
(illustrated in Fig. 5 of that paper) evolves to a buckled tube
with the axis tilted by about 120¡. Our proÐle D tube, in
contrast, reconnects before its axis tilts by 90¡. The tube in
Fan et al. is initially signiÐcantly less kink unstable than our
proÐle D tube, and the kink instability is enhanced slowly
as the tube rises and expands in the stratiÐed Ñuid. There-
fore, that tube kinks more gradually, while our proÐle D
tube starts o† in a very unstable state and can kink violently
and rapidly evolve a current sheet. We expect, however, that
a rising tube will eventually develop a current sheet as seen
in Figure 10d. While the slow evolution of the kink will
postpone the formation of this current sheet, as the tube
rises it will eventually expand sufficiently that the buckling
will force one section of the tube into another, and the
current sheet will form.

Whether a kinked tube, having evolved to a state with a
large current sheet at the juxtaposition of two di†erently
directed magnetic Ðelds, would undergo signiÐcant recon-
nection in the convection zone is a difficult question : the
resistivity is very low in the convection zone, so while recon-
nection will occur, one might expect it to be very slow. Since
we cannot observe Ñux tubes in the convection zone, we
cannot test this prediction. On the other hand, many obser-
vations from Yohkoh (see, e.g., Manoharan et al. 1996 and
Tsuneta 1996) have shown that the conÐguration of the
coronal magnetic Ðeld can change quite rapidly during
Ñares, so it is apparent that reconnection does occur in the
corona, perhaps driven by an enhanced resistivity due to
anomalous plasma processes (see, e.g., Priest 1982, p. 79) or
the development of turbulence in the current sheets where
reconnection occurs (see, e.g., Dahlburg, Antiochos, & Zang
1992). Therefore, if a kink like that of tube D were to be
achieved in the convection zone, it may not reconnect as it
did in our simulation (owing to the relatively high resistivity
in our code compared to that in the convection zone), but it
could reconnect after it emerged.

This indicates a key connection with the high Ñare activ-
ity of d-spots. While reconnection of magnetic Ðelds is the
likely source of Ñare activity, and the local magnetic con-
Ðguration that leads to current sheets and reconnection has
been well studied (see, e.g., Low 1990 and Parker 1994), it
not well known how the large-scale coronal Ðelds develop
into a conÐguration that is conducive to reconnection.
What we have shown here is that a highly twisted tube can
develop a concentrated kink conÐguration that undergoes
signiÐcant reconnection. Therefore, if such a concentrated
kink were the cause of d-spot regions, this would provide a
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promising explanation for the high Ñare activity of these
regions.

6. CONCLUSIONS

The real test of the relationship between the concentrated
kink we have studied and d-spot active regions is in the
emergence of the kink through the photosphere, where the
simulations can be compared with photospheric obser-
vations. As the concentrated kink at the apex of the Ñux
tube emerges through the photosphere, it creates a ““ spot
group ÏÏ that evolves as shown in Figure 14. This Ðgure
shows the magnetic Ðeld on four surfaces intersecting the
Ðnal state of the proÐle D tube. As the tube will be arched in
the convection zone, but is initially straight in our simula-
tion, we take curved surfaces through the tube, as shown in
Figure 15, to represent the Ñat photosphere intersecting an
arched tube. Note that the surface is curved in the x-z plane

and is parallel to the axis. The gray scale in Figure 14 isyü
the magnetic Ðeld perpendicular to the intersecting surface,
with white (black) representing positive (negative) Ðeld. The
Ðeld in the plane of the surface is represented by the vectors.

The active region Ðrst emerges, in Figure 14a, with a
clockwise tilt between the opposite polarity regions of
about 120¡ away from the usual Hale-Nicholson orienta-
tion. It then rotates counterclockwise in the next three
panels until it is approximately oriented in the Hale-
Nicholson orientation. Note the sense of tilt and rotation
depends on the handedness of the kink : a right-handed kink
(k \ 0), which occurs for right-hand twisted tubes (q [ 0),
will emerge with an initial clockwise tilt, followed by
counterclockwise rotation, and the inverse will occur for
left-hand twisted, left-hand kinked tubes. During its rota-
tion, in Figures 14b and 14c, the region develops signiÐcant
shear along its neutral line. This is due not to photospheric

FIG. 14.ÈVector magnetogram of the spot region that would result from the emergence through the photosphere of the kinked Ñux tube pictured in Fig.
15. Each panel corresponds to the surface marked with the same letter in Fig. 15. The gray scale shows the magnetic Ðeld perpendicular to the surface :
positive (negative) Ðeld is white (black). The vectors show the magnetic Ðeld lying on the surface. The region emerges highly tilted away from the east-west
direction in (a), rotates and develops strong shear along the magnetic neutral line while remaining compact in (b) and (c), and separates into two opposite
polarity regions in (d).
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isosurface of the seven-mode tube, shownFIG. 15.È o B o2\ o B omax2 /6
from an angle rotated by 90¡ about the axis relative to the view given inxü
Fig. 9d. The lines superimposed on the Ðgure show the curved surfaces
intersecting the tube. These curved surfaces intersecting the unarched tube
represent a Ñat photosphere intersecting an arched tube. The Ðeld on each
of these planes is shown in Fig. 14. The line marked ““ E-W ÏÏ shows the
east-west direction.

motions but rather to the magnetic Ðeld conÐguration in
the tube. Finally it remains compact during its rotation and
during the development of its shear. The opposite polarity
spots only separate once the concentrated kink has fully
emerged. We expect the reconnection and any associated
Ñare activity will occur during this initial emergence, as the
concentrated kink expands into the corona.

While Leka et al. (1996) have shown that photospheric
motions are not responsible for this observed Ñux tube rota-
tion and shear, there remains the possibility that turbulent
convection zone motions, rather than the kink instability,
could be responsible for this. In fact Fisher, Fan, & Howard
(1995) concluded that there is an observable e†ect of con-
vective motions on active regions. While the average tilt
angle of active regions away from the Hale orientation is
small, there is a measurable dispersion of tilts about the
average value. This dispersion is likely due to the bu†eting
of rising Ñux tubes by convection zone motions. Fisher et al.
(1995) studied this dispersion in tilt angles and found that
small active regions display a dispersion of D30¡ about the
average tilt angle. However, they found that this dispersion
decreases for larger active regions to about 6¡. As Ñare-
productive d-spot active regions associated with strong
Ñares are usually quite large, this indicates that convective
motions should have little e†ect on the Ñux tubes that create
these d-spots. One can check this prediction by comparing
the sense of tilt and rotation of d-spots with the sign of their
twist. As discussed above, the kink results in a correlation
between these two. On the other hand, convective motions
would not lead to such a correlation, as discussed in Linton
et al. (1998). A statistical study of d-spots should therefore
be able to determine which of these two possible mecha-
nisms is responsible for creating d-spot Ñux tubes.

We Ðnd, therefore, that the emergence of the concen-
trated kink displays all the features we have identiÐed as

characteristic of d-spots. An additional feature of this sce-
nario is that we Ðnd the opposite polarity spots will even-
tually separate if the tube continues to emerge and no
additional kinks have formed beyond the concentrated kink
at the apex. As reconnection will occur during the tubeÏs
emergence, the tube could be largely reconÐgured by the
time it reached this stage and may no longer resemble the
tube in Figure 15. If the tube does keep its integrity,
however, the opposite polarity spots will eventually
separate after the concentrated kink emerges fully. In fact,
Lites et al. (1995) Ðnd a very similar behavior to our concen-
trated kink emergence in their study of a d-spot active
region. They see a compact d-spot group emerge and
exhibit strong left-handed twist and strong shear along its
neutral line. (Note that it emerges with a clockwise rotation,
in contrast to our analysis, which predicts an initial
counterclockwise rotation.) At the end of the evolution, the
d-spot disappears, leaving a twisted loop system visible in
X-rays in the corona and two separated pores of opposite
polarity in the photosphere. These two pores could be what
remains of the twisted Ñux tube after the concentrated kink
has emerged and reconnected, as in Figure 14d, while the
coronal loop system could be the emerged concentrated
kink. Such evidence of separated bipolar spots is not usually
associated with d-spot region behavior. In fact, Lites et al.Ïs
interpretation of this observation is that the twisted Ñux
region has emerged completely and is no longer connected
to the convection zone at the end of the observation. It is
difficult from this observation to tell which of these inter-
pretations is more accurate, so this issue warrants a detailed
observational study of d-spots to discover if indeed there is
any evidence that a fully emerged d-spot region is still tied
to the convection zone in such a way.

In summary, we studied the current-driven kink insta-
bility in twisted Ñux tubes as a mechanism for the formation
of d-spot active regions. We found that, when perturbed
with a single unstable mode, the tubes develop kinks that
saturate at Ðnite amplitude. The simultaneous excitation of
a number of unstable modes produces concentrated kinks
that display large tilt angles and produce compact kinks at
the tube midpoint, thus creating a tube with the required
morphology for d-spot formation. Such a kinked tube
would emerge highly tilted away from the Hale-Nicholson
conÐguration and would rotate, develop strong magnetic
shear along the neutral line, and remain compact as it
evolved. A very kink-unstable tube will kink to the point at
which it folds over on itself and creates a current sheet at
which the magnetic Ðeld reconnects. This changes the mor-
phology of both the tube and its Ðeld lines and could be the
source of the Ñare activity in d-spots. In addition to these
characteristics of the tube emergence, which agree with
observed d-spot characteristics, our simulations predict that
the sense of the initial tilt (relative to the Hale orientation)
will be clockwise (counterclockwise) for a tube with right-
(left-) handed twist, the subsequent rotation will be counter-
clockwise (clockwise) and the region will separate into two
isolated spots after the concentrated kink has fully emerged.
In the future we plan to study a large number of d-spot
regions and compare their evolution with these predictions.

We wish to thank Suzanne Hawley and Dana Longcope
for useful discussion and comments. This work was sup-
ported by NASA GSRP training grant NGT-51377, the
NASA High Performance Computing and Communica-



No. 2, 1999 MULTIMODE KINK INSTABILITY 1205

tions Program, NSF grants AST 95-28474 and AST 95-
21779, NASA grant NAG 5-4181, and the NASA Space
Physics Theory Program. The numerical simulations were

performed on the NRL CM5-E under a grant of time from
the DoD HPC program.

REFERENCES
H. 1950, Tellus, 2, 74Alfve� n,

Aydemir, A., Wiley, J., & Ross, D. 1989, Phys. Fluids B, 1, 774
Baty, H. 1997, A&A, 318, 621
Dahlburg, R., Antiochos, S., & Norton, D. 1997, Phys. Rev. E, 56, 2094
Dahlburg, R., Antiochos, S., & Zang, T. 1992, Phys. Fluids B, 4, 3902
Fan, Y., Zweibel, E., & Lantz, S. R. 1998a, ApJ, 493, 480
Fan, Y., Zweibel, E., Linton, M., & Fisher, G. 1998b, ApJ, 505, L59
ÈÈÈ. 1999, ApJ, 521, 460
Fisher, G. H., Fan, Y., & Howard, R. F. 1995, ApJ, 438, 463
Galsgaard, K., & Nordlund, A. 1997, J. Geophys. Res., 102, 219
Gilman, P., & Glatzmaier, G. 1981, ApJS, 45, 335
Hale, G. E., Ellerman, F., Nicholson, S. B., & Joy, A. H. 1919, ApJ, 49, 153
Kruskal, M. D., & Schwarzschild, M. 1958, Proc. R. Soc. London A, 223,

348
H. 1960, Astron. Nachr., 285, 271Ku� nzel,

Landau, L. D., & Lifshitz, E. M. 1987, Fluid Mechanics (Oxford :
Butterworth-Heinemann)

Leka, K., CanÐeld, R., McClymont, A., & van Driel Gesztelyi, L. 1996,
ApJ, 462, 547

Linton, M. G., Dahlburg, R. B., Longcope, D. W., & Fisher, G. H. 1998,
ApJ, 507, 404

Linton, M. G., Fisher, G. H., Dahlburg, R. B., Fan, Y., & Longcope, D. W.
1999, Adv. Space Res., in press

Linton, M. G., Longcope, D. W., & Fisher, G. H. 1996, ApJ, 469, 954
Lionello, R., Velli, M., Einaudi, G., & Mikic, Z. 1998, ApJ, 494, 840
Lites, B. W., Low, B. C., Pillet, V. M., Seagraves, P., Skumanich, A., Frank,

Z. A., Shine, R. A., & Tsuneta, S. 1995, ApJ, 446, 887
Longcope, D. W., & Klapper, I. 1997, ApJ, 488, 443
Low, B. C. 1990, ARA&A, 28, 491
Manoharan, P., van Driel-Gesztelyi, L., Pick, M., & Demoulin, P. 1996,

ApJ, 468, L73
Matsumoto, R., Tajima, T., Chou, W., Okubo, A., & Shibata, K. 1998, ApJ,

493, L43

Mo†att, H., & Ricca, R. 1992, Proc. R. Soc. London A, 439, 411
Montgomery, D. 1989, in Lecture Notes on Turbulence, ed. J. R. Herring

& J. C. McWilliams (Singapore : World ScientiÐc), 75
Moreno-Insertis, F., & Emonet, T. 1996, ApJ, 472, L53
Parker, E. N. 1979, Cosmical Magnetic Fields, Their Origin and Their

Activity (Oxford : Clarendon Press)
ÈÈÈ. 1994, Spontaneous Current Sheets in Magnetic Fields (Oxford :

Oxford Univ. Press)
Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. 1986,

Numerical Recipes : The Art of ScientiÐc Computing (Cambridge : Cam-
bridge Univ. Press)

Priest, E. R. 1982, Solar Magnetohydrodynamics (Boston : Reidel)
Sammis, I. R., & Zirin, H. 1998, paper given at American Geophysical

Union, Spring Meeting, SH22A, 4
Shafranov, V. D. 1957, J. Nucl. Energy II, 5, 86
Stix, M. 1989, The Sun, An Introduction (New York : Springer)
Suydam, B. R. 1959, in Proc. 2nd UN Internat. Conf. Peaceful Uses of

Atomic Energy, 31, 157
Sykes, A. & Wesson, J. A. 1976, Phys. Rev. Lett., 37, 140
Tanaka, K. 1980, in Solar-Terrestrial Predictions Proc., ed. R. Donnelly, 3

(NOAA-ERL), C1
ÈÈÈ. 1991, Sol. Phys., 136, 133
Tsuneta, S. 1996, in ASP Conf. Ser. 111, Magnetic Reconnection in the

Solar Atmosphere, ed. R. D. Bentley & J. T. Mariska (San Francisco :
ASP), 409

Turner, J. C., & van de Griend, P. 1996, History and Science of Knots
(Singapore : World ScientiÐc)

Vlad, G., & Bondeson, A. 1989, Nucl. Fusion, 29, 1139
Waddell, B. V., Rosenbluth, M. N., Monticello, D. A., & White, R. B.

1976, Nucl. Fusion, 16, 528
Zirin, H., & Liggett, M. A. 1987, Sol. Phys., 113, 267


