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ABSTRACT
We perform three-dimensional simulations of the rise of twisted magnetic Ñux tubes in an adiabatically

stratiÐed model solar convection zone. The initial Ñux tube in our simulations is a uniformly twisted,
buoyant, horizontal tube located near the bottom of the stratiÐed layer. The twist of the initial Ñux tube
is described by a parameter a, which is deÐned as the angular rate of Ðeld-line rotation about the tube
axis per unit length of the tube. We study the nonlinear evolution of the helical kink instability of the
Ñux tube as it rises through the stratiÐed layer. We Ðnd from our simulations that in order for the tube
to develop signiÐcant kinking during its rise, the initial twist of the tube needs to be close to or greater
than the critical limit for the onset of the kink instability. If the initial twist is signiÐcantly below the(a

c
)

critical limit (a below about 50% of we Ðnd essentially no kink development and the evolution isa
c
),

similar to the results from previous two-dimensional simulations of the rise of twisted, horizontal Ñux
tubes. On the other hand, if the initial twist is sufficiently greater than the critical limit such that the
e-folding period of the fastest growing kink mode is small compared to the rise time of the tube, we Ðnd
sharp bending and distortion of the tube as a result of the nonlinear evolution of the kink instability. In
this case, we Ðnd that due to the e†ect of gravitational stratiÐcation, the kinked Ñux tube arches upward
and evolves into a buckled loop with a local change of tube orientation at the loop apex that exceeds
90¡ from the original direction of the tube. The emergence of this buckled loop can give rise to a
compact magnetic bipole with polarity order inverted from the Hale polarity law, similar to the conÐgu-
ration often seen in d spots. Furthermore, our simulations show that the writhing of the tube axis as a
result of the kink instability stretches the Ñux tube and increases its buoyancy. Hence, the development
of the kink instability can speed up the overall rise of the Ñux tube.
Subject headings : MHD È Sun: magnetic Ðelds È sunspots

1. INTRODUCTION

Solar active regions are believed to be formed through
the emergence of magnetic Ñux tubes from the base of the
solar convection zone, where strong toroidal magnetic Ðeld
is being generated by the dynamo mechanism. The qualit-
ative picture is that an )-shaped loop of magnetic Ñux
develops from the toroidal magnetic Ðeld and rises through
the convection zone until its apex intersects the photo-
sphere to form a bipolar magnetic region. Most of the
bipolar magnetic regions on the solar surface are found to
obey HaleÏs polarity rule (see, e.g., Zirin 1988, p. 307). This
can be understood if the rising ) loops roughly preserve the
original orientation of the toroidal magnetic Ðeld at the
base of the convection zone. It has recently become a
popular notion, given the support from both observations
(Lites et al. 1995 ; Leka et al. 1996 ; Lites & Low 1997) and
theoretical arguments (McClymont & Fisher 1989 ; Low
1996 ; Moreno-Insertis & Emonet 1996 ; Fan, Zweibel, &
Lantz 1998a ; Matsumoto et al. 1998), that some Ñux tubes
emerge from the solar interior already twisted and that the
free magnetic energy released in large solar Ñares does not
come from the energy built up through photospheric shear-
ing motion but is rather already present in the emerging Ñux

1 The National Center for Atmospheric Research is sponsored by the
National Science Foundation.

tubes. If the )-loop Ñux tube is sufficiently twisted, then it is
subject to the current driven kink instability. Tanaka (1991)
invoked a model of the emergence of a kinked (or knotted)
magnetic Ñux tube to explain the observed evolution of the
Ñare-active d conÐguration sunspots. The so-called d con-
Ðguration describes a type of unusual active region in which
sunspot umbrae of opposite polarities are pressed together
in a common penumbra, and the polarity order is often
inverted from HaleÏs polarity law. It is of interest to study
how d spots are formed, because they are known to be the
most Ñare-productive active regions. The d conÐguration
suggests an abnormal emerging Ñux tube structure as com-
pared to a simple ) loop. The emergence of a kinked ) loop
is an appealing possibility because it can explain the
inverted polarity order and the compactness of the struc-
ture.

Recently, Linton et al. (1996, 1998, 1999) and Fan et al.
(1998b) have carried out theoretical investigations of kink-
unstable Ñux tubes in a pressure-dominated (high b) plasma
to study their possible role in the formation of d-spot active
regions. Linton et al. (1996) investigated the linear kink
instability of uniformly twisted magnetic Ñux tubes conÐned
by pressure in a high b plasma. Through three-dimensional
MHD simulations, Linton et al. (1998, 1999) expand upon
their linear calculations to study the nonlinear evolution of
the kink unstable magnetic Ñux tubes. They investigated the
kinked equilibrium conÐgurations the Ñux tubes evolve into
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as a result of the nonlinear growth of one or multiple
unstable kink modes. Their simulations do not include the
e†ect of gravity and stratiÐcation. In an e†ort to study the
dynamic evolution of emerging magnetic Ñux tubes in the
stratiÐed solar convection zone, we have developed a three-
dimensional anelastic MHD code. The anelastic formula-
tion is suitable for studying slow, subsonic dynamic
processes in the high-b plasma of the solar interior. In this
paper, we use this three-dimensional anelastic MHD code
to simulate the nonlinear evolution of the kink instability of
a twisted magnetic Ñux tube as it rises buoyantly through a
gravitationally stratiÐed layer representing the solar con-
vection zone. We do not attempt to model simultaneously
the evolution of the ) loop resulting from the undular
Parker instability and the development of the kink insta-
bility on the ) loop, because the wavelengths of the two
instabilities are vastly di†erent for Ñux tubes near the base
of the convection zone. We model the rise of a relatively
short segment of buoyant Ñux tube, which can be viewed as
the apex portion of a rising ) loop, and focus on studying
the local kinked structure that can be formed as a result of
the nonlinear evolution of the kink instability.

The remainder of the paper is organized as follows.
Section 2 describes the basic anelastic numerical model
used by our simulations. A more detailed description of the
numerical algorithm used to solve the governing equations
is given in the Appendix. Section 3 discusses the important
physical timescales involved in the present problem. The
results of the simulations are presented in ° 4, and the con-
clusions are summarized in ° 5.

2. THE NUMERICAL MODEL

The equations we solve with our numerical code are the
anelastic form of the basic MHD equations :
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The detailed derivation of the above equations can be found
in many previous publications (e.g., Gilman & Glatzmaier
1981 ; Glatzmaier 1984 ; Lantz & Fan 1999). The anelastic
formulation assumes a time-independent, background refer-
ence state of hydrostatic equilibrium and nearly adiabatic
stratiÐcation described by and whichs0(z), p0(z), o0(z), T0(z),

are functions of height z only, and solves for the evolution of
velocity magnetic Ðeld B, and the thermodynamic Ñuctua-¿,
tions and which represent perturbations froms1, p1, o1, T1,the reference state. In the above equations, % is the viscous
stress tensor given by
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and k, K, and g denote, respectively, the dynamic viscosity,
and thermal and magnetic di†usivities.

In these calculations, we use an adiabatically stratiÐed
polytrope as the reference state (so that the Ñuid is margin-
ally stable to convection) :
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T0, o0,and (the pressure scale height) at z\ 0, and m is thep0, H

ppolytropic index which relates to the ratio of speciÐc heats c
as m\ 1/(c[ 1). We assume an ideal gas with c\ 5/3 and
m\ 1.5.

We solve the three-dimensional anelastic MHD equa-
tions in a rectangular Cartesian domain with periodic
boundary conditions in the horizontal directions and non-
penetrating, stress-free upper and lower boundaries. The
details of the numerical algorithm used is described in the
Appendix. BrieÑy, we use a mixed pseudo-spectral and
Ðnite-di†erence formulation, where the governing equations
are Fourier analyzed in the two horizontal directions, and
the vertical derivatives are written in the centered, fourth-
order Ðnite di†erence form. The equations are then time
advanced using a semi-implicit method for which a second-
order Adams-Bashforth scheme is used for the nonlinear
advection terms and a second-order Crank-Nicholson
scheme is applied for the di†usion terms.

For the simulations in this paper, the two horizontal
dimensions of the Cartesian simulation box are of the same
size L , and the vertical height of the box is 2L , which spans
3.1 density scale heights. The ratio of density between the
top and bottom is 0.05. A uniform grid of 128 ] 128 ] 256
is used for the L ] L ] 2L domain. The governing equa-
tions explicitly include viscosity (k), magnetic di†usivity (g),
and thermal di†usivity (K). In our simulations, we let k, g,
and be constants in the domain. Like all numericalKo0studies that are limited by the Ðnite resolution of the simu-
lation grid, the e†ective values of these di†usive parameters
are generally much greater than what are expected under
solar conditions. Hence, the interpretation of the numerical
results will be subject to the uncertainties of the e†ects of
the unresolved small-scale dynamics. The important non-
dimensional parameters in our numerical simulations are
the viscous Lundquist number and theS

v
4o

r
vA0 a/k,

resistive Lundquist number in which is theS
r
4 vA0 a/g, o

rdensity at the bottom of the domain, is the speedvA0 Alfve� n
at the axis of the initial Ñux tube, and a is the initial tube
radius (deÐned in eq. [13] below). The values of andS

v
S
rare, respectively, 43 and 4300. We use a large value of (i.e.,S

rlow resistivity) so that the Ñux ““ frozen in ÏÏ condition (and
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hence the topological constraint on the magnetic Ðeld) is
satisÐed as closely as possible, while the low value of S

vensures that sharp velocity structures do not form. We set
thermal di†usivity to a low value so that there is negligible
heat di†usion across the Ñux tube during its evolution. We
have done many tests to conÐrm the reliability of the code.
One test is a comparison of the results of our code with that
used in Linton et al. (1999), which is a fully compressible
MHD code using very di†erent numerical algorithms. We
found that in the absence of gravity and stratiÐcation, our
code produces results that are in good agreement (better
than 3%) with that of Linton et al. (1999) on the nonlinear
evolution of a kink unstable Ñux tube.

3. THE RELEVANT TIMESCALES OF THE PHYSICAL

PROBLEM

The linear helical kink instability of a cylindrical, twisted
magnetic Ñux tube has been studied extensively both in
fusion plasma physics and in the context of solar physics
(see, e.g., Linton et al. 1996 and the references therein). In
this paper, we consider a uniformly twisted magnetic Ñux
tube that has the form

B \ Bh(r)h
ü ] B
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(r)xü (12)
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where is the tube axial direction, is the azimuthal direc-xü hü
tion in the tube cross section, and r is the radial distance to
the central axis. The constant a denotes the rate of Ðeld-line
rotation about the central axis per unit length of the tube.
In the ideal limit, this twisted Ñux tube is unstable to helical
motion of the form v(r) exp [i(kx ] h)], if a is above a criti-
cal value The linear growth rates for the unstablea

c
\ 1/a.

kink modes of the twisted Ñux tube can be computed by
solving the Newcomb equation subject to the appropriate
boundary conditions (see, e.g., Freidberg 1982 ; Linton et al.
1996). Figure 1 shows the ideal growth rates of the unstable
helical kink modes, for two example cases with a \ 4/a and
a \ 1.5/a. In each case, there is a range of axial wavenumber
k on either side of k \ [a that is unstable.

The presence of Ðnite viscosity and resistivity will change
the growth rates from their ideal values (see, e.g., ° 5.2 of
Linton et al. 1998). In this work, we investigate only the
long wavelength range of the unstable modes (with o k o\ a)
which are less a†ected by the presence of dissipation. For
our numerical simulations, the most important dissipative
e†ect is the viscosity, which reduces the growth rates of the
unstable kink modes and increases the critical value of a for
the onset of instability. Through direct numerical simula-
tions of the kink instability (in the absence of gravity and
stratiÐcation), we found that the peak growth rate ) (in
units of of the unstable kink modes (in the range ofvA0/a)
o k o\ a) is reduced from the ideal value of about 1.67 to 1.4
in the case of a \ 4/a, and from about 0.2 to 0.11 in the case
of a \ 1.5/a. Furthermore, we found that the critical value
of a for the onset of kink instability is increased to about
1.28/a (rather than the ideal value a

c
\ 1/a).

The rise time of a magnetic Ñux tube through the convec-
tion zone is estimated to be where is theqrise DH

p
/vrise, H

ppressure scale height and the rise velocity vriseD(Parker 1975). Let the radius of the Ñux tube(a/H
p
)1@2vA0then If the rise time isa D 0.1H

p
, qriseD 30(a/vA0). qrise

FIG. 1.ÈLinear growth rate ) of unstable helical kink motion as a
function of axial wavenumber k for a twisted magnetic Ñux tube described
by eq. (13), with a \ 4/a (a), and a \ 1.5/a (b). In the case with a \ 4/a, the
asterisks (*) correspond to wavenumbers where j\ 1, 2, 3, 4 , 5,k

j
\ 2nj/L ,

6, and 7, and L is the length of the Ñux tube in the simulation box. In the
case with a \ 1.5/a, the diamond corresponds to wavenumber k2\
2n(2/L ).

longer than the e-folding growth time for the fastestqmingrowing kink mode, then the Ñux tube is expected to
become kinked during the rise. The e-folding time decreases
with increasing (see Linton et al. 1996). For thea2[ a

c
2

cases of a \ 4/a and 1.5/a, andqmin\ 0.71a/vA0 9a/vA0,respectively (including the e†ect of viscosity). Both are small
compared to We Ðnd that becomes comparable toqrise. qminwhen a B 1.34/a. Therefore, one can expect to see sig-qriseniÐcant kinking of the tube axis during its rise if the initial a
is greater than 1.34/a. Furthermore, it has been argued
(Parker 1979, chap. 9 ; Linton et al. 1996 ; Emonet &
Moreno-Insertis 1998) that as a horizontal Ñux tube rises
and expands, the longitudinal Ðeld decreases at a faster rate

with R being the tube radius) than the trans-(B
x
P R~2,

verse Ðeld making the tube more kink unstable.(BhP R~1),
Previous two-dimensional simulations of the rise of twisted,
horizontal Ñux tubes (see, e.g., Moreno-Insertis & Emonet
1996 ; Fan et al. 1998a), show that the tube cross section
does not maintain a circular shape as it rises. First, in order
for the Ñux tube cross section to withstand the distortion by
the hydrodynamic forces and rise cohesively, the Alfve� n
speed of the transverse magnetic Ðeld in the tube cross
section needs to be at least comparable to the rise velocity
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of the tube. This leads to a minimum twist for the Ñuxvrisetube : Even if the tube is suffi-aminD (a/H
p
)1@2a~1D 0.3/a.

ciently twisted to maintain a cohesive rise, the(a [ amin)tube cross section during the rise still deviates signiÐcantly
from its initial circular proÐle. The cross section is Ñattened
in the vertical direction and a layer of enhanced transverse
Ðeld is developed at the boundary of the tube cross section
(e.g., Emonet & Moreno-Insertis 1998 ; Fan et al. 1998a).
Hence, the evolution of the kink instability of the Ñux tube
may be quite di†erent from that expected based on a simple
self-similar expansion of the tube which maintains the form
of its initial cylindrically symmetric cross-sectional proÐle.
We therefore use our anelastic code to simulate the kink
evolution of Ñux tubes which are rising and being distorted
by hydrodynamical forces. We perform a series of simula-
tions that cover a range of initial a-values (from a \ 0 to
a \ 4/a) to see how the kink development of the rising tubes
depends upon the initial twist.

4. SIMULATION RESULTS

4.1. Initial Conditions
For our numerical simulations, the initial cylindrical

magnetic Ñux tube is given by equation (13). Figure 2 illus-
trates the cross-sectional proÐles of the axial and azimuthal
magnetic Ðeld of the tube in the case of very large twist with
a \ 4/a. For all the simulations, the initial Ñux tube has the
same axial Ðeld and a is the parameter that varies.B

x
(r),

Hence, the magnitude of the azimuthal Ðeld is di†erent.BhThe Ñux tube sits initially at a height of about of the total15height of the simulation domain, and the initial radius a of
the tube is 0.085 times the pressure scale height at the
bottom. Such a Ñux tube in a gravitationally stratiÐed layer
has a mechanical equilibrium state in which the density
di†erence between the tube and the external medium, iso1,zero, so that the buoyancy force is zero, and the gradient
from the pressure perturbation balances the magneticp1forces : The equi-[ $p1 ] (1/4n)(B Æ $)B [ $(B2/8n)\ 0.
librium state of the entropy di†erence (between the tubes1and the external Ñuid) can then be calculated from andp1 o1using equation (A3).

FIG. 2.ÈVariation of axial Ðeld strength and azimuthal ÐeldB
xstrength with radius r in the initial tube cross section as described by eq.Bh(13) with a \ 4/a.

To set the Ñux tube in motion, we make it buoyant by
adding an entropy perturbation (equivalent to heating) to
the above mechanical equilibrium state of the tube :

s@\ s0@ (r) ] ;
kj

s
kj
@ (r) cos (k

j
x ] /

j
) . (14)

The pressure and density then adjust accord-p1 o1ingly based on equation (A3) and the requirement that
for the subsequent motion. The result is that$ Æ (o0 ¿) \ 0

is decreased and the Ñux tube becomes buoyant. Theo1entropy perturbation contains a component that iss0@ (r)constant along the tube axis (x-direction) and a set of com-
ponents that vary sinusoidally along the axis with wave-
numbers where L is the length of the Ñux tubek

j
\ 2nj/L ,

and j \ 1, 2, 3, 4, 5, 6, 7. In the case with a \ 4/a, these
wavenumbers correspond to the asterisks in Figure 1ak

jand are all kink unstable. In the case with a \ 1.5/a, only k2(see the diamond point in Fig. 1b) is within the o k o\ a side
of the unstable region. The proÐles of and ares0@ (r) s

kj
@ (r)

Gaussians [Pexp ([r2/a2)], with the peak amplitudes of
and are all much smaller than the peak ampli-s
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tude of [The amplitude of the largest is 0.025 ofs0@ (r). s
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that of The phases of each modes are such thats0@ (r).] /
j

k
jthey all add constructively, i.e., at the middlek
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x ] /

j
\ 0,

cross section of the tube. The resultant buoyancy acceler-
ation along the central axis of the tube is shown in Figure 3.
The buoyancy acceleration is shown in unit of B

x02 /4nH
r
o
r
,

where and are, respectively, the pressure scale heightH
r

o
rand density at the bottom of the domain. In each tube cross

section, the buoyancy acceleration decreases with r from the
value on the axis, following a Gaussian proÐle. The mean
buoyancy acceleration of the tube, as calculated by averag-
ing over the volume where the Ðeld strength is above 10% of
the peak Ðeld strength, is As a comparison,0.25B

x02 /4nH
r
o
r
.

a thin Ñux tube in pressure and thermal equilibrium with its
surrounding has a buoyancy acceleration that is equal to

The peak buoyancy acceleration at the axis ofB
x02 /8nH

r
o
r
.

the initial tube is thus about 2 times the isothermal thin
tube value, and the mean buoyancy acceleration of the
initial tube cross section is about a half of the thin tube
value. The mean buoyancy of the entire tube (resulting from
the component) will cause the tube to rise as a whole. Thes0@small variation of buoyancy along the tube axis will drive
planar undulation of the Ñux tube. Each sinusoidal undu-
lating mode can be decomposed into two helical kink
modes of opposite handedness. The kink mode with the
same handedness as that of the Ðeld line twist will be excited
if the twist is sufficiently high for the onset of the instability.
For all cases studied in this paper, the initial buoyancy of
the Ñux tube is the same.

4.2. Overview of Final ConÐgurations
In Figure 4, we show the Ðnal magnetic Ñux tubes

resulting from several simulations with di†erent values of a.
The top two rows of images show the volume rendering of
the absolute magnetic Ðeld strength ( o B o ) of the Ðnal Ñux
tubes, as viewed from two di†erent perspectives. Each
volume pixel in the box is assigned a brightness and opacity
based on the value of o B o at that point. Larger (smaller) o B o
corresponds to brighter (darker) and more opaque
(transparent) pixels. In the bottom two rows of panels, we
plotted a characteristic Ðeld line of each of the Ðnal Ñux
tubes. The Ðeld line shown is the one that goes through the
Lagrangian element which was originally placed at the
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FIG. 3.È(a) Variation of initial buoyancy acceleration along the tube
axis. (b) Evolution (in the case of a \ 4/a) of the mean buoyancy acceler-
ation of the tube in comparison with the evolution of[So1 gT/So0T,

which shows the contribution to the variation of buoy-So0 gs1 c
p
~1T/So0T,

ancy due to heating. Here angle brackets denote an average over the
volume of the Ñux tube approximated by the region where the Ðeld
strength is above 10% of the peak value. In both panels, the buoyancy
acceleration is shown in unit of where is the Ðeld strengthB

x02 /4nH
r
o
r
, B

x0at the initial tube axis, and are, respectively, the pressure scale heightH
r

o
rand density at the bottom of the domain.

central point (x \ L /2) of the initial tube axis and was fol-
lowed during the evolution. In the ideal limit of zero resis-
tivity, all the Lagrangian elements of the initial tube axis
should remain on a single Ðeld line throughout the evolu-
tion. However, this is no longer true in the simulations due
to the presence of Ðnite magnetic di†usion and Ðeld-line
reconnection. Nevertheless, due to the low resistivity, the
Ðeld line shown in Figure 4 still roughly resembles the curve
that connects the Lagrangian elements originated from the
initial tube axis, and hence it reÑects the amount of kinking
the tube develops during the rise. We Ðnd from our simula-
tions that for tubes with sufficiently supercritical twist
(a [ 1.34/a) such that the e-folding time for the growthqminof kink instability is small in comparison to the rise time

the development of the kink instability during the riseqrise,

can lead to large distortion of the tube, producing localized
kinks where the tube orientation is changed by (seeZ90¡
Figs. 4a and 4b). The amplitude of the kinking of the Ñux
tube decreases with decreasing a. For the cases with initial
twist that is near the ideal critical limit for the(a

c
\ 1/a)

onset of the kink instability, e.g., a \ 1.2/a and 0.9/a, the
tubes become moderately kinked, with no sharp local
bending of the tube axis (see Figs. 4c and 4d). When the
initial twist of the tube is decreased to about a \ 0.5/a,
which is signiÐcantly below but sufficiently twisted (a [a

cfor maintaining a cohesive rise of the tubeaminD 0.3/a)
(Moreno-Insertis & Emonet 1996 ; Fan et al. 1998a), we Ðnd
essentially no kinking of the tube axis (see Fig. 4e). Finally,
if the initial Ñux tube is not twisted (a \ 0, this case not
shown in Fig. 4), we Ðnd that the tube breaks up into two
fragments which move apart horizontally and cease to rise,
similar to what was found in previous two-dimensional
simulations 1979 ; Longcope, Fisher, & Arendt(Schu� ssler
1996).

The length scale of the Ñux tubes being studied in these
simulations is where is the pressure scale heightL BH

r
, H

rat the bottom. Hence, the undular Parker instability is not
permitted because its critical wavelength is greater than
2n(2c)1@2B 11.5 times the pressure scale height (Spruit &
van Ballegooijen 1983). Our simulations therefore only
investigate the local kinking of a small segment of straight
tube, which may be considered as a portion (e.g., the apex
segment) of a larger scale ) loop. The arching seen in the
Ñux tubes in Figure 4 is due to the local, nonlinear evolution
of the kink instability. The additional arching and tilting of
the tube that can result from the ) loop structure is not
included. To simulate simultaneously the structure of a
large ) loop resulting from, e.g., the Parker instability and
also the local development of the kink instability is still not
computationally feasible because of the large separation in
length scales between the two instabilities.

4.3. Kink Evolution of the Rising Tubes
In this section, we Ðrst look closely at the case with

a \ 4/a, for which sharp, localized kinking of the Ñux tube
develops. Then in comparison, we discuss the kink evolu-
tion of tubes with smaller initial twist.

A sequence of snapshots of the rising Ñux tube during the
evolution is shown in Figure 5 for the case of a \ 4/a. Like
Figure 4, the Ðrst two rows of images show the volume
rendering of the absolute magnetic Ðeld strength o B o of the
tube, and the Ðeld lines plotted in the bottom two rows of
panels show approximately the Lagrangian evolution of the
axial Ðeld line of the initial tube. The marked times are in
units of the crossing time As was noted in ° 3,Alfve� n a/vA0.the linear calculation in the absence of gravity and stratiÐ-
cation showed that the e-folding growth time for theqminkink instability is smaller than the typical rise time of the
Ñux tube if a [ 1.34/a. In the case of a \ 4/a, is onlyqminand the Ñux tube becomes kinked before it has0.71a/vA0risen any noticeable distance (see Fig. 5). The axis of the
tube evolves into a helix as a result of the growth of multiple
kink modes. The helix is of the same sense of handedness as
the twisted Ðeld lines of the initial tube.

The top panel of Figure 6 shows (in the case of a \ 4/a)
the evolution of the total magnetic and kinetic energies (E

mand normalized to the initial magnetic energy, and theE
k
),

evolution of the total magnetic helicity inH
m

4 / A Æ B dV
the simulation domain V , where A is the vector potential.
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FIG. 4.ÈFinal magnetic Ñux tubes resulting from several simulations with di†erent values of a. The top two rows of images show the volume rendering of
the absolute magnetic Ðeld strength ( o B o ) of the Ðnal Ñux tubes, as viewed from two di†erent perspectives. Each volume pixel is assigned a brightness and
opacity based on the value of oB o at that point. Larger (smaller) o B o corresponds to brighter (darker) and more opaque (transparent) pixels. A characteristic
Ðeld line of each of the Ðnal Ñux tube is plotted in the bottom two rows of panels as viewed from two di†erent perspectives. The Ðeld line plotted is the one
that goes through the Lagrangian tracker which was originally placed at the central point (x \ L /2) of the initial tube axis and was followed during the
evolution.

According to the deÐning equations (A6), (A7), and (A8) for
B in the Appendix, the corresponding A is given by

A \
CLB

Ly
]
P
0

z
B

y
(z@)dz@

D
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[LB
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[
P
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z
B

x
(z@)dz@

D
yü ]Jzü , (15)

Where B(x, y, z), J(x, y, z), and are dependentB
x
(z), B

y
(z)

variables being directly calculated in the simulations (see
the description in the Appendix). The magnetic Ðeld B is
zero at the upper and lower boundaries before the tube
approaches the surface, and both A and B are periodic at
the side boundaries. It can be shown that the total magnetic
helicity deÐned above is a conserved quantity in theH

mideal case of zero resistivity. In Figure 6, is expressed inH
m
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FIG. 5.ÈSequence of snapshots of the rising Ñux tube during the evolution for the case with a \ 4/a. Like Fig. 4, the Ðrst two rows of images show the
volume rendering of the absolute magnetic Ðeld strength o B o of the tube, and the Ðeld lines plotted in the bottom two rows of panels show approximately the
Lagrangian evolution of the axial Ðeld line of the initial tube. The marked times are in unit of the crossing timeAlfve� n a/vA0.

units of '2, where ' is the total magnetic Ñux of the tube.
is initially equal to (aL /2n)'2B 8.15'2. The initial kinkH

mdevelopment (from t \ 0 to roughly is qualit-t \ 13a/vA0)atively similar to the kink evolution of Ñux tubes in the
absence of gravity and stratiÐcation as described in Linton
et al. (1998). The characteristic behavior during this stage is
that the unstable kink modes Ðrst grow exponentially, and
after the linear phase which lasts several crossingAlfve� n
times, the kink motion saturates as indicated by the Ðrst
peak in in the top panel of Figure 6. The kinking of theE

kÑux tube causes the magnetic energy to drop sharply while

approximately conserving the magnetic helicity TheH
m
.

decrease in magnetic energy partly goes to heating through
direct Ohmic dissipation and is partly converted to the
kinetic energy of the kink motion, which is then also con-
verted to heat through viscous dissipation. After the kink
saturates, the kinetic energy decreases. However, because of
the presence of the driving buoyancy force, the Ñux tube
does not settle into a stable kinked equilibrium as was
found in Linton et al. (1998). After a brief decline the kinetic
energy continues to increase steadily as a result of the
buoyancy-driven acceleration of the tube, and the kink con-
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FIG. 6.ÈEvolution of the total magnetic and kinetic energies and(E
mand the evolution of the total magnetic helicity in the cases withE

k
) H

minitial twist a \ 4/a (top) and a \ 1.5/a (bottom). The energies are all nor-
malized to the initial magnetic energy of the tube with a \ 4/a. The mag-
netic helicity is expressed in units of '2, where ' is the total magneticH

mÑux of the tube.

tinues to develop as the tube expands and becomes more
kink unstable (see the discussion in ° 3).

The subsequent evolution of the tube can be described by
its overall rise and a gradual arching and ““ buckling ÏÏ of the
kinked tube (see Figs. 5c, 5d, and 5e). The initial kink satu-
rates because the tube has reached a quasi-equilibrium
where the restoring tension from the writhing axial Ðeld has
become strong enough to stop the kink growth. However,
the weakening of the Ðeld as the tube rises upward into
lower density region causes further distortion of the kinked
tube. The up-down asymmetry resulting from gravitational
stratiÐcation causes the kinked portions of the tube to pro-
trude upward (hence, the overall arching of the tube) and
rotate further away from the original orientation of the
tube. This buckling deformation is most prominent at the
apex of the tube. We can see that the Ðnal Ñux tube shape as
outlined by the absolute Ðeld strength oB o gives an apparent
tube orientation at the apex that is about 120¡ away from
the original ]x direction. The conÐguration of the Ðnal
characteristic Ðeld line indicates that the Lagrangian
segment at the middle of the initial tube axis has rotated
clockwise by approximately 180¡ during the rise. Hence, we
expect that the emergence of this buckled upper portion of
the Ñux tube should give rise to a compact magnetic bipole

with polarity orientation inverted from the HaleÏs polarity
law. Figure 7 shows a horizontal cross section of the upper
buckled portion of the Ñux tube at time t \ 67.2. The height
of the cross section is indicated by the dotted plane in the
top panel of Fig. 5e. The solid (dotted) contours in Figure 7
represent the levels of positive (negative) and the arrowsB

zshow the horizontal Ðeld. We see a very tight bipolar struc-
ture with an apparent polarity orientation (i.e., the direction
of the line drawn from the peak of the positive pole to the
peak of the negative pole) rotated clockwise by about 145¡
from the ]x direction of the initial horizontal Ñux tube.
The transverse (horizontal) Ðeld near the neutral line is
sheared, although not as much as what is often observed in
d-spots where the transverse Ðeld runs nearly parallel to the
neutral line.

The length scale over which the arching of the tube
develops depends upon how the kink is distributed after the
linear phase of the kink development. Therefore, it is cer-
tainly dependent upon the initial perturbation proÐle and
also is a†ected by the periodic horizontal boundary condi-
tions, which restrict the allowed wavelengths along the tube.
We Ðnd that the upward arching (and the subsequent
buckling) takes place over the region where the kinking is
concentrated. We have done a simulation in which the hori-
zontal size of the box in the direction of the tube is doubled
(i.e., becomes 2L ). The initial perturbation proÐle is still
given by equation (14) with all the modes (the number of
modes is doubled) adding constructively at the middle cross
section, resulting in a centrally peaked proÐle similar to that
shown in Figure 3. The evolution in this case results in a
Ðnal tube with a single main arch at the middle. The central
arching is developed over a length scale of roughly L , where
the kinking is concentrated. The resulting buckled conÐgu-
ration over the central L region is similar to that shown in

FIG. 7.ÈHorizontal cross section of the upper buckled portion of the
Ðnal Ñux tube in the case with a \ 4/a. The height of the horizontal cross
section is indicated by the dotted plane shown in the top panel of Fig. 5e.
The contours denote the vertical magnetic Ðeld with solid (dotted)B

zcontours representing positive (negative) The arrows show the horizon-B
z
.

tal magnetic Ðeld.
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Figure 5. Hence, the restriction in the size of the domain to
L in the tube direction has not signiÐcantly altered the evol-
ution of the tubeÏs shape.

In comparison to the case with a \ 4/a, the kink evolu-
tion in the case of a \ 1.5/a is much more gradual because

is about 10 times longer, and hence theqmin\ 9a/vA0separation of timescales between and is less pro-qmin qrisenounced. Figure 8 shows a sequence of snapshots of the
rising Ñux tube in the case of a \ 1.5/a. The Ñux tube Ðrst
rises as a whole under the mean buoyancy, and the growth
of the kink mode of wavenumber (the mostk2\ 2n(2/L )
unstable mode, see the diamond point in Fig. 1b) becomes
apparent after the tube has risen a distance more than its

own diameter. Subsequently, the Ñux tube arches and the
apex portion distorts into a buckled conÐguration with the
tube orientation being deÑected clockwise by D90¡ from
the initial ]x direction.

The bottom panel of Figure 6 shows the evolution of E
m
,

and in this case. Note that the energies are stillE
k
, H

mnormalized to the initial of the tube with a \ 4/a. WeE
mcan see that the initial magnetic energy and the initial mag-

netic helicity [(aL /2n)'2B 3.06'2] are both signiÐcantly
smaller because of the smaller azimuthal Ðeld of the initial
Ñux tube. The release of magnetic energy due to kinking is
also much smaller and no longer stands out from the
gradual decrease of magnetic energy resulting from the rise

FIG. 8.ÈSame as Fig. 5, but for the case with a \ 1.5/a



No. 1, 1999 KINK-UNSTABLE MAGNETIC FLUX TUBES 469

and expansion of the Ñux tube. There is no distinct peak in
the evolution of that corresponds to the onset of the kinkE

kinstability, in contrast with the case of a \ 4/a. Similar to
the case of a \ 4/a, the total magnetic helicity is approx-H

mimately conserved. The total change of is about 7%H
mfor both cases. This change is consistent with what is

expected from the presence of Ðnite resistivity, i.e., dH
m
/dt \

[2g / B Æ ($] B)dV , where V denotes volume.
Figure 9 shows a horizontal cross section of the upper

buckled portion of the Ðnal Ñux tube in the case of a \ 1.5/
a. The cross-sectional plane is indicated by the dotted plane
in the top panel of Figure 8e. The magnetic Ðeld in the
horizontal cross section appears as a compact bipolar
region with the apparent polarity orientation (i.e., the direc-
tion from the peak of the positive polarity to the peak of the
negative polarity) being approximately 90¡ away from the
]x direction, and with sheared transverse Ðeld near the
polarity inversion line. At the end of our simulation, the Ñux
tube is still entirely submerged beneath the surface in a
pressure-dominated plasma and is not yet signiÐcantly
a†ected by the impenetrable upper boundary. The emer-
gence of the Ñux tube through the surface into the low-b
plasma of the atmosphere is a complicated dynamical
process that is beyond the scope of the current model.
Hence, the cross-sectional structures shown in Figures 7
and 9 do not correspond directly to the observed photo-
spheric magnetograms. Our present calculations are aimed
only at studying the Ñux tube conÐgurations that can be
produced from the nonlinear kink evolution during the rise
through the solar convection zone. Nevertheless, it is still
interesting to note the morphological similarities between
the cross-sectional magnetic Ðeld shown in Figures 7 and 9
and that of d-conÐguration sunspots (see further discussion
in ° 5).

As the initial twist (a) of the Ñux tube decreases further
from a \ 1.5/a, the kinking of the tube also becomes milder.
In the cases with a \ 1.2/a and 0.9/a (see Figs. 4c and 4d),

FIG. 9.ÈSame as Fig. 7, but for the case with a \ 1.5/a. The height of
the horizontal cross section is indicated by the dotted plane shown in the
top panel of Fig. 8e.

we Ðnd that the kink development only results in smooth
undulation of the tube, as can be seen from the Lagrangian
evolution of the initial tube axis. The initial Ñux tubes in
these two cases are stable against kinking based on the
simulations in a uniform Ñuid without buoyancy and strati-
Ðcation (including the e†ect of viscosity). However, the tube
is subsequently made kink unstable as it rises and expands,
because the longitudinal Ðeld decreases at a faster rate than
the azimuthal Ðeld. The Ñux tube axis develops signiÐcant
kinking, with the kink mode of the lowest wavenumber

being the dominant mode. On the other hand,k1\ 2n/L
when the initial twist is decreased to a \ 0.5/a (which is
50% of no kinking of the Ñux tube is excited during thea

c
),

rise (see Fig. 4e). There is a tiny amount of bending of the
tube axis (hard to see in Fig. 4e) which can be accounted for
by the small variation of initial buoyancy along the tube.

4.4. Evolution of Field Strength and Rise Velocity
The upper panel of Figure 10 shows the evolution of

magnetic Ðeld strength at the tube apex as a function of
height. It is determined by following the Ðeld strength at the
apex of the characteristic Ðeld line which corresponds to the
Lagrangian evolution of the initial tube axis. Several cases
with di†erent initial twist are shown. For comparison, the
dotted line in Figure 10 shows the variation of the axial Ðeld
strength B of a thin, horizontal (unkinked) Ñux tube with
height, which is simply described by where isBP 1/o0, o0the Ñuid density. The growth of the kink instability causes
writhing of the initially straight axial Ðeld line into a helix
(see, e.g., the bottom two rows of panels in Figs. 5 and 8).
This results in stretching of the Ðeld line and increases the
Ðeld strength along it. In the case with the largest initial
twist (a \ 4/a), we see a substantial increase of the axial Ðeld
strength (about 40%) due to the initial rapid growth of the
kink instability. In the subsequent evolution, the Ðeld
strength at the apex remains greater than that expected
from the rise of a thin, horizontal Ñux tube. For tubes with
less initial twist, the amplitude of kinking of the tube and
the enhancement of axial Ðeld strength due to kinking both
become less signiÐcant as can be seen in the upper panel of
Figure 10. In the case with a \ 0.5/a, where no signiÐcant
kinking of the tube is seen during the rise, the evolution of
the tube axial Ðeld strength essentially follows the variation
of BP 1/o0.The lower panel of Figure 10 shows the magnetic Ðeld
strength along the characteristic Ðeld line (shown in Fig. 5)
at several di†erent instances during the evolution of the
tube with a \ 4/a. For comparison, the Ðeld strength along
the initial tube axis is shown as the dotted line. The curves
for t \ 8.4 and t \ 11.8 (corresponding to Fig. 5b) show
that the stretching is taking place along the entire tube, not
just at the apex ; the Ðeld strength along the entire Ðeld line
is increased in comparison to the initial axial Ðeld.
Although the axial Ðeld increases as a result of the writhing
of the tube axis, the total magnetic energy decreases sharply
during the kink development because of the decrease in the
azimuthal Ðeld. This behavior of the axial and azimuthal
Ðelds, and the magnetic energy as a result of kinking, has
been explained analytically in Linton et al. (1999, ° 4.1),
using a simpliÐed model which assumes that the cylindrical
Ñux tube is kinked into a helical shape by displacement of
tube cross sections without changing their circular cross-
sectional proÐle. Both the increase in the axial Ðeld and the
decrease in the azimuthal Ðeld resulting from kinking of the
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FIG. 10.È(a) Evolution of magnetic Ðeld strength B at the tube apex as
a function of height for several cases with di†erent initial twist. The Ðeld
strength is determined at the apex of the characteristic Ðeld line, which
corresponds to the Lagrangian evolution of the initial tube axis. In com-
parison the dotted line corresponds to BP 1/o, which describes how the
axial Ðeld strength of a thin, horizontal (unkinked) Ñux tube is expected to
vary with height. (b) Magnetic Ðeld strength along the characteristic Ðeld
line at several di†erent instances during the evolution of the tube with
a \ 4/a. For the horizontal axis, l is the arc length along the Ðeld line and

is the total length of the Ðeld line.ltot

tube will decrease the plasma pressure in the tube and will
consequently increase the tube buoyancy. (Decreasing the
azimuthal Ðeld will lead to a lower plasma pressure at the
tube axis because of the reduction in the conÐning force by
the tension of the azimuthal Ðeld.) Furthermore, heating
caused by the dissipation of magnetic and kinetic energy
during the kink development also enhances the buoyancy of
the tube. The latter contribution due to heating may be
largely artiÐcial because of the much higher viscosity and
resistivity in the simulations than their realistic solar values
(see further discussion of this in ° 5). Figure 3b shows the
evolution of the mean buoyancy acceleration of the tube

where angle brackets denote an average[ So1 gT/So0T,
over the volume of the Ñux tube approximated by the region

where the Ðeld strength is above 10% of the peak value, for
the case with a \ 4/a. For comparison, we also plotted the
evolution of which shows the contribu-So0 gs1 c

p
~1T/So0T,

tion to the variation of buoyancy due to heating, i.e., due to
the changes of the entropy in the tube. We do Ðnd a sub-
stantial increase in buoyancy as a result of kinking of the
tube. From t \ 0 to t \ 15, the mean buoyancy acceleration
has increased to about 1.8 times the initial value. About half
of the increase is produced by heating, i.e., contributed from
the increase in So0 gs1 c

p
~1T/So0T.

Figure 11 shows the evolution of the rise velocity of the
Ñux tube as a function of time, for several cases with di†er-
ent initial twist. The upper panel shows at the apex of thev

zcharacteristic Ðeld line, and the bottom panel shows the
mean vertical velocity averaged over this Ðeld line.v6

zBecause the initial buoyancy is set identically in all cases,
the initial acceleration of the tube is the same. The initial
value of is approximately equal to the averaged valuedv6

z
/dt

of over the initial tube axis, and the initial value[ o1 g/2o0of for the apex is approximately equal todv
z
/dt [ o1 g/2o0at the middle of the tube axis. Here corresponds to the2o0enhanced inertia experienced by the Ñux tube (Lamb 1945,

FIG. 11.ÈEvolution of the rise velocity of the Ñux tube as a function of
time, for several cases with di†erent initial twist. The upper panel shows v

zat the apex of the characteristic Ðeld line, and the bottom panel shows the
mean vertical velocity averaged over this Ðeld line.v

z
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FIG. 12.È(a, b, c) Three di†erent cross sections of the Ñux tube with initial a \ 4/a, at time t \ 40.4. The cross sections are taken at (a) x \ 0, (b) x \ L /4,
and (c) x \ L /2, respectively. (d) Middle cross section (x \ L /2) of the Ñux tube with initial a \ 0.5/a, at time t \ 52.4. The arrows show the velocity Ðeld
within the cross-sectional plane, the black contours indicate the magnetic Ðeld strength o B o , and the blue and red contours show the x component of the
vorticity, with red corresponding to vorticity directing into the plane.

p. 76). Subsequently, the di†erent amount of twist in the
tubes causes their rise velocity to evolve di†erently. As
described in ° 3, the initial buoyancy decreases with r from
the tube axis, so the central core of the tube is more

buoyant. The faster acceleration of the core of the tube
distorts the tube cross section, and the tube axis then experi-
ences a restoring force from the azimuthal Ðeld. This back-
reaction is greater for tubes with larger initial twist. Hence,
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for a brief period after the beginning, the mean rise velocity
of the axis in the case with a \ 4/a becomes slower thanv

zthe other cases with smaller initial twist. However, the rapid
kink development in the case of a \ 4/a (as is evident from
the spike in the evolution of apex increases the tubev

z
)

buoyancy (see Fig. 3b) and accelerates the overall rise of the
tube to a roughly steady velocity (as represented by the
steady phase of that is larger than all the other cases. Thev

z
)

enhancement of buoyancy due to kinking decreases with
decreasing twist. For a \ 0.5/a, there is no signiÐcant kink
development, and the evolution of the averaged and thev

zapex are nearly identical (Fig. 11, long-dashed lines). Thev
zrise of the tube in this case is similar to what was found in

previous two-dimensional simulations of the rise of twisted,
horizontal Ñux tubes (Moreno-Insertis & Emonet 1996 ;
Fan et al. 1998a ; Emonet & Moreno-Insertis 1998).
However, we note that our present three-dimensional simu-
lations are in a much more viscous regime in comparison to
the two-dimensional simulations. The Reynolds number for
the Ñux tubes as estimated from the steady rise velocity, the
radius of the tube, and the viscosity, is only D10, more than
an order of magnitude smaller than that in Fan et al.
(1998a). By considering a balance of the mean buoyancy
and drag in the steady rise phase, we Ðnd an e†ective drag
coefficient of about 3 for the tubes. This value of isC

D
C

Dconsistent with that found for a circular cylinder moving in
a Ñuid at similar Reynolds numbers (see Batchelor 1967, p.
261).

Figures 12a, 12b, and 12c show the Ñow structure in three
di†erent cross sections of the Ñux tube with initial a \ 4/a,
at time t \ 40.4. The cross sections are taken at x \ 0,
x \ L /4, and x \ L /2. Figure 12d shows the middle cross
section (x \ L /2) of the Ñux tube with initial a \ 0.5/a, at
time t \ 52.4. In the case of a \ 0.5/a, the Ñow is nearly
two-dimensional and the middle cross section shown in
Figure 12d is representative of all the other cross sections.
The arrows show the velocity Ðeld within the cross-
sectional plane, the black contours indicate the magnetic
Ðeld strength o B o , and the blue and red contours show the
x component of the vorticity, with red corresponding to
vorticity directing into the plane. As can be seen from the
distribution of vorticity, the Ñow shown here is much more
viscous in comparison to that obtained in the previous two-
dimensional simulations. The thickness of the shear bound-
ary layer at the two sides of the Ñux tube cross section is
comparable to the radius of the tube. When we examine the
Ñow Ðeld in the reference frame of the moving Ñux tube, we
Ðnd that a region of two closed circulating eddies is barely
discernible behind the tube during the steady rise phase in
the case of a \ 0.5/a. However, for the rise of the tube with
initial a \ 4/a, where the velocity Ðeld around the tube is
more three-dimensional due to the kinking of the tube, we
do not Ðnd noticeable structure of closed eddies behind the
tube. It was found in the study of incompressible Ñow past a
cylinder (see ° 4.12 in Batchelor 1967) that a region of
closed circulating Ñuid, consisting of two symmetric eddies,
begins to form behind the cylinder as a result of advection
of vorticity downstream when the Reynolds number is
increased to 9. This suggests that the e†ective Ñuid Rey-
nolds number for our current simulations is close to 9. The
region of two closed eddies becomes longer and more
prominent as the Reynolds number continues to increase,
consistent with what was found in the two-dimensional
simulations (Moreno-Insertis & Emonet 1996 ; Fan et al.

1998a). In the case of Ñow past a sphere (also ° 4.12 in
Batchelor 1967), the region of closed circulation behind
the object begins to form at a higher Reynolds number,
about 24.

5. DISCUSSION

Through three-dimensional numerical simulations, we
have studied the nonlinear evolution of the kink instability
of twisted Ñux tubes rising buoyantly through an adia-
batically stratiÐed layer. The length of the Ñux tube in our
simulations is equal to the pressure scale height at the
bottom of the layer. Hence, the development of the undular
Parker instability is excluded because the minimum wave-
length for the unstable modes is about 10 times that of the
length of the simulated Ñux tube. Initial Ñux tubes sitting
near the bottom of the layer are assumed to be uniformly
twisted with the degree of twist measured by a parameter a,
which is the angular rate of Ðeld-line rotation about the
tube axis per unit length of the tube. We have performed a
series of simulations with di†erent initial twist ranging from
a \ 0 to a \ 4/a, where a is the radius of the tube cross
section deÐned in equation (13). We found from the simula-
tions that in order for the Ñux tube to develop signiÐcant
kinking during its rise through the layer, the initial twist of
the tube needs to be close to or greater than the critical limit

for the onset of the kink instability. If the initial(a
c
\ 1/a)

twist of the tube is too far below the critical limit (below
about 50% of then there is no kink development and thea

c
),

evolution is similar to the results from previous two-
dimensional simulations of the rise of twisted, horizontal
Ñux tubes.

As noted by Parker (1979), the expansion of the twisted
tube during its rise through the stratiÐed layer makes the
Ñux tube more kink unstable because of the faster decrease
of the axial Ðeld strength in comparison to the azimuthal
Ðeld strength. If we assume that the Ñux tube cross section
expands self-similarly as the tube rises,
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(16)

where the proÐles f (r/a) and (r/a) f (r/a) remain unchanged
but the size scale a increases as the tube rises, then conserva-
tion of mass and of magnetic Ñux (both longitudinal and
azimuthal) lead to andB

x0 Po0(z), a
c
\ 1/a P [o0(z)]1@2,while a remains constant. The enhancement of the kink

instability is reÑected in the decrease of for Ðxed a. Lintona
cet al. (1996) have derived an approximate scaling relation

between the e-folding growth time of the fastestqmingrowing kink mode and a2[ a
c
2 :

qmin\ C[vA0R(a2[ a
c
2)]~1 , (17)

in which C is a constant, is the speed at the tubevA0 Alfve� n
axis and R is the tube radius, which we set equal to a. We let
C\ 6.25 so that for a \ 1.5/a, it gives the same value of qminas that obtained from the linear calculation (see Fig. 1b).
The height variation of follows basedvA0 vA0P [o0(z)]1@2on the model of self-similar expansion. Using the scaling
relation given in equation (17) we can estimate a total
number of e-foldings N of the growth of the kink instability
accumulated during the rise of the Ñux tube from its initial
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height to the top of the layerz1 z2 :

N \
P
z1

z2 qmin~1 v
r
~1 dz , (18)

where is the rise velocity. In the region between andv
r

z1 z2,where a is below the integrand is set to zero. In calcu-a
c
,

lating N, we assume that the Ñux tube is rising at a steady
velocity that is equal to evaluated at thev

r
(a/H

p
)1@2vA0initial height Figure 13 shows the result of N as a func-z1.tion of a obtained from the integration of equation (18). The

result indicates that a needs to be above 0.65/a in order for
the tube to go through at least one e-folding of the growth
of the kink instability during the rise. Although the rising
Ñux tube does not maintain a circular cross-sectional shape,
this estimate based on the self-similar expansion of the tube
helps to understand the simulation result of having essen-
tially no kink development for the tubes with initial twist
a [ 0.5/a.

On the other hand, our simulations show that if the
initial twist of the tube is sufficiently supercritical that the
e-folding time for the growth of the kink instability is small
compared to the rise time of the tube, then sharp bending
and distortion of the Ñux tube result from the nonlinear
evolution of the kink instability. We Ðnd that the weakening
of the Ñux tube Ðeld strength as it rises into Ñuid of decreas-
ing density enhances the amplitude of kinking. The apex
portion of the Ñux tube evolves into a buckled form with a
local change of the tube orientation that exceeds 90¡. The
emergence of this buckled structure can give rise to a
compact magnetic bipolar region with polarity order
reversed from that expected from HaleÏs polarity law.

One interesting consequence of the development of the
kink instability of the Ñux tube is that it enhances the buoy-
ancy of the Ñux tube and speeds up the rise. The increase in
buoyancy is caused by the writhing of the tube axis, which
stretches the Ñux tube, and also caused by the heating of the
tube due to the dissipation of magnetic and kinetic energy
during the kink development. It is a concern that the sub-
stantial heating experienced by the Ñux tube may be an
artifact of the low Reynolds numbers in the simulations. To

FIG. 13.ÈNumber of e-foldings of the growth of the kink instability
during the rise as a function of a, estimated from the integration of eq. (18).

indicates the critical twist (ideal value) for the onset of the kink insta-a
cbility, and indicates the minimum twist needed for the tube to riseamincohesively.

test the e†ect of heating in the evolution of the tube, we
repeated the simulation in the case of a \ 4/a, this time
omitting the viscous and Ohmic heating terms in the energy
equation so that the energy dissipation does not result in
heating and therefore an increase in buoyancy. We Ðnd that
the rise velocity in the steady rise phase is reduced to about
77% of the previous value, but it is still the fastest in com-
parison to other cases with smaller initial twist. The
increase of buoyancy resulting from the initial rapid kink
development is reduced to about a half of that obtained in
the simulation with heating included. The Ðnal Ñux tube
still evolves into the buckled conÐguration similar to that
shown in Figure 5e, hence the buckling of the emerging Ñux
tube does not depend on the e†ect of heating.

As pointed out in ° 4.3, there are many similarities
between the magnetic Ðeld morphology shown in the hori-
zontal cross sections of the upper buckled portion of the
kinked Ñux tubes (Figs. 7 and 9) and that seen in d-spots, for
example, the reversed polarity order, the tightness of the
bipolar pair, and the highly sheared transverse Ðeld at the
neutral line (see, e.g., Zirin 1988, p. 336 ; Tanaka 1991 ; Leka
et al. 1994). However, we have also found inconsistencies
between the observed d spots and the structure of the
kinked Ñux tubes. One prediction from the theory of kinked
Ñux tubes is that the sense of the writhe of the tube axis
should be the same as that of the twist within the tube due
to conservation of helicity (as noted in Leka et al. 1996 ;
Linton et al. 1998). In our simulations, the Ñux tubes all
have right-handed twist, and hence the writhe of the tube
axis resulting from the kink instability is also right-handed.
This leads to a clockwise rotation of the apex portion of the
rising tube as viewed from the top. In the horizontal cross
sections shown in Figures 7 and 9, the apparent polarity
orientation of the bipolar structure is rotated clockwise by
D145¡ and D90¡, respectively, from the ]x direction. This
suggests that we can deduce from observations the sense of
the writhe of the emerging )-loop from the tilt of the
polarity orientation (i.e., the tilt of the line drawn from the f
pole to the p pole of the bipolar region). A clockwise
(counterclockwise) tilt from the east-west direction would
correspond to a right-handed (left-handed) writhe of the )
loop. The twist of the tube, on the other hand, can be
deduced from (vertical current) and within each pole.J

z
B
zWe have examined several observed d spots studied in Leka

et al. (1994, 1996) and Lites et al. (1995), where vector mag-
netograms are provided, and found that not all of them
obey the relation between twist and writhe as that required
by a kinked tube. Leka et al. (1994, 1996) found that the
polarity orientation of the d spots in the active region
NOAA 7260 in the northern hemisphere show a 90¡
counterclockwise tilt from the east-west direction, opposite
to the tilt expected from the JoyÏs law. This suggests a left-
handed writhe of the emerging ) loop. The and deter-J

z
B
zmined from the vector magnetogram (Fig. 16 of Leka et al.

1994) indicate that the Ñux tube twist is also left-handed,
consistent with what is expected for kinked tubes. However,
in the case of the d spot of NOAA 7201 studied by Lites et
al. (1995), the relation between writhe and twist is not con-
sistent with that of kinked Ñux tubes. The d spot (see Fig. 1
in Lites & Low 1997), which is again in the northern hemi-
sphere, show a polarity orientation that is tilted clockwise
by about 90¡, indicating a right-handed writhe of the )
loop. On the other hand, the twist of the tube as determined
from the vector magnetogram is left-handed, opposite to the
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sense of the writhe. In Lites & Low (1997), the evolution of
this d spot is well explained by the emergence of a closed
magnetic torus. Hence, active regions classiÐed under the
d-conÐguration may not all originate from the emergence of
kinked tubes. It is also possible that the large tilts seen in
d-spots are resulting from deformation by helical convective
motions during the rise of the tube. This mechanism would
produce a di†erent kind of twist-writhe correlation for
active regions based on helicity conservation (see Linton et
al. 1998, ° 2). However, it is doubtful if the helical convec-
tion would have enough force to produce the observed large
tilts on rising ) loops with superequipartition Ðeld strength.
A statistical study of the twist-writhe relation of a large
sample of d spots will help to clarify how important a role
the kink instability plays in the origin of these unusual
active regions.

If indeed the majority of the d spots observed on the solar
surface are formed by the emergence of kinked Ñux tubes,
then the results of our present simulations may give some
indication of the twist of toroidal Ñux tubes at the base of
the solar convection zone. Since only a small fraction of the
observed active regions emerge as d spots and show polarity
orientations that are not in agreement with the HaleÏs
polarity rule and the JoyÏs law, toroidal Ñux tubes in the
solar interior must in general have twist that are well below
the critical limit for the onset of the kink instability. What
the typical amount of twist for most of the toroidal Ñux
tubes is is still an open question, but preliminary studies
(Longcope, Fisher, & Pevtsov 1998) indicate that most
active region Ñux tubes have very small twist.

Our present simulations study the nonlinear kink evolu-
tion of a horizontal segment of rising Ñux tube which may
be viewed as the apex portion of a larger ) loop erupting
through the solar convection zone. When the initial twist is
sufficiently low such that there is no develop-(a [ 0.5/a)
ment of the kink instability, then the rise of the Ñux tube is
essentially uniform along the tube, similar to what was
studied in the previous two-dimensional simulations
(Moreno-Insertis & Emonet 1996 ; Fan et al. 1998a). As in
the two-dimensional simulations, we still Ðnd that a
minimum amount of twist is necessary for the(aminD 0.3/a)
tube to rise cohesively and carry most of its Ñux to the
surface. We expect this result to change if we model instead
the rise of the large-scale ) loop resulting from the Parker
instability. With the inclusion of the three-dimensional
e†ect of the ) loop, could be signiÐcantly smalleraminbecause of the nonuniform motion along the loop and the
restoring force from the longitudinal magnetic Ðeld. Hence,
the twist for most of the toroidal Ñux tubes at the base of the
convection zone may be signiÐcantly below Becauseamin.we are not simultaneously modeling the structure of the
large-scale ) loop resulting from the Parker instability
together with the local development of the current driven
kink instability, the e†ect of twist propagation along the )
loop is not considered. Our present simulations show that

the reversed polarity d-conÐguration can be produced
through the rise of Ñux tubes which are already highly kink
unstable near the bottom of the convection zone.(a Z 1.5a

c
)

How some of the toroidal tubes obtain such a high amount
of twist is unclear, but if the e†ect of the propagation of
twist along the ) loop is included, the initial twist needed
for the toroidal Ñux tube to give rise to d-spot regions may
be reduced.

Finally, we comment on the e†ect of the Coriolis force
due to solar rotation on the kink development of the rising
Ñux tubes, which was not included in our simulations. By
considering the Coriolis force as a small perturbation to the
linearized momentum equation of the twist Ñux tube (in a
uniform, incompressible Ñuid), we Ðnd that to Ðrst order,
the Coriolis force does not a†ect the linear growth rate of
the helical kink modes if the angular velocity of rotation is
perpendicular to the tube axis, which corresponds to the
case of a east-west oriented Ñux tube on the Sun. Hence, we
expect that the Coriolis force to have little e†ect on the
growth of kink modes with growth time signiÐcantly
shorter than the rotation period (about a month). However,
the inÑuence of the Coriolis force may be signiÐcant for the
evolution of kink modes with growth time comparable or
longer than the rotation period, and it is expected to a†ect
the buckling deformation found in the cases with a Z 1.5/a
(see Figs. 5c, 5d, and 5e, and Figs. 8d and 8e). For the
buckling deformation (as described in ° 4.3), the kinked
portions protrude upward into Ñuid of lower density and
rotate. The sense of rotation depends on the sense of twist in
the tube and is clockwise (counterclockwise) as viewed from
the top if the twist is right-handed (left-handed). The
Coriolis force, on the other hand, will also cause a rotation
of the apex portion as it protrudes upward and expands due
to the decrease in density. The rotation induced by the
Coriolis force is hemisphere-dependent and is clockwise
(counterclockwise) in the northern (southern) hemisphere.
Hence, the Coriolis force will enhance (work against) the
buckling deformation of a right-handed (left-handed)
twisted tube in the northern hemisphere. Since the timescale
over which the buckling develops is the rise time of the tube,
which can be comparable to the rotation period, this asym-
metric e†ect of the Coriolis force may be important. The
inÑuence of the Coriolis force and the simultaneous evolu-
tion of a rising ) loop resulting from the undular Parker
instability and the development of the kink instability on
the loop will be topics of future investigations.
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helpful advice on the numerical algorithms. We are grateful
to Peter Gilman and an anonymous referee for reviewing
the manuscript and for helpful comments. The numerical
simulations are performed on the Cray J90 supercomputers
of NCAR. This work has been supported by NSF grant
AST 95-21779 and the NASA SPTP program.

APPENDIX A

THE NUMERICAL ALGORITHM

In this Appendix, we describe how we solve numerically the set of three-dimensional anelastic MHD equations (1)È(7) in a
rectangular domain. To guarantee that the three-dimensional magnetic Ðeld B and momentum are divergence free (eqs.o0 ¿
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[2] and [4]), we write them in the form of vector potentials (see, e.g., Glatzmaier 1984) :

B \ $ Â $ Â (Bzü ) ] $ Â (Jzü ) , (A1)

o0 ¿\ $ Â $ Â (Wzü ) ] $ Â (Zzü ) , (A2)

where is the unit vector of the vertical direction and B, J, W, and Z are spatially functions of (x, y, z). Thus, equations (1)zü
and (4) are automatically satisÐed. Furthermore, combining equations (6) and (7) to eliminate and using the conditions ofT1,adiabatic stratiÐcation and hydrostatic equilibrium for the background reference state, we obtain

o1
o0

\ p1
o0 gh0

[ s1
c
p

, (A3)

where is the density scale height. Using equation (A3) to eliminate in equation (2), the momentumh04 \ [o0(do0/dz)~1 o1equation can be rewritten as

L¿
Lt

] (¿ Æ $)¿ \ [$
Ap1
o0

B
] s1

c
p

gzü ] 1
4no0

($ Â B) Â B ] 1
o0

$ Æ % . (A4)

Because we assume periodic boundary conditions for the two horizontal directions (x and y), we spectrally decompose each
of the dependent variables :

Q\ ;
m

;
n
Q3

mn
(z)ei2nfm xei2ngn y . (A5)

Here Q represents any one of W, Z, B, J, etc. In the above where m and n are integers ranging,s1, p1, f
m

4 m/L
x
, g

n
4 n/L

y
,

respectively, from to and from to with and being, respectively, the number of grid[ N
x
/2 ] 1 N

x
/2 [ N

y
/2] 1 N

y
/2, N

x
N

ypoints in the x and y directions, and and are the x and y size of the rectangular domain. We generally let and toL
x

L
y

N
x

N
ybe powers of 2 to take advantage of the FFT algorithm. In the following, we use to denote Using the aboveF

mn
ei2nfm xei2ngn y.

spectral decomposition, equations (A1) and (A2) lead to
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where the components have been added to represent the horizontal average [i.e., the (m, n)\ (0,0)B
x
(z), B

y
(z), v

x
(z), v

y
(z)

components] of at each height z. We have assumed that and are zero, i.e., there is no net magnetic ÑuxB
x
, B

y
, v

x
, v

y
B
z
(z) v

z
(z)

threading through the upper and lower boundaries, nor there is vertical pulsation in the plane parallel domain. Note that the
Fourier components and do not contribute to determining B andB3 00, J3 00, W3 00, Z3 00 ¿.

From the z-component of equation (5) and the z-component of the curl of equation (5), we obtain the equations for the
evolution of and (excluding the component with m\ 0 and n \ 0) :B3
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where represents the Fourier coefficient of the expression under the brace. Similarly, the z-component of the““ (expression)
mn
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The equation for the evolution of can be derived from the z-component of the momentum equation. This equationW3
mncontains on the right-hand side, which is determined by taking the divergence of the momentum equation, and applying thep1requirement of equation (1). Here however, we use a di†erent approach to solve for the evolution of We introduce a newW3

mn
.

quantity deÐned as)3
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where and are the Fourier transform coefficients of and which are, respectively, the x- and y-components ofu8
xmn

u8
ymn

u
x

u
y
,

the vorticity From the x- and y-components of the curl of equation (A4), we obtain equations for the evolution ofu4$ Â ¿.
and and hence determine the evolution ofu8
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Further, we can show that and are related by the equation :)3
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Therefore, once is known, we calculate by solving the elliptic equation (A19).)3
mn
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mnIn addition, equation (3) gives the equation for the evolution of (the Fourier coefficients ofs8 1mn
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Therefore, in summary, we have equations (A14), (A15), (A16), (A18), (A19), and (A20) to determine the evolution of the
dependent variables and Note that equations (A14)È(A19) are only deÐned forB3
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the Fourier components with (m, n) The components and are not used becauseD (0,0). B3 00(z), J3 00(z), Z3 00(z), )3 00(z), W3 00(z)they do not a†ect B and However, we do need a separate set of equations for determining the evolution of¿. B
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All the equations for the Fourier variables and are then[B3
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discretized with respect to the vertical (z) direction, with the vertical derivatives being approximated by their fourth-order
centered di†erences :
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where q(z) denotes any function of z and *z is the grid spacing in the vertical direction.
The discretized equations for the Fourier variables are time advanced using a semi-implicit method. Using operator

splitting (Press et al. 1992, p. 847), we apply the second-order Adams-Bashforth scheme for the advection terms and the
second-order Crank-Nicolson scheme for the di†usion terms. To illustrate this, we use equation (A14) as an example, which
we rewrite into the following schematic form:
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) ]O2(B3
mn

) , (A27)

where represents the Ðrst term on the right-hand side of equation (A14), denotes all of the dependent variablesO1 Q3
mninvolved in that term, and represents the remainder two di†usion terms. We advance from time step j : to timeO2 B3

mn
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mn
j ,

step j] 1 : by the following sequence of updating :B3
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where the Ðrst step updates for the operator with the Adams-Bashforth scheme, yielding an intermediate resultB3
mn

O1and then the second step updates for the di†usion terms using the Crank-Nicolson scheme. The latter stepB3 j`1R
mn

, B3
mnrequires solving a penta-diagonal system of linear equations.
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