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ABSTRACT
We present three-dimensional numerical simulations of the rise and fragmentation of twisted, initially

horizontal magnetic Ñux tubes that evolve into emerging )-loops. The Ñux tubes rise buoyantly through
an adiabatically stratiÐed plasma that represents the solar convection zone. The MHD equations are
solved in the anelastic approximation, and the results are compared with studies of Ñux-tube fragmenta-
tion in two dimensions. We Ðnd that if the initial amount of Ðeld line twist is below a critical value, the
degree of fragmentation at the apex of a rising )-loop depends on its three-dimensional geometry : the
greater the apex curvature of a given )-loop, the lesser the degree of fragmentation of the loop as it
approaches the photosphere. Thus, the amount of initial twist necessary for the loop to retain its cohe-
sion can be reduced substantially from the two-dimensional limit. The simulations also suggest that, as a
fragmented Ñux tube emerges through a relatively quiet portion of the solar disk, extended crescent-
shaped magnetic features of opposite polarity should form and steadily recede from one another. These
features eventually coalesce after the fragmented portion of the )-loop emerges through the photosphere.
Subject headings : MHD È methods : numerical È Sun: interior È Sun: magnetic Ðelds

1. INTRODUCTION

The largest concentrations of magnetic Ñux on the Sun
occur in active regions. Great progress has been made over
the past decade in understanding the connections between
the magnetic Ðeld in active regions, observed at the surface
of the Sun, to the magnetic Ðeld deep in the solar interior.
Active regions have a bipolar structure, suggesting that they
are the tops of magnetic Ñux loops that have risen from
deep in the solar interior. On average, active regions are
oriented in the east-west direction (HaleÏs polarity law), sug-
gesting that the underlying Ðeld geometry is toroidal. The
persistence of HaleÏs law for periods of several years during
a given solar cycle suggests that magnetic Ñux must be
stored in a relatively stable region of the solar interior.
Several stability arguments (Spruit & van Ballegooijen
1982 ; van Ballegooijen 1982 ; Ferriz-Mas & 1993,Schu� ssler
1995) show that the only place where such Ðelds can be
conÐned stably for periods of several years is below the
solar convection zone. On the other hand, if magnetic Ðelds
are placed any signiÐcant distance below the top of the
radiative zone, they are so stable that they could not emerge
on the timescale of a solar cycle. We are thus led to the
conclusion that the most likely origin of active region mag-
netic Ðelds is a toroidally oriented Ðeld layer residing in the
““ convective overshoot region,ÏÏ a thin, slightly convectively
stable layer just beneath the convection zone. This layer
also seems to coincide with the ““ tachocline ÏÏ (Kosovichev
1996 ; Corbard et al. 1999), where the solar rotation rate
transitions from solid-body behavior in the radiative zone
to the observed latitudinally dependent rotation rate we see
at the SunÏs surface. This suggests that not only are solar
magnetic Ðelds stored in the convective overshoot layer but
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the overshoot layer is also the most likely site for the solar
cycle dynamo (Gilman, Morrow, & DeLuca 1989 ; DeLuca
& Gilman 1991 ; Parker 1993 ; MacGregor & Charbonneau
1997 ; Durney 1997 ; Dikpati & Charbonneau 1999).

Over the past decade, most e†orts to study the emergence
of active region magnetic Ðelds have employed the ““ thin
Ñux tube ÏÏ approximation. This model assumes that mag-
netic Ñux tubes behave as distinct tubelike entities, sur-
rounded by Ðeld-free plasma. The approximation further
assumes that the tube diameter is small compared to all
other length scales in the problem and that pressure balance
exists across the tube at all times. After adopting these
assumptions, it is straightforward to derive an equation of
motion for the dynamics of the tube from the momentum
equation in MHD. Thin Ñux tube models of emerging active
regions have proven very successful in explaining many
properties of active regions in terms of Ñux-tube dynamics
in the solar interior. For example, they have successfully
explained the variation of active region tilt with respect to
the east-west direction as a function of solar latitude
(DÏSilva & Howard 1993 ; DÏSilva & Choudhuri 1993 ;
Fisher, Fan, & Howard 1995), the asymmetric orientation
of the magnetic Ðeld after emergence (van Driel-Gesztelyi &
Petrovay 1990 ; Moreno-Insertis, & CaligariSchu� ssler,
1994 ; Cauzzi, Moreno-Insertis, & van Driel-Gesztelyi
1996), and the observed scatter in tilts as a function of active
region size (Longcope & Fisher 1996).

In spite of these successes, recent two-dimensional MHD
simulations of Ñux-tube emergence have shown results that
seem to invalidate many assumptions that are adopted in
the thin Ñux tube approximation. (1979) andSchu� ssler
Longcope, Fisher, & Arendt (1996) Ðnd that an initially
buoyant, untwisted Ñux tube will fragment into two
counterrotating tube elements, which then separate from
one another, essentially destroying the tubeÏs initial identity.
Moreno-Insertis & Emonet (1996) and Fan, Zweibel, &
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Lantz (1998) have demonstrated via two-dimensional
MHD simulations that, in order to prevent a Ñux tube from
fragmenting, enough twist must be introduced into the tube
to provide a cohesive force to balance the hydrodynamic
forces acting to rip it apart. That critical twist is deÐned,
roughly, by that necessary to make the speed fromAlfve� n
the azimuthal component of the Ðeld at least as great as the
relative velocity between the tube and the Ðeld free plasma
surrounding it (Linton, Longcope, & Fisher 1996 ; Emonet
& Moreno-Insertis 1998 ; Fan et al. 1998).

However, when global levels of twist in active regions
(Pevtsov, CanÐeld, & Metcalf 1995 ; Longcope, Fisher, &
Pevtsov 1998) are determined from vector magnetograms,
the amplitude of the observed twist is typically far smaller
than this critical value (Longcope et al. 1999). When plotted
as a function of active region latitude, the twists exhibit
large scatter, but superimposed on this apparently random
behavior there is a slight but clearly discernible trend for
active regions in the northern hemisphere to be negatively
twisted while those in the south are positively twisted.

Longcope et al. (1998) have developed a theoretical
model that not only explains the latitudinal variation of
twist but also can account for the large Ñuctuations in twist
from active region to active region. In this model, an ini-
tially untwisted Ñux tube rises through the convection zone
in accordance with the thin Ñux tube approximation.
Coriolis forces acting on convective eddies produce a
nonzero average kinetic helicity that is proportional to lati-
tude. The kinetic helicity acts to ““ writhe ÏÏ the Ñux tube,
which is then twisted in the opposite direction to preserve
its magnetic helicity. Longcope et al. (1998) showed that this
model can explain the observed data. However, the model
assumes from the beginning that the thin Ñux tube approx-
imation can be used, even for an initially untwisted tube,
while the two-dimensional MHD simulations suggest that
this is invalid. Is there some way out of this quandary,
which we dub ““ LongcopeÏs Paradox ÏÏ ?

In this paper, we describe MHD simulations of Ñux-tube
fragmentation in three dimensions. The result of these simu-
lations is that the critical degree of twist necessary to
prevent fragmentation is reduced dramatically by the pres-
ence of Ñux-tube curvature, as will be present in an emerg-
ing )-loop. We Ðnd that, for a Ðxed amount of twist, the
degree of fragmentation is a function of the tubeÏs curvature
and transitions asymptotically to the two-dimensional limit
as the curvature approaches zero. Even for Ñux tubes with
little to no initial twist, the fragmenting magnetic morphol-
ogy at the apex of an emerging )-loop is considerably less
dispersed than the two-dimensional simulations would
indicateÈa Ðnding consistent with the simulation results of
Dorch & Nordlund (1998). It is not clear at this time
whether our results resolve LongcopeÏs paradox or not, but
they certainly ameliorate the problem a great deal.

The remainder of this paper is organized as follows. In ° 2
we brieÑy discuss the formalism of the anelastic approx-
imation employed in our models, together with the numeri-
cal methods used to solve the system of equations. We also
describe the range of initial conÐgurations that we use to
explore the relationship between Ñux-tube fragmentation,
tube geometry, and the initial twist of the Ðeld lines. At the
beginning of ° 3, we deÐne what is meant by a Ñux tube in
the context of our three-dimensional MHD simulations and
further deÐne a quantitative measure of the degree of frag-
mentation of such a tube. We then present the results of our

numerical simulations and discuss the implications of the
models. Finally, in ° 4 we summarize our conclusions.

2. METHOD

We solve the three-dimensional MHD equations in the
anelastic approximation (Ogura & Phillips 1962 ; Gough
1969) using a portable, modularized version of the code of
Fan et al. (1999). The anelastic equations result from a
scaled-variable expansion of the equations of compressible
MHD (for details see Lantz & Fan 1999, and references
therein) and describe variations of a plasma about a strati-
Ðed, isentropic reference state. This approach is valid for
low acoustic Mach number plasma below the photosphere

where the speed is much less than(M 4 v/c
s
> 1), Alfve� n vAthe local sound speed (Glatzmeier 1984). The primaryc

scomputational advantage of this technique is that fast-
moving acoustic waves are e†ectively Ðltered out of the
simulations. This allows for much larger time steps than
would be possible in fully compressible MHD, and unlike a
Boussinesq treatment, a nontrivial background stratiÐ-
cation can be included in the models. This method is well
suited to our investigation of the evolution and fragmenta-
tion of magnetic Ñux tubes since our region of interest lies
well within the limits of validity of this approximation and
since we require many simulations to fully explore the rele-
vant parameter space. It is important to note, however, that
where M is not >1, a fully compressible treatment (such as
that of Bercik, Stein, & Nordlund 1999) is required. The
equations of anelastic MHD are as follows :
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Here, and B refer to the density, gas pres-o1, p1, T1, s1, ¿,
sure, temperature, entropy, velocity, and magnetic Ðeld
perturbations, while and denote theo0, p0, T0, s0corresponding values of the zeroth-order reference state,
described in detail below. The acceleration due to gravity is
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and k, g, and K represent the coefficients of viscosity, mag-
netic di†usion, and thermal di†usion, respectively.

A detailed description of the numerical methodology we
use in the solution of the anelastic MHD equations can be
found in Appendix A of Fan et al. (1999). BrieÑy, the non-
dimensional form of the equations is solved in a rectangular
domain assuming periodic boundary conditions in the hori-
zontal directions and nonpenetrating, stress-free conditions
at the upper and lower boundaries. The magnetic Ðeld B
and the momentum density are both divergence-free,o0 ¿
and thus each can be expressed in terms of two scalar
potentials :

B \ $ Â $ Â Bzü ] $ ÂJzü (9)

and

o0 ¿\ $ Â $ ÂWzü ] $ ÂZzü . (10)

These potentials, along with the other dependent variables
of the problem, are spectrally decomposed in the horizontal
Cartesian directions. The Fourier variables are discretized
with respect to the vertical direction, and the vertical deriv-
atives are approximated by fourth-order, centered di†er-
ences. A semi-implicit method is then used to time-advance
the Ðve discretized scalar equations for the Fourier vari-
ables. Using operator splitting, the second-order Adams-
Bashforth scheme is applied to the advection terms, and the
second-order Crank-Nicholson scheme is applied to the dif-
fusion terms (see Press et al. 1986 pp. 570, 637, and 660 for a
general discussion of these methods).

To investigate the dynamics of Ñux-tube fragmentation
and how this process depends on the initial state and even-
tual geometry of the tube, we carried out a total of 16
simulations. In each case, an ideal gas of c\ 5/3 is assumed;
the reference state is taken to be an adiabatically stratiÐed
polytrope of index m\ 1.5 [related to c by m\ 1/(c[ 1)] ;
and k, g, and are assumed constant throughout theo0K
simulation domain. The di†usive parameters enter into the
calculation via the Reynolds number, (R

e
4 [o][z][v]/k,

the magnetic Reynolds number, and theR
m

4 [z][v]/g,
Prandtl number, The density and tem-Pr 4 k/(Ko0).perature scales ([o] and [T ]) are deÐned as the density and
temperature of the reference state at the bottom of the simu-
lation domain and and the length scale [z] is deÐned(o
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T
r
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as the pressure scale height of the reference state at that
same location where and R and(H
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are the ideal gas constant and mean molecular weight,
respectively). The velocity scaling [v] is given as the charac-
teristic speed along the axis of the initial magneticAlfve� n
Ñux tube. For each simulation, both and are set toR

e
R

m3500 and Pr is set to unity.
Each run begins with a static, cylindrical magnetic Ñux

tube embedded in a polytropic, Ðeld-free, reference state.
The vertical domain of each simulation spans 5.147 pressure
scale heights (or 3.088 density scale heights). The tube ini-
tially has the form
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Here, denotes the azimuthal component of the Ðeld inBh(r)the tubeÏs cross section and refers to the axial com-B
x
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ponent (which lies perpendicular to along the Car-g \[gzü
tesian direction Both are given as functions of r, thexü ).
radial distance to the central axis in the tubeÏs cross section.
For each simulation, the initial size of the Ñux tube, a
[deÐned as the FWHM of is set to and theB

x
(r)], 0.1H

rmagnetic Ðeld perturbations are scaled to the initial
strength of the axial Ðeld at tube center The distance(B0).over which a Ðeld line rotates once around the axis of the
tube is given by 2na/q, where q is the nondimensional twist
parameter of equation (13). Note that this deÐnition of q
di†ers from that of Linton et al. (1996) by a factor of tube
width, a. Both q and a are assumed constant, so that the
initial rate of Ðeld line rotation per unit length along the
tube (q/a for length scale a) remains Ðxed. To investigate
how the tubeÏs initial twist impacts the amount of fragmen-
tation apparent during its rise, we consider three represen-
tative values of the twist parameter : q \ 1/4, q \ 3/16, and
q \ 1/8.

Our goal is to model the dynamics of an emerging
)-loop. However, because of Ðnite computational
resources, we cannot evolve each Ñux tube self-consistently
from an initial state of force balance (e.g., Caligari, Moreno-
Insertis, & 1995 ; Fan & Fisher 1996 ; Fan 1999).Schu� ssler
We therefore introduce an ad hoc entropy perturbation at
t \ 0 that causes the tube to rise and emerge in the shape of
an )-loop. We argue that the physics of the hydrodynamic
interaction of the rising loop with its environment depends
primarily on the geometry of the loop and its velocity Ðeld
rather than on how it arrived at its )-loop conÐguration.
The initial entropy perturbation is of the form

s1\ S0 e~r2@a2(e~(x~L@2)2@LL [ 12) . (14)

Here, L refers to the initial length of the tube (which corre-
sponds to the extent of the domain in the andxü -direction)

denotes the relative amplitude of the perturbation MtakenS0to be unity in the dimensionless units of the code, where the
unit of entropy is With appropriate[s]\ c

p
[v]2/(r

*
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choices of L and length scale L, this initial condition has
the e†ect of ““ pinning down ÏÏ the ends of the Ñux tube while
allowing the central portion to rise. For example, the run
labeled SL1 in Table 1 has an initial acceleration due to
buoyancy of 0.97 [in naturalized units of atB02/(8nH

r
o
r
)]

the center of the tube and a buoyancy contribution of
[0.03 at each end. By varying the parameters in equation
(14), we can investigate how the fragmentation process is
a†ected by the geometry of a rising )-loop.

Table 1 lists the q, L , and L parameter space that is
explored in each of the 16 simulations and assigns labels to
each run. For convenience, Table 1 also shows the total
number of Ðeld line rotations along the Ðnite length of the
tube, Q. Each horizontal Ñux tube is initially positioned
near the bottom of the computational domain at z0\

denotes the maximum vertical height of the0.1875zmax (zmaxdomain). For the three-dimensional runs, the labeling con-
vention consists of two letters (““ L ÏÏ or ““ S ÏÏ) followed by a
number (0, 1, 2, or 3). The numbers denote the degree of
magnetic Ðeld line rotation about the central axis of the
tube (lower numbers imply a lesser amount of twist). The
Ðrst letter of the label refers to the extent of the computa-
tional domain in the (the L in this case refers toxü -direction
a ““ large ÏÏ 512 zone domain, and the S stands for a ““ small ÏÏ
256 zone domain). The second letter of the label describes
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TABLE 1

INITIAL FLUX-TUBE PARAMETERS

Label Resolutiona L b Lb q
Q\

L q
2na ic

SS1 . . . . . . 256 ] 128 ] 128 4.362 0.0852 0.1250 0.8678 1.66248
SS2 . . . . . . 256 ] 128 ] 128 4.362 0.0852 0.1875 1.3017 1.62260
SS3 . . . . . . 256 ] 128 ] 128 4.362 0.0852 0.2500 1.7356 1.62906
SL0 . . . . . . 256 ] 128 ] 128 4.362 0.1704 0.0000 0.0000 1.05930
SL1 . . . . . . 256 ] 128 ] 128 4.362 0.1704 0.1250 0.8678 1.04928
SL2 . . . . . . 256 ] 128 ] 128 4.362 0.1704 0.1875 1.3017 0.99512
SL3 . . . . . . 256 ] 128 ] 128 4.362 0.1704 0.2500 1.7356 1.02579
LS1 . . . . . . 512 ] 128 ] 128 8.724 0.1704 0.1250 1.7356 0.53913
LS2 . . . . . . 512 ] 128 ] 128 8.724 0.1704 0.1875 2.6034 0.51325
LS3 . . . . . . 512 ] 128 ] 128 8.724 0.1704 0.2500 3.4712 0.46269
LL1 . . . . . . 512] 128 ] 128 8.724 0.3408 0.1250 1.7356 0.23734
LL2 . . . . . . 512] 128 ] 128 8.724 0.3408 0.1875 2.6034 0.20638
LL3 . . . . . . 512] 128 ] 128 8.724 0.3408 0.2500 3.4712 0.16699
L1d . . . . . . 2 ] 128 ] 128 O O 0.1250 O 0.00000
L2d . . . . . . 2 ] 128 ] 128 O O 0.1875 O 0.00000
L3d . . . . . . 2 ] 128 ] 128 O O 0.2500 O 0.00000

a (x, y, z).
b In units of H

r
.

c Apex curvature for last time step of each run (]10~3).
d Two-dimensional limiting case.

the eventual radius of curvature at the apex of the rising
tube. If L is used, the run upon completion has a relatively
large radius of curvature at the apex and the )-loop spans
most of the computational domain in the xü -direction.
Otherwise, S is used to denote a shorter )-loop, one that
exhibits a smaller radius of curvature at its peak and spans
a smaller portion of the box length (this is accomplished by
varying the parameter L in eq. [14] in a Ðxed computa-
tional box). Labels with only one letter refer to the two-
dimensional limiting cases. Note that it is the number of
zones in the that is changed between di†erentxü -direction
cases and not the grid resolution.

3. RESULTS

In general, the magnetic Ðeld distribution in three dimen-
sions can become quite complex. We Ðnd it useful to
describe the Ðeld more intuitively in terms of the evolution
and possible fragmentation of our initial magnetic Ñux tube.
To accomplish this, we specify a new coordinate system
based on the path of the Ñux tube through our Cartesian
domain. We deÐne the path of the tube in terms of the
Cartesian variable x at any given time during a simulation.
Setting up this new coordinate system and its basis vectors
is a multistep process. We Ðrst consider the magnetic ÐeldÈ
weighted moments of the position within vertical slices
through relevant regions of the computational domain :

z(x)4
1
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PP

z o B(x, y, z) o dy dz ,
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'(x)
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y o B(x, y, z) o dy dz , (15)
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PP

o B(x, y, z) o dy dz . (16)

Then it is natural to deÐne a path given by the vector

r0(x)4 xxü ] y(x)yü ] z(x)zü (17)

and to construct the Frenet tangent vector along this path,

l ü04
C
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Ady
dx
B2]

Adz
dx
B2D~1@2A

xü ] dy
dx

yü ] dz
dx

zü
B

. (18)

The path traced by is only a Ðrst approximation tor0the path of the Ñux tube. To establish the actual path
of the tube, we calculate the magnetic ÐeldÈweighted
position along a plane normal to passing through a givenl ü0point along This plane is deÐned by the equationr0. and its surface can be parameterizedl ü0 Æ (r [ r0) \ 0,
by r \ u(v, w) where u(v, w)xü ] vyü ] wzü , 4 [l

y
(y [ v)

and the refer to the Cartesian com-] l
z
(z [ w)]/l

x
] x l

iponents of With the area element along this surface givenl ü0.
by the totaldS \ o Lr/L¿ Â Lr/Lw o dv dw\ (xü Æ l ü0)~1dv dw,
unsigned magnetic Ñux across the plane can be expressed as

We now deÐne a new set of moments :'
S
4/

S
o B(v, w) o dS.

v4
1
'

S

PP
v o B(v, w) o (xü Æ l ü0)~1 dv dw ,

w4
1
'

S

PP
w o B(v, w) o (xü Æ l ü0)~1 dv dw . (19)

Along with these points are used to deÐne theu \ u(v, w),
path of a magnetic Ñux tube in a given region,

r 4 uxü ] vyü ] wzü . (20)

The frame of reference of the tube is then given by the
Frenet tangent, normal, and binormal vectors along r : l ü\
dr/ds (where ds is the inÐnitesimal path length along r),

and respectively. The tubeÏs curva-nü \i~1dl ü/ds, bü \ l üÂ nü ,
ture at a given point along r is simply Ofi \ o dl ü/ds o .
course, where the curvature of the Ñux tube is zero, the
normal (and hence binormal) vectors are ill deÐned.
However, in the course of our analysis, we Ðnd that zero
curvature occurs only at very localized i inÑection points or
along horizontally oriented tubes (where vertical slices can
be used to deÐne a cross-sectional plane), and thus this
limitation proves inconsequential. We note that our formal-
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FIG. 1.ÈVolume rendering of o B o for the last time step of run SL0. The red dotted line denotes the central axis of the portion of the )-loop that has not
fragmented. The yellow dotted lines denote the paths of each distinct fragment in the region of the loop that is considered to be fragmented. The entire
rectangular computational domain is shown.

ism is not terribly general, as it precludes the consideration
of unusual conÐgurations such as vertically oriented tubes
or tubes that are stacked on top of one another ; however,
none of these situations are encountered in our study.

Depending on the initial degree of twist, portions of the
rising tube will shed vortex pairs and the magnetic Ñux will
be redistributed in the tube cross section such that much of
the Ñux is located away from the tubeÏs central axis. In some
cases, the distribution of magnetic Ñux no longer resembles
a single, cohesive tube ; rather it has spread out and split
apart into a conÐguration that can best be described as two
separate Ñux tubes. At this point, we consider the tube to be
““ fragmented.ÏÏ A quantitative measure of this fragmentation
can be obtained by Ðrst calculating the second moments of
the magnetic Ðeld strength along the normal and binormal
directions of the tube :

S(n [ n)2T 4
1

'
S{

P
S@
(n [ n)2 o B(n, b) o dS@ ,

S(b [ b)2T 4
1

'
S{

P
S@
(b [ b)2 o B(n, b) o dS@ . (21)

Here, spans the two-dimensional space of ther \ nnü ] bbü
plane normal to dS@ is the area element in that plane, andl ü,

is the corresponding unsigned Ñux'
S{

4/
S@

o B(n, b) o dS@
(the l-dependence of the variables is implicitly understood).
In the above equations, andn 4 (1/'

S{
)/
S@

n o B(n, b) o dS@
represent the Ðrst moments ofb 4 (1/'

S{
) /

S@
b o B(n, b) o dS@

the Ðeld distribution in this geometry. Because of the sym-
metry of our particular problem, the relative deformation of
the tube along its cross section can be represented by the
ratio of the binormal to normal second moments :

f \ S(b [ b)2T
S(n [ n)2T . (22)

The total spread of the Ðeld distribution, p2\ (1/'
S{
) /

S@can be used as a measure[(n[ n)2] (b[ b)2] o B(n, b) o dS@,
of how far the tube has dispersed in the cross-sectional
plane.

From an examination of numerous simulations, we
empirically Ðnd that a magnetic Ñux tube can be considered
to have split apart when its deformation, f, exceeds 1.5. We
therefore use f as our measure of the degree of fragmenta-
tion of the tube, consistent with the results of Schu� ssler
(1979) and Longcope et al. (1996). If f [ 1.5, then the path of
each individual Ñux-tube fragment is calculated using equa-
tions (19) and (20) over subdivided portions of the surface S.
Since there is a fairly high degree of symmetry in our runs,
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the surface can be divided into two parts that lie on either
side of a line deÐned by the Frenet normal. Thus, the
regions of integration are easily determined. Figure 1 is a
volume rendering of the magnetic Ðeld strength for the Ðnal
time step of run SL0 and shows the geometry of a tube that
has fragmented as it rises toward the surface. The Ðeld
strength distribution is visualized by casting parallel rays
through the semitransparent volume and calculating the
two-dimensional projection onto the viewing plane (IDLÏs
voxel–proj routine). The red dotted line denotes the central
axis of the tube through the volume. Where the tube has
fragmented, yellow dotted lines trace the paths of each frag-
ment. Note that the axis of each tube fragment does not
coincide exactly with its center of vorticity (where the Ðeld
strength is locally concentrated) ; this o†set depends on the
amount of Ñux that resides in a thin ““ sheath ÏÏ that extends
from the forefront of the rising tube to the outer edge of
each vortex pair. These features can be seen in a cross
section at the apex of this )-loop in the bottom panel of
Figure 2. In this case, the magnetic sheath is revealed as a
relatively weak concentration of Ñux in the shape of a thin,
semicircular arch that lies above the primary concentra-
tions of Ñux located in the trailing eddies. The yellow
symbols denote the location of the central axis of each frag-
ment, and the lengths of the blue dotted lines represent the
second moments of the Ðeld distribution (given by eq. [21])

FIG. 2.ÈApex cross sections of the )-loops shown in Fig. 1 (bottom
panel) and Fig. 3 (top panel). The symbols denote the positions of the tube
axes, and the lengths of the blue dotted lines represent the second moments
of the Ðeld distribution centered on the tube centroid (see eq. [21]). These
lines serve as a visual measure of the degree of fragmentation. The x and y
scales are given in terms of computational zones.

at the centroid of the tube (note that, at the apex of the loop,
and approximately correspond to the Cartesian direc-nü bü

tions and respectively). The top panel of Figure 2 showszü yü ,
the apex cross section of the Ñux tube shown in Figure 3
(the Ðnal time step of run SS3). This is an example of a tube
that, by our deÐnition, has not yet fragmented as it
approaches the photospheric boundary.

3.1. How Fragmentation Depends on Tube
Curvature and Twist

To investigate how the degree of fragmentation at the
apex of a rising, magnetic Ñux tube depends on its curvature
at that point, we consider Ðve separate runs : SS1, SL1, LS1,
LL1, and L1. In each case, the initial twist parameter q is
taken to be that is, the simulations begin with identical,18 ;
weakly twisted horizontal Ñux tubes positioned at the same
depth near the bottom of the computational domain. E†ec-
tively, the di†erence among the runs is the length in the
axial direction of the rising portion of the Ñux tubes. The
changes in this length scale lead to substantive di†erences in
the apex curvature of the )-loop as it rises through the
stratiÐed atmosphere. Run L1 (the two-dimensional limit-
ing case) represents an inÐnitely long horizontal tube whose
apex curvature remains zero throughout its rise. Con-
versely, run SS1 represents the shortest length scale we have
considered and thus refers to the run with the highest apex
curvature as the tube approaches the photosphere.

Figure 4 shows the degree of fragmentation along the axis
of each tube for these Ðve values of apex curvature at the
time when each tube has risen approximately halfway
through the vertical extent of the domain. In order of
decreasing curvature, the simulations shown are runs SS1,
SL1, LS1, LL1, and L1. The line f \ 1.5 represents the
(somewhat arbitrary) point at which we consider the tube to
be fragmented. It is easy to see that, as the level of apex
curvature i increases, the less the tube fragments for a Ðxed
value of q. Figure 4 also shows that, although the initial
value of twist was slight, three of the four simulations have
yet to show clear signs of fragmentation at the apex of the
loop. This suggests that, in three dimensions, the amount of
twist necessary to prevent fragmentation is substantially
reduced from the two-dimensional valueÈa point to which
we will return later in this section. Note that, toward the
footpoints of each loop, the value of falls below 1 (the ifisubscript is included to emphasize the dependence of the
degree of fragmentation f on the tubeÏs apex curvature i).
This reÑects the net elongation of the tube cross section in
the as the )-loop expands.nü -direction

Figure 5 shows the time dependence of at the loop apexfifor the set of runs corresponding to those of Figure 4. A
striking feature of this plot is the reduction by a factor of
B1.5 in the degree of fragmentation near the photospheric
boundary between the run with zero apex curvature and the
run with the maximum amount of curvature. The di†erence
in is large enough that the magnetic Ñux emerges as twofiindividual fragments when i \ 0 (run L1) yet is closer to
being a single, cohesive tube when (runi Z 1.7 ] 10~3
SS1). Note that, during the initial stages of the run, before
the tube shows signs of fragmentation, falls slightly belowfi1. This is a result of the vertical elongation of the apex cross
section as the tube begins to rise and Ñux is pulled into its
wake.

We Ðnd that, if the initial value of the twist parameter q is
greater than a ““ critical ÏÏ value then the Ñux tube noq

c
,
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FIG. 3.ÈVolume rendering of o B o for the last time step of run SS3. The red dotted line denotes the central axis of the nonfragmented Ñux tube.

FIG. 4.ÈFragmentation as a function of curvature for The xq \ 18.scale is given by the number of computational zones from each tubeÏs apex,
and SzT is the average height of the central axis of the tubes (given in terms
of the number of computational zones from the lower boundary). For
clarity, the f values near the horizontal boundaries of each run (past the
end of the )-loop) are not shown.

longer emerges in a fragmented state ( f \ 1.5), regardless of
the radius of curvature of the loop (see Fig. 6). In our simu-
lations, is empirically determined to be only slightly lessq

cthan 3/16, the value chosen for the set of runs SS2, SL2, LS
2, LL2, and L2 of Figure 7. For the two-dimensional limit-

FIG. 5.ÈApex fragmentation as a function of time and apex curvature
for the set of runs where q \ 18.
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FIG. 6.ÈSame as Fig. 5 but for the set of runs where q \ 14

FIG. 7.ÈSame as Fig. 5 but for the set of runs where q \ 316

FIG. 8.ÈFragment trajectories at the apex of the rising )-loop for the
set of simulations where Note that, at the loop apex, the normal (n)q \ 18.and binormal (b) directions correspond approximately to the Cartesian
directions z and y, respectively. represents the trajectory expected fromlopure expansion and no vortex interaction. The axis scale is in terms of
computational zones ; an entire vertical slice of the domain is shown.

ing cases, the empirically determined critical value is consis-
tent with the condition that the Ñux tube will split apart
when the rise velocity of the tube exceeds the speedAlfve� n
of the azimuthal Ðeld at its edge (note that the initial
entropy perturbation in our simulations will a†ect the rise
speed of the tube). However, if the initial twist of the Ñux
tube is less than we Ðnd that the curvature of the )-loopq

c
,

plays an important role in determining the degree of frag-
mentation of the tube prior to its emergence through the
photosphereÈan e†ect not accounted for in previous two-
dimensional studies of Ñux-tube fragmentation (e.g., Long-
cope et al. 1996 ; Emonet & Moreno-Insertis 1998 ; Fan et
al. 1998). A comparison of Figure 7 with Figure 5 further
suggests that, as one chooses values of q progressively less
than the e†ect of loop curvature on the degree of apexq

c
,

fragmentation becomes more pronounced.
Run L1, the two-dimensional limiting case with a rela-

tively small amount of initial Ðeld line twist, conÐrms the
results of previous two-dimensional simulations (Longcope
et al. 1996 ; Emonet & Moreno-Insertis 1998 ; Fan et al.
1998), which show that once fragmentation has occurred,
the two counterrotating fragments repel one another via
forces that result from inÐnitely long vortex lines. In two
dimensions, the horizontal separation of the fragments can
be understood in terms of the hydrodynamic force acting on
an object with a net circulation C moving relative to a Ñuid
with a velocity (see Fan et al. 1998). It is¿ : F \ [o0 ¿ Â C
the component of this ““ lift ÏÏ force per unit volume acting
along the line between the centers of vorticity of the tube
fragments that acts to push the tubes apart. In three dimen-
sions, the fragments are Ðnite in extent, and thus these
forces are important only over a Ðnite length of the loop.
Figure 8 shows the trajectory of the two fragments (for the
weakly twisted case) at the tube apex for Ðve di†erent values
of curvature. As the level of apex curvature of the tube
increases and the e†ective axial length scale of each vortex
pair decreases, we see that the total volume-integrated non-
vertical component of the hydrodynamic liftÈand thus the
fragment separationÈis reduced.

Field line twisting due to nonuniform rotation of the
fragments also acts to reduce the fragment separation. To
illustrate the role of Ðeld line twist in the interaction of the
vortex pairs, we consider a case where the azimuthal com-
ponent of the magnetic Ðeld along the tube is initially zero.
Figure 9 is a volume rendering of the magnitude of the
current helicity density where J \ $ Â B)( oHc o\ o J Æ B o ,
for the Ðnal time step of run SL0 (where q 4 0). Since the
current helicity gives a measure of the twist of the magnetic
Ðeld, Figure 9 shows that, after the tube rises, spins di†eren-
tially (see Fig. 10), and splits apart, the magnetic Ðeld along
each tube fragment becomes increasingly twisted. The mag-
netic forces imparted from the increased twist slow the rota-
tional motion of the vortex pairs, and thus the tendency for
the tubes to separate is further reduced. Figure 11 shows
that, as the apex curvature of the )-loop increases, the net
circulation near the apex of each fragment decreases. This
lessens the repulsive force between fragments and allows
)-loops with a high degree of apex curvature to behave
more cohesively. This suppression of circulation in the tube
fragments was predicted by Emonet & Moreno-Insertis
(1998) and Moreno-Insertis (1997), who suggested that, if
the footpoint separation of an )-loop was small enough, the
rotation of the vortex pairs would be suppressed. Since it is
reasonable to assume a correlation between footpoint



FIG. 9.ÈVolume rendering of the current helicity for the last time step of run SL0. The dotted lines denote the paths of both the fragmented and
unfragmented portions of the loop. The entire rectangular computational domain is shown.

FIG. 10.ÈMagnitude of the net circulation of an individual tube frag-
ment (normalized to its value at the tubeÏs apex, for the last time step of!0)run SL0.

FIG. 11.ÈMagnitude of the net circulation of a tube fragment
(normalized to the value of run L1 at t \ 7, at the apex of the )-loops!0)as a function of apex curvature for the runs with a relatively small amount
of initial Ðeld line twist.
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separation and apex curvature, we feel that the results of
our simulations are generally consistent with this predic-
tion.

3.2. Field Morphology Prior to Emergence
There are a number of reasons why one must be cautious

when comparing our results with Ñux emergence obser-
vations. First, the anelastic approximation becomes mar-
ginal as the magnetic Ñux tube approaches the photosphere,
where densities decrease to the point that local sound
speeds are comparable to speeds in the plasma.Alfve� n
Additionally, in this Ðrst generation of models we do not
include the e†ects of spherical geometry or the Coriolis
force. Thus, predicted asymmetries in the geometry and
Ðeld strength asymmetry of emerging active regions (see
Moreno-Insertis et al. 1994 ; Fan, Fisher, & DeLuca 1993)
will not be reproduced. Further, we choose to use a simple,
polytropic reference state rather than a more realistic con-
vective background. As a result, the e†ects of convective
turbulence on the tube are neglected during its rise to the
surface, likely oversimplifying the structure of the Ðeld.
Nevertheless, we can make some general predictions regard-
ing the morphology of emerging magnetic Ñux in active
regions if the Ðeld exists in the form of a fragmented Ñux
tube.

Figures 12 and 13 make up a time series of simulated
vector magnetograms for the rising, fragmented Ñux tube of
run SS1. These images were generated by taking a horizon-
tal slice as close to the top of the computational domain as
possible without having the topological evolution a†ected
by interaction with the upper boundary. The gray-scale
background represents the vertical component of the mag-
netic Ðeld ; light regions correspond to outwardly directed
magnetic Ðeld (toward the observer), and dark regions cor-
respond to inwardly directed Ðeld (away from the observer).
The arrows deÐne the direction and relative strength of the
transverse components of the Ðeld. Figures 14 and 15 show
the corresponding velocity Ðeld at the same time intervals
and locations. The top panel of Figure 12 shows the tip of
the magnetic sheath as it begins to cut through the horizon-
tal plane. At this point, there is little to no separation
between regions of opposite polarity and the corresponding
Ñow Ðeld surrounding the magnetic region is relatively
weak. This stage is short lived since the magnetic sheath is
very thin.

As the tube continues to rise, the horizontal cut passes
through regions of magnetic Ðeld concentrated in the sheath
on either side of the tube apex (which by now has emerged
through the photosphere), as well as the Ðeld concentrated
in the relatively horizontal trailing vortices of each frag-

FIG. 12.ÈVector magnetogram images for run SS1. The times given are in naturalized units see text), and the x and y scales are given in terms(t \ H
r
/[v] ;

of the computational grid. The gray-scale background represents the vertical component of the magnetic Ðeld (positive values are indicated by the light
regions), and the arrows represent the transverse components.
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FIG. 13.ÈSame as Fig. 12 but for later time steps

ment. As a result, an oval-like structure develops, as shown
in the bottom panel of Figure 12. The velocity Ðeld has a
strong vertical component near the interfaces between the
vortex tubes and the surrounding nonmagnetized plasma
while exhibiting strong horizontal components at each end.
The horizontal components reÑect the Ñow of material
along the sheath away from the apex (see bottom panel of
Fig. 14). In the top panel of Figure 13, the apex of each
individual fragment has passed through the cutting plane,
and we see only the portions of the tube fragments and
sheath located just above the i inÑection point of the
)-loop. The two regions of opposite polarity now appear
crescent-shaped as they continue to separate. After the frag-
mented portion of the loop has emerged through the photo-
sphere, only the more concentrated, nonfragmented
portions remain. Thus, in the bottom panel of Figure 13, the
regions of strong magnetic Ðeld appear to have coalescedÈ
a feature of emerging active regions that is commonly
observed.

Figures 16 and 17 show a similar time series of vector
magnetograms for runs LL1 and SS3, respectively. A com-
parison between these Ðgures and Figures 12 and 13 reveals
the e†ect of initial twist and tube curvature on the overall
characteristics of the emerging Ñux. A comparison of the
surface separation of the individual fragments (the semi-
minor axes of the ellipse-like structures shown in the

bottom panel of Fig. 12 and the top panel of Fig. 16) can be
used to determine the relative curvature between the two
cases. In general, the lower the apex curvature of the frag-
mented )-loop, the higher the ““ eccentricity ÏÏ of the ellipse-
like structure. Similarly, if the crescent-shape of the
opposite-polarity magnetic structures is less distinct or
absent in the simulations (compare the top panel of Fig. 13
with the bottom panel of Fig. 17), this indicates that the
initial level of twist of the magnetic Ñux tube was relatively
high. Finally, asymmetries introduced by the higher level of
twist present in the runs where can result in the emer-q \ 14gence of bipolar regions that are tilted slightly with respect
to the Note that a very slight tilt of approx-xü -direction.
imately 4¡ from the horizontal has developed between the
center of the bipolar regions shown in the top panel of
Figure 17.

Our description of a fragmented Ñux tube is in qualitative
agreement with recent images of certain emerging active
regions observed by Cauzzi, CanÐeld, & Fisher (1996),
Strous & Zwaan (1999), and Mickey & Labonte (1999).
Vector magnetograms and white-light images of Ñux emer-
gence taken with high temporal resolution by the Imaging
Vector Magnetograph at the University of HawaiiÏs Mees
Observatory (IVM) in relatively uncluttered portions of the
solar disk (Mickey & Labonte 1999) show evolving mag-
netic structures that are similar to the evolving structures



FIG. 14.ÈVelocity Ðeld for the same horizontal slice and times shown in Fig. 12. The gray-scale background represents the vertical component of the
velocity (light regions indicate positive values), and the arrows represent the transverse components of the velocity Ðeld.

FIG. 15.ÈSame as Fig. 14 but for the times corresponding to Fig. 13
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FIG. 16.ÈSame as Fig. 12 but for run LL1

described above. In particular, it is possible to infer the
presence of oval-shaped magnetic features that evolve into
crescent-shaped regions of opposite polarity that rapidly
separate. In principle, direct measurements of the rate of
separation and coalescence of the opposite-polarity regions
of the Ðeld may be used to obtain information about the
structure and evolution of the subsurface magnetic Ðeld.
However, to perform this kind of detailed comparison with
observation will require a more sophisticated set of models.

4. SUMMARY AND CONCLUSIONS

We have performed detailed numerical simulations of the
rise of twisted magnetic Ñux tubes embedded in a non-
magnetic, stratiÐed plasma using a code that solves the
three-dimensional MHD equations in the anelastic approx-
imation. The evolving magnetic Ðeld is described in terms of
its volumetric Ñux distribution as a magnetic Ñux tube that
may fragment into separate, distinct tubes during its rise
toward the photospheric boundary. We Ðnd that the degree
of fragmentation of the evolving magnetic Ñux tube depends
not only on the initial ratio of the azimuthal to axial com-
ponents of the Ðeld along the tube (as was the case in two
dimensions) but also on the three-dimensional geometry of
the tube as it rises through the convection zone. The prin-
cipal results of our analysis are the following.

1. If the ratio of azimuthal to axial components of the
Ðeld along a magnetic Ñux tube exceeds a critical limit, then

it will retain its cohesion and not fragment as it rises
through the plasma. The critical limit occurs when the rise
speed is approximately equal to the maximum speedAlfve� n
of the azimuthal component of the Ðeld. This reinforces the
conclusions of Emonet & Moreno-Insertis (1998), Moreno-
Insertis & Emonet (1996), Longcope et al. (1996), and Fan et
al. (1998).

2. If the initial amount of Ðeld line twist is less than the
critical value and if the magnetic Ñux tube rises toward the
photosphere as an )-loop, then the degree of apex fragmen-
tation depends on the curvature of the loop : the greater the
apex curvature, the lesser the degree of fragmentation for a
Ðxed amount of initial twist.

3. In two dimensions, counterrotating vortices are e†ec-
tively inÐnite in extent and generate long-range Ñows that
eventually prevent the continued vertical rise of tube frag-
ments. This artiÐcial geometric constraint is relaxed in three
dimensions, and although the fragments continue to experi-
ence forces due to the interaction of the vortex pairs, those
forces are important only along a short section of the tube.
Thus, the fragments are able to rise to the surface. The
forces due to vortex interaction depend upon the geometry
of the )-loop : the greater the apex curvature, the lesser
their magnitude. Thus, highly curved loops exhibit less frag-
mentation during their rise.

4. Di†erential circulation between the apex and foot-
point of an )-loop leads to the introduction of new mag-
netic twist of opposite sign in each leg of a loop fragment.
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FIG. 17.ÈSame as Fig. 12 but for run SS3

This twist reduces the circulation about the apex of each
fragment and further reduces the forces acting to separate
the fragments of the Ñux tube. This result is consistent with
the predictions of Emonet & Moreno-Insertis (1998) and
Moreno-Insertis (1997).

5. Though these models do not admit to a direct, detailed
comparison with observations, it is possible to infer certain
general observational characteristics of emerging magnetic
Ñux if the Ðeld conÐguration is that of a fragmented )-loop
rising through the solar surface. If the magnetic Ðeld erupts
through a relatively quiet portion of the Sun, then we expect
that one should observe concentrations of vertical Ñux that
resemble expanding oval shapes. This type of feature should
quickly evolve into longer lived crescent-shaped regions of
opposite polarity that steadily move away from one
another. These extended regions should then coalesce once

the fragmented portions of the )-loop have emerged
through the solar surface.
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