Twisted flux tubes and how they get that way

Dana Longcope,! Mark Linton,? Alexei Pevtsov,! George Fisher,? and Isaac Klapper®

ABSTRACT

According to present theories, the Sun’s magnetic field rises through the
convection zone in the form of slender strands known as flux tubes, traditionally
studied using “thin flux tube” models. While these models have been remarkably
successful they have only recently begun to account for tubes with twisted
magnetic flux, in spite of observational evidence for such twist. In this work
we review the recent developments pertaining to twisted magnetic flux tubes
and compare quantitative predictions to observations. Hydrodynamic theory
predicts a role for twist in preventing fragmentation. Excessive twist can also
lead to magnetohydrodynamic instability affecting the dynamics of the tube’s
axis. A thin tube model for a twisted tube suggests several possibilities for the
origin of twist. The most successful of these is the Y-effect whereby twist arises
from deformation of the tube’s axis by turbulence. Simulations show that the
Y-effect agrees with observations in magnitude as well as latitudinal dependence.

1. Flux Tubes

Magnetic field appears at the solar surface in the form of isolated domains comprising
active regions (ARs). These have been understood as the manifestation of slender,
pressure-confined strands of magnetic field called fluz tubes (Parker 1955a). Flux tubes rise
buoyantly as arched Q-loops, originating at the base of the convection zone (CZ) where
they are generated by dynamo action. Equations describing the dynamical evolution of a
buoyant flux tube were proposed by Spruit [1981] and have been employed in modified form
by subsequent investigators (Moreno-Insertis 1983; Choudhuri and Gilman 1987; Chou and
Fisher 1989; D’Silva and Choudhuri 1993; Fan et al. 1994; Caligari et al. 1995; Fan and
Fisher 1996). Numerical solutions of such model equations have shown good quantitative
agreement with sunspot data. This agreement includes the measured “tilt angle” ¢ of a
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sunspot pair as it depends on solar latitude (D’Silva and Choudhuri 1993), on magnetic flux
(Fan et al. 1994; Fisher et al. 1995), and as its statistical dispersion depends on its mean

(Longcope and Fisher 1996). These models fit the data with very few free parameters, and
offer our best estimates of field strengths at the base of the CZ.

The model flux tube is described by its axis, a space-curve x(¢), parameterized by
arclength ¢. The tube’s cross section is assumed to be circle of radius a(f) much smaller
than all other scales — it is a thin tube. The plasma outside the tube is field-free and
confines the tube by pressure (3 > 1). Properties of the tube, such as the strength of its
magnetic field By(¢), are found from averages over the cross section: By (¢) = ®/ma*(¢),
where @ is the tube’s total magnetic flux. The model equations describe the evolution of the
axis due to magnetic tension, buoyancy and aerodynamic drag (Spruit 1981; Choudhuri and
Gilman 1987). These are most often derived by truncating expansions of the fields about
the axis (Ferriz-Mas and Schiissler 1990; Zhugzhda 1996), however, the same equations can
be found from integration of MHD forces over a section of differential length (Longcope
and Klapper 1997). Conventional derivations have assumed that the magnetic field within
the tube was everywhere parallel to its axis; the tube is untwisted. Currents occur at the
tube’s boundary (a surface current) and across the axis at a bend (giving rise to a curvature
force); there is no axial current Jj.

2. The Case for Twist: Observations

Flux tubes are only truly observed where they cross the photospheric plane (z = 0) to
form bipolar ARs. The total flux ® is measured by integrating the vertical magnetic field,
B., of one sign in a magnetogram (typically ® = 10?* to 10*2 Mx for an AR). The thin
tube approximation is violated at the photosphere, along with several other simplifying
assumptions. Nevertheless, it is frequently assumed that the tube’s grossest characteristics,
such as total flux and axis orientation, do not change over the top several Mm of the CZ
and are therefore adequately measured at the photosphere.

Vector magnetograms often show vertical current density J, coincident with vertical
field B,. Leka et al. (1996) used a sequence of vector magnetograms of emerging active
region 7260 to show that the total vertical current I, increased in concert with the total flux,
in several different bipoles (each ~ 10?° Mx). This led them to the remarkable conclusion
that each flux tube was carrying axial current prior to its emergence; the flux tubes were
twisted. In the context of the Spruit model this would correspond to an azimuthal field
component By in addition to B). Since the tube is still isolated both components vanish
outside the tube and there is per force a cancelling axial return current flowing at the tube’s
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surface, so that the tube carries no net current. The structure at the photosphere of such a
tube, including its axial return current, is beyond any thin-tube model (there seems to be

little evidence for these return currents in magnetograms (Leka et al. 1996)). Nevertheless,
the observations of Leka et al. suggest that, like the total flux, the internal axial current is
at most only slightly affected by this upper CZ boundary region.

Pevtsov, Canfield and Metcalf [1994, 1995] pioneered a method of quantifying the
twist of an entire AR as a single value: apen. Their technique is motivated by the
constant « in a force-free field V x B = aB, but does not actually assume the field to
be force free (it is well known not to be force-free at the photosphere (Metcalf et al.
1995)). Measured horizontal magnetic field can be used to calculate the vertical current
density J.(z,y) = 0B,/0y — 0B,/0x. The ratio of current to field, J,/B,, can then
be computed at each pixel of the magnetogram (though only where both quantities are
accurately measured). Averaging this over the AR gives one global estimate of twist, cvyg.
Alternatively, B, can be used to compute a “force-free” version of B, and B, assuming a
particular a. « is then varied until these vectors most closely approximate the measured
values (in a least-squares sense). The minimizing value, which they call apeg, is a single
global measurement of magnetic field twist, which we will refer to as apem. Repeating the
procedure on different magnetograms of the same AR provides one estimate of the intrinsic
error in the measured value.

An extension of the original dataset to 203 ARs is shown in Figure 1 plotted against
solar latitude (Longcope et al. 1998). The typical magnitude is apem ~ 2 X 107 % m ™1,
comparable to calculations of a,y, (Pevtsov et al. 1995; Leka et al. 1996). Substructures
within an active region can have values of J,/B, an order of magnitude larger (Pevtsov
et al. 1994; Leka et al. 1996), however, ayen, reflects the AR as a whole, and thus is the
most likely to reflect the twist of the active region flux tube at depth. There is a subtle,
but statistically significant, trend for apem < 0 in the Northern hemisphere. The trend
is statistically significant in the sense that the null hypothesis, that a,.m is governed by
identical distributions in the two hemispheres, can be ruled out definitively. A similar
equally subtle trend has been found in a large set of magnetograms analyzed in a different
manner (Bao and Zhang 1998).

3. Effects of Twist: Theory

Consider a straight cylindrical flux tube with constant cross sectional radius a. If every
field line in the tube has the same helical pitch ¢ = d¢/d¢ then its field is given by

B(r)=By(r)[1 + qré] . (1)
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where 1 and (25 are axial and azimuthal unit vectors respectively. Field lines wrap once
around the axis over an axial distance 27/¢. In principle the axial field profile By is
arbitrary out to r = a, and vanishes beyond that. A simple flat profile, B = ®/ma?, has
the property that Jj = 2¢ B. Motivated by this we will henceforth make the association

q= %apcm and note that typical observed values correspond to ¢ = 0.01 rad/Mm.

3.1. Integrity

By assuming 1 symmetry in this straightened geometry the nonlinear MHD dynamics
of the cross section can be studied in two-dimensions. In the absence of twist (¢ = 0) the
magnetic field behaves as a gaseous phase with partial pressure Bﬁ /8m and no mass. This is
analogous to a thermal (Turner 1973) and lacks any means of maintaining integrity (Parker
1979; Tsinganos 1980). Numerical simulations have confirmed that a two-dimensional
untwisted tube will spontaneously fragment under its own buoyancy-induced motion
(Schiissler 1979; Longcope et al. 1996).

Twist can prevent this fragmentation if the azimuthal magnetic tension is sufficient to
overcome forces from the buoyant rise. A tube will rise at a terminal velocity v, at which
buoyancy is balanced by aerodynamic drag. Assuming a circular cross section, buoyancy of
primarily magnetic origin and qa < 1 gives

[galdp| [a
V| —— >0 — 2
P AN, (2)

where H,, is the local pressure scale height of the external atmosphere (Parker 1975;
Emonet and Moreno-Insertis 1998). In order for the azimuthal magnetic field to prevent
fragmentation its Alfvén speed vy1 = gawva) must be at least as large as v, (Tsinganos
1980). Combining these two expression gives a criterion for flux tube integrity

! (3)
q 2 \/CTH_p b)

(Linton et al. 1996; Emonet and Moreno-Insertis 1998). This lower limit is 0.1 rad/Mm
for the typical values a ~ 2 Mm and H, = 50 Mm at the base of the CZ. Nonlinear
two-dimensional simulations have shown the efficacy of twist at maintaining tube integrity
(Fan et al. 1998b; Krall et al. 1998), and have confirmed that expression (3) is the amount
of twist required (Emonet and Moreno-Insertis 1998).
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3.2. Instability

In the magnetic configuration (1) the axis is perfectly straight while the field lines are
helical. Such equilibria can be susceptible to an instability, called the helical kink, whereby
the axis spontaneously develops a helical pitch similar to that of the field lines. In low
contexts, such as fusion plasmas or the solar corona, the threshold for instability is given
by a Kruskal-Shafranov criterion (Shafranov 1957; Hood and Priest 1981) ¢L > 27 where L
is the axial length of the system. Infinitely long tubes are always unstable. In the high 3
pressure-confined case, however, it has been shown that instability requires

1

even for an infinitely long tube (Linton et al. 1996). For an active region flux tube to be
stable at the base of the CZ therefore requires ¢ < 0.5 rad/Mm.

A rising flux tube which undergoes a helical kink instability will develop a bend or
concentrated kink in its axis, as various unstable helical modes interact (Figure 2 (Linton
et al. 1998a)). Nonlinear three dimensional MHD simulations have confirmed this both for
a straight tube (Linton et al. 1998b) and a rising Q-loop (Fan et al. 1998a). While the
value of ¢ will change little during the rise (see later discussion) the tube’s radius a will
increase dramatically. It is therefore possible for a tube to be initially stable, and become
unstable during its rise (Linton et al. 1996).

Proper motion of emerging flux can reveal the shape of the tube’s axis (Tanaka 1991;
Leka et al. 1996). Motions of an island-0 spot analyzed by Tanaka [1991] provided evidence
of a tightly knotted axis. Several of the bipolar features within AR 7260, analyzed by Leka
et al. [1996], also exhibited a twist-like deformation. If this resulted from the helical kink
mode then the axis would be deformed in the same sense that the field lines are twisted
(in contrast to the discussion below). This was shown to be the case for each of the small
bipoles within the AR. Indeed, the values of a,, for each bipole was sufficient to give
ga > 1, thus exceeding the threshold for instability. While each of the features within the
AR exceed the instability threshold, the AR as a whole does not (qa,y, < 1) nor does the
entire AR exhibit proper motion characteristic of a kinked axis.

4. A Model for Thin Twisted Flux Tube

Understanding the origin and evolution of twist in a flux tube requires a set of
model equations applicable to general axis geometries. Several efforts have been made
in this direction (Ferriz-Mas et al. 1989; Chui and Moffatt 1995) of which a version by
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Longcope and Klapper [1997] most clearly extends the untwisted model of Spruit [1981] .
As in Spruit’s model the axis is a general space-curve x(¢) whose local tangent vector is
1(¢) = 9x/0¢. There are two additional variables: ¢(£) the field line twist, and w(f) the
angular velocity of internal material about 1. An equation for the evolution of x(#) is found,
exactly as in Spruit’s model, by integrating the MHD forces acting on a differential tube
segment (Longcope and Klapper 1997). This only changes the original Spruit equations
where ¢ > 1/a. In particular, the evolution of the flux tube axis is unaffected in the weakly
twisted limit, ga < 1. In light of the observed value ¢ ~ 0.01 rad/Mm we will henceforth
consider only this limit.

The moment of the MHD forces about the axis gives an equation for the evolution of
spin
dw ,» 0 2da

i = Mol T ad ®)
The second term on the right hand side (rhs) leads to “spin up” in a contracting tube
(due to decreasing moment of inertia). Note also that to be in equilibrium a tube must
be uniformly twisted: ¢(¢) = const. Finally, it is worth remarking that we have neglected
possible torques exerted by the external fluid on the tube. If present such an effect might
allow the fluid to “roll” the tube like a piece of string between two fingers (Rust 1994).
Including such torques requires a model for the viscous coupling of the background to the
tube’s outer boundary; no such model presently exists.

While spin and twist are easily defined about a straight axis, care must be taken
in their definition on a general curve x(¢,¢) undergoing its own time evolution. Doing
so results in a kinematic relation between the two quantities (Klapper and Tabor 1994;
Longcope and Klapper 1997)

dg Ow ~ Ju . (0l dl

—=——|1-— - | —=x—] . 6

dt o < az)‘” <8€th> (6)
The second term on the rhs results in a decreased pitch ¢ when the tube is stretched (the
factor in parentheses is the rate of differential stretching). The first term shows the effect
on twist if two portions of a tube are spinning differently; this effect is often invoked when

“footpoints” are spun to impart twist. Retaining only the first rhs terms in Equations (5)
and (6) leads to a wave equation for torsional Alfvén waves (Priest 1982).

The final term on the rhs of Equation (6), sometimes called the Y-term, is the most
surprising: it represents a source of twist due to the evolution of the axis alone. As a result
of this term it is possible to impart twist to a section of a tube by deforming its axis in a
helical manner. The sense of twist imparted turns out to be opposite to the sense of the
axial deformation. Figure 3 shows a tube section whose axis has been given a left-handed
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deformation (as if by a right-handed cyclonic event (Parker 1970)), thus causing its field
lines to develop right handed twist about the axis (¢ > 0).

The necessity of the X-term can be appreciated in the conservation of magnetic helicity.
The helicity of a closed, thin tube can be written as a sum of two terms, H = ®*(Tw + Wr),
called twist and writhe (Berger and Field 1984; Moffatt and Ricca 1992). The individual
terms are defined by the integrals

1

Tw = —

wo= —dawa . (7)
1 AxT . (x—x)

Wr = E%dé]{dé Famer il (8)

where x = x(¢), x' = x(¢') and so on. Magnetic helicity H is strictly conserved under ideal
motions and we are considering only ideal motion. Therefore, a change in writhe must be
offset by an opposite change in twist. Writhe depends only on the axis while twist depends
only on ¢, so that a deformation of the axis must be accompanied by a change in q. A
left-handed helical deformation of the axis will add negatively to Wr, which will therefore
cause a positive change in ¢, as seen in Figure 3.

5. On the Possible Origins of Twist

To find possible sources of twist in a rising tube, we may seek instead sources of writhe.
For the purpose of quantifying these we will begin by assuming flux tubes to be generated
in an untwisted and unwrithed state (Twy = Wry = 0). Subsequent writhing of the axis will
then result in an equal and opposite twist. Twist density ¢ is introduced by the Y-term in
Equation (6) whence it is distributed along the axis by the propagation of torsional Alfvén
waves.

5.1. Joy’s Law

One source of writhe is the tilting of the apex of a rising €2-loop by the Coriolis force
— Joy’s Law. As it rises and expands a fluid parcel appears to rotate in a retrograde sense
when viewed from the frame of the Sun. This causes the emerging sunspot pair to be
tilted by an angle v, with the leading spot closer to the equator. Consider a flux tube
which initially encircles the Sun in the Northern hemisphere (Figure 4). The rising and
tilting gives the tube’s axis a right handed pitch (Wr > 0) and thus a negative twist ¢ in
agreement with the tendency in Figure 1.
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To calculate the writhe we begin with two limits in which Wr can be found readily.
Without tilt (¢ = 0) the axis lies in a plane of constant latitude, even after rise, and
therefore has Wr = 0. Alternatively, a tilt of b = 180° deforms the axis into a figure-eight
for which Wr = +1 (Berger and Field 1984; Moffatt and Ricca 1992). We propose that
intermediate values of tilt produce values of writhe Wr ~ 1)/180°.

During the period of rise, torsional Alfvén waves will equalize ¢(¢) over some axial
length L, giving an estimate of

2nWr 2wy
L — 180°L ’

(9)

q=

at the apex. Since the rise speed is always less than va), by Equation (2), we can deduce
that L > 200 Mm, the depth of the CZ. For a typical active region tilt angle of ) = 6°
(Howard 1996) this gives an upper bound |q| < 1073 rad/Mm on the amount of twist
possible from Joy’s law tilt. This is an order of magnitude smaller than observed, and
cannot be the primary source of twist. (It is, however, comparable to the magnitude of the
mean trend.) It should be further noted that this mechanism would lead to a correlation
between observed values of ¢ (i.e. apen) and tilt ¢p. This correlation has not been observed
(Pevtsov 1999).

5.2. Differential Rotation

A second source of writhe is the well known differential rotation of the Sun. This
process acts over extremely long times during which it is unlikley that a single flux tube
could survive. By assuming the tube to survive indefintely, however, we can estimate
the mazimum twist possible; dissipation of the tube would presumably destroy its twist.
Figure 5 shows the kind of tube typically presented in cartoons of the Babcock dynamo.
A portion below the surface has been subjected to differential rotation while remaining
connected through the corona. The “feet” of the tube are at different latitudes in the
same hemisphere (more traditional cartoons have feet in opposite hemispheres; this would
produce even less twist). After sufficient time the high-latitude foot has been “lapped”
N = 4 times. The writhe of the resulting curve is Wr ~ N — % Thus each additional lap
will add one to Wr while increasing the length L by 2w Ry cos(f), where Rez ~ 500 Mm
is the radius of the CZ base. The process is slow enough for twist to equilibriate over the
entire tube leading to ¢ ~ 1/Rcz ~ 2 x 1073 rad/Mm. This is well below observed values,
and represents an upper bound on the twist possible from differential rotation.
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5.3. The Y-effect

The presence of two spatial derivatives (i.e. 1 = dx/d¢) in the definition of Wr (8)
suggests that axis defomations on smaller scales may lead to more writhe than the large-scale
mechanisms considered above. During its rise a tube will be buffeted by turbulent motions
in the CZ. These motions are on the scale of the so-called mixing length, which decreases
to several Mm towards the top of the CZ (B6hm-Vitense 1958; Spruit 1974). Moreover, the
turbulent velocity is thought to have a helical nature characterized by its kinetic helicity
(u-V x u). For the bulk of the CZ this quantity is believed to be negative in the Northern
hemisphere (Steenbeck and Krause 1966). Fluid motions with negative kinetic helicity
generate right-handed deformations in a flux tube (Parker 1955b). These right-handed
deformations will give rise to a positive writhe, and thus negative twist in the North. This
sign is consistent with the trend in the data (Figure 1) and the random character of the
turbulence might explain its large statistical dispersion. This turbulent mechanism of twist
generation is known as the X-effect (Longcope et al. 1998).

The Y-effect generates twist of the same sign as the kinetic helicity. This differs
from the sign relationship in the traditional alpha-effect of mean-field dynamo theory:
a ~ —(u-V x u). This discrepency arises because the a-effect concerns motions internal
to a magnetic field, while the Y-effect concerns motions external to the field (i.e. outside
the flux tube). Consequenlty, when using motions in the bulk of the CZ, the X-effect agrees
with the observed sense of twist while the a-effect does not.

The magnitude of the Y-effect has been estimated by numerical simulation (Longcope
et al. 1998). An initially untwisted, unwrithed flux tube was subjected to a random
external velocity field representing the CZ turbulence. This velocity field had the amplitude,
correlation length and kinetic helicity characteristic of mixing-length turbulence. The
turbulence characteristics changed as the tube rose through the CZ. Equations for ¢ and w
were solved until the end of the rise, yielding a single realization of q. To determine the
statistical distribution of ¢, the procedure is then repeated 1000 times, each time with a
different realization of the turbulent velocity. The distribution is then computed for tubes of
different fluxes @ at different solar latitudes. Figure 1 shows the mean (solid) and standard
deviation (dashed) of the distribution for ® = 10?> Mx. The typical values correspond to
q ~ 0.02 rad/Mm, consistent with the data. Moreover, the latitudinal variations and level
of statistical dispersion agrees remarkably well with observation.
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5.4. Initial Twist

Finally, we turn to the possibility of twist in flux tubes prior to their rise. Present
thinking holds that a dynamo operating at the base of the CZ generates a layer of smooth
magnetic field which then fragments to form flux tubes (Cattaneo et al. 1990; Matthews
et al. 1995). A mean-field a-Q2 dynamo generates flux with some magnetic helicity
(Charbonneau and Gilman 1998; Gilman and Charbonneau 1999). Present understanding
of the fragmentation process, however, does not predict how this helicity might be converted
to twist ¢o in the flux tubes which break free from the layer.

For the sake of a rough estimate we will consider the “twist” implied by the helicity
in the dynamo layer itself, ignoring the fragmentation process entirely. An a-{) dynamo
produces magnetic fields and currents which are primarily torroidal. Magnitudes of these
fields cannot be found from the standard linear treatments, however, their ratio can
(Charbonneau and Gilman 1998). In particular an estimate of ¢y can be found,

1 max (V x B);

B~ 2 max By

(10)
where maxima over space are found for the torroidal components of each field. This quantity
is quite sensitive to model parameters such as o and the dynamo number. Parameter
variations give values of ¢y ranging from 3 x 10~ %rad/Mm to 3 x 10~ 2rad/Mm, with a

reasonable choice yielding ¢y >~ 4 x 107> rad/Mm (Charbonneau and Gilman 1998).

It is also possible that the poorly understood fragmentation process, which creates flux
tube from the smooth dyanmo layer, introduces twist itself. It should be born in mind,
however, that all of the mechansims mentioned in previous sections would add twist on top
of qo, present initially. The significant amount of twist contributed by the Y-effect leaves
little room in the observations for gq.

6. Summary and Discussion

Observations indicate that solar magnetic flux tubes consist of twisted magnetic field.
The magnitude and sign of the twist are measured by the quantity o,cm, which shows a
latitudinal variation in o, but with significant scatter. Table 1 lists the magnitude of
observed twist along with theoretical predictions and constraints. Thin flux tube models
show that large-scale sources, such as differential rotation or Joy’s law, cannot explain the
magnitude or latitudinal dependance of the observed twist. Turbulent buffeting of the rising
tubes generates twist, through the »-effect, which does fit the observations, in magnitude,
latitudinal dependance and degree of statistical dispersion.
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A different category of comparison comes from application of two-dimensional MHD
models to flux tubes. These predict minimum values of twist necessary for integrity or
instability. Obsevations suggest that AR flux tubes remain in one piece during most of
their rise from the base of the CZ. Almost none of the ARs observed, however, satisy the
criterion for integrity (Equation [3]). This points to an inadequacy of the models or their
interpretation. It has been suggested (Longcope et al. 1996; Emonet and Moreno-Insertis
1998) that the requirement for tube integrity in a fully three dimensional MHD model
would be different than for the perfectly straight two-dimensional models used to derive
Equation (3). Numerical simulations presently underway will help to clarify this point.

The threshold for helical kinking also stands well below the observed twist of ARs.
While proper motion studies provide evidence of kinking, only a portion of any AR appears
kinked. Until models are developed for complexes of interlinked flux tubes, however, it is
not easy to appreciate the significance of this. There is at least one example in which the
axis of an entire AR flux tube was observed to be kinked (Pevtsov and Longcope 1998),
however, it is unclear if this is related to a helical kink instability.

Considerable uncertainty remains in the method of measuring the twist in an AR flux
tube. The quantity apem, developed by Pevtsov, Canfield and Metcalf [1995], has certain
advantages over e.g. ,y,. Primary among these is the extensive dataset of ARs for which
Qpem has been (laboriously) calculated. The technique itself should be studied in more
detail to determine any biases it may introduce. More importantly, however, it must be
determined how well any photospheric measurement can ascertain the twist which was
present in the rising tube. In short, we must learn much more about the interface between
CZ and the corona: the photosphere. Principally, does the photospheric twist reflect that
in the rising tube, and does the photosphere influence the dytnamics of the tube?

We wish to thank Drs. Charbonneau and Gilman for performing the calculations in
Section 5.4, and for contributions to the discussion therein.
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Fig. 1.— Values of apem measured in 203 ARs plotted against solar latitude. Error bars
reflect variation in multiple measurements of the same AR. The solid line shows the mean
value of apem generated by the theoretical X-effect in a flux tube of ® = 10** Mx. The
intrinsic scatter in the Y-effect is shown by the dashed lines.

Fig. 2.— The saturated state of a helical kink instability. From nonlinear three-dimesnional
simulations of Linton et al. [1998b]
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Fig. 3.— A flux tube (grey) on which several field lines are drawn. The axis of the tube has
been deformed in a left-handed sense. The field lines twist about the axis to the right. The
field lines at the ends of the tube have not moved during this deformation.

Fig. 4— A flux tube tilted by the Coriolis force acting on the rising apex.
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Fig. 5.— The axis of a flux tube, and its coronal connection, subjected to differential
rotation.
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q (rad/Mm)  source  Ref.

Observations
AR ~ 0.01 Fig.1 a
substructures ~ 0.2 — b, ¢

Constraints on twist

Integrity of tube q=0.1 Eq. 3) d,e
Kink stable Eq. (4) f
overshoot q<0.5
always q<0.1

Sources of twist

Joy's Law 0.001 Eq. (9) g
Dift’] rotation 0.002 — —
Y-effect ~ 0.02 Fig.1 h
Created in dynamo 4%x107°  Eq. (10) i

Table 1: A quantitative summary of twist ¢ in flux tubes

?Pevtsov, Canfield and Metcalf 1995
bPevtsov, Canfield and Metcalf 1994
“Leka et al. 1996

YEmonet and Moreno-Insertis 1998
°Fan, Zweibel and Lantz 1998
fLinton, Longcope and Fisher 1996
9Longcope and Klapper 1997
hLongcope, Fisher and Pevtsov 1998
iCharbonneau and Gilman 1998



