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HF Chirps: Eigenmode trapping in density depletions

K. L. McAdams'?, R. E. Ergun®*, and J. LaBelle!

Abstract. Short-duration, narrow-bandwidth, HF
chirps occur at slowly drifting frequencies above f,
when fpe > fee [McAdams and LaBelle, 1999]. We
put forth a model of the HF chirp emissions as quasi-
trapped eigenmodes in a density depletion perpendicu-
lar to the ambient magnetic field. The escaping waves
retain the frequency structure of the eigenmodes and
are observed as HF chirps. We show that this model
is quantitatively consistent with observed characteris-
tics of HF chirps, most notably the frequency spacing
of the chirp emissions (0.1-4 kHz), the fact that they are
equally spaced independent of mode number, and the
number of modes predicted for a given density cavity.
Several mechanisms for the escape of the waves from
the cavity are suggested.

1. Introduction

High-frequency waves associated with electron beams
have been observed in the auroral ionosphere by rock-
ets and satellites for many years [Kellogg et al., 1978;
Beghin et al., 1989; Bonnell et al., 1997; McFadden
et al., 1986, and references therein]. Indications of fre-
quency structure in waves near f,. were observed by
Beghin et al. [1989] although the time resolution was
insufficient to determine the temporal structure of the
waves. Recently, detailed observations of frequency
and time structure in high-frequency waves have be-
come available from the PHAZE II sounding rocket
[McAdams and LaBelle, 1999; McAdams et al., 1999].
One type of structured emission seen during the flight
are short duration, narrow bandwidth, drifting frequency
emissions termed HF chirps [McAdams and LaBelle,
1999]. 1In this paper, we put forth a mechanism for
generation of HF chirps.

HF chirps have been observed in the topside au-
roral ionosphere at altitudes of 299-320 km. They
have frequencies of 1.8-2.3 MHz which are above the
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local plasma frequency (fpe ~1.7-2.2 MHz) and have
been observed in the overdense plasma where the elec-
tron plasma frequency (f,.) is higher than the electron
cyclotron frequency (f..). The most striking feature
of the HF chirps is their narrow bandwidth, Af ~
300 — 600 Hz. HF chirps often occur simultaneously
at several equally spaced frequencies in “flocks”. The
spacing between the chirps in each “flock” is typically
1-2 kHz and remains constant for the duration of the
emissions. The durations of the emissions range from
10 to 300 ms, but are generally less than 100 ms, corre-
sponding to 30 m to 1 km assuming the structures are
stationary and using the vehicle velocity of 3.4 km/s to
convert duration to spatial size. Most HF chirps have
decreasing frequency with time. HF chirps are often
associated with density cavities or enhancements with
én/n =1-5% and with spatial dimensions of approxi-
mately 50-1000 m. HF chirps are occasionally observed
“tunnelling” into higher density regions from inside a
density depletion. McAdams and LaBelle [1999] pro-
vide a more complete description and show observations
of the HF chirps.

2. Trapping Theory

We put forth a model of the HF chirp emissions as
quasi-trapped eigenmodes in a density depletion per-
pendicular to the ambient magnetic field (B).We model
the density depletion as a shallow parabolic cavity:
n = n, + (n"x?)/2, where n, > n'’a?, a is the width
of the cavity, = is the distance perpendicular to B,
and z is parallel to B. From their frequency range
(f > fpe > fee # 0) we infer that the HF chirps are
propagating on the Langmuir/upper hybrid wave sur-
face (L/UH). The parallel wavevector k. is constant,
determined by the resonance with the beam electrons
which are responsible for initially generating the L/UH
waves (k; = w/Upeam). We assume that these waves
are primarily parallel to the background magnetic field
B = B,z and k, << k. allowing us to characterize the
waves with the oblique Langmuir wave dispersion rela-
tion for the moderately magnetized case [Ergun, 1989;

Newman et al., 1994]:
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Defining k%¢ = vk + Bk?, and setting ¢ = 0 gives
Bk = —~k?. The assumption of k, << k, is rea-
sonable because when § = tan~!(k,, /k.) becomes large,
the waves experience large cyclotron damping [Newman
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et al., 1994] given the plasma conditions during obser-
vations of the HF chirps.

We solve the dispersion relation (1) in terms of k;,
assuming k, = w/Upeqm remains constant as determined
above. Using the above expression for n, we expand ~y
around z = 0 such that v =, — 7'z /2. This gives

o 1_%_%&2 _x_z E,_/wf"’ (2)
7 2 | n, w?

where wy, is the plasma frequency when n = n,. Fur-
thermore, by assuming wp, ~ wpe the expression for g
simplifies to 3 ~ (—w?2,)/(w? — w?2,).

Figure 1 shows the dispersion relation (1) for the
L/UH wave surface in an overdense plasma with k, <
kz, fpe = 2.1 MHgz, and f.. = 1.4 MHz. The vertical
axis represents k, and the horizontal axis represents k,
on a greatly expanded scale. Contours of constant w
are shown. The perpendicular wavenumber k, varies
with the varying electron density in the cavity. Traped
modes have the property that the phase of the wave
varies by an integer multiple of 7 between two reflec-
tion points at which k, = 0. These trapped modes,
as we demonstrate later, are equally spaced in w and
are represented by the contour lines in Fig. 1. The in-
tersections between these lines and the k., = w/Upeam
resonance condition (represented by a horizontal line
in Fig. 1 for constant k,) represent the trapped eigen-
modes which achieve a high energy density within the
cavity, essentially being pumped up by resonance with
the particles until the rate of energy input from the
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Figure 1. Dispersion relation for oblique Langmuir

waves with k; < k.. Contours are shown for the quan-
tized eigenmodes w; for j = 1 through 9, assuming a
cavity size of L, = 400 m, dn/n, = 0.01. The solid hor-
izontal line indicates the value for k. given by resonance
with a 1 KeV parallel electron beam. The dashed line
denotes where the angle of propagation equals 3 degrees;
modes to the right of this line are subject to cyclotron
damping [Newman et al., 1994].
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electrons matches energy loss through escape from the
cavity. The escaping waves retain the frequency struc-
ture of the eigenmodes and are observed as HF chirps.
We shall show quantitatively that this model is consis-
tent with observed characteristics of HF chirps, most
notably the frequency spacing of the chirp emissions
and the fact that these are equally spaced.

The value of k,, for a given w depends on the local den-
sity which varies only slightly spatially. To calculate the
eigenmodes we solve k2 = —vk?2/3, ignoring contribu-
tions from (8|k;|/0z)/k and (On/dz)/n, which is valid
only for higher order modes. Thus we can approximate
the phase of the wave as the spatial integral of k,. We
define two conditions which determine the quantization
of the wave modes: (1) k, = 0 at the turning points
of the wave in the cavity, £ = %a;; and (2) the phase
difference at the turning points must be jm where j is
an integer. Using the arguments above, we can express
the latter condition approximately as:

a;
/ ko(a)de = (3)
—a;

Substituting (2) and 8 ~ (—w2,)/(w? — w?,) into (1),
we obtain an approximation for the dispersion relation
in the inhomogeneous plasma which may be solved for
k. and substituted into (3). The solution of the result-

ing integral is :
Glew (] o

where we define &2 = (2v,)/v".

Combining (4) with the dispersion relation (8k2
—vk?), we set k, = 0 at * = =£a; which yields v =
0. From the previous definition v = v, — v"2?/2 we
find a2 = (27,)/7" = €. Requiring j > 1 due to the
previous assumption that k, is slowly varying and using
(2) to approximate v"" ~ n''/n, gives the quantization
rule:
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From the quantization rule, we estimate the fre-
quency spacing of the trapped modes. The mode fre-
quency (w;) is determined by setting k, = 0 when
z = +a; and assuming (3v7 k.)/(w?) < 1 (ie., neglect-
ing the thermal correction).

w?=w2 (1+-1=) (6)

The quantization rule gives a; in terms of j. Using the

. . 2 2 ~ .
approximation (W — w3_;) ~ 2wpe(wj — wj—1), valid

when w; —wj_1 = Aw is small, and setting w? ~ wze,
we obtain an expression for the frequency spacing.
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The prediction from the eigenmode theory that the fre-
quency separation of the waves does not depend on j
is consistent with observations of HF chirps reported in
McAdams and LaBelle [1999].

3. Discussion

The frequency splitting of the eigenmodes depends
on four observable quantities: n''/n,, k;, wee, and wpo.
The requirement thai the waves must be in resonance
with the electrons determines k, = w/Upeam. Mea-
surements of electron energy spectra on the PHAZE II
payload at the time of the PHAZE II HF chirp obser-
vations reveal a beam energy of approximately 1 keV
implying k, ~ 1 m™! for w ~ w,, ~ 2.1 MHz as ob-
served [McAdams and LaBelle, 1999]). The observed
magnetic field implies f.. = 1.38 MHz. Density fluc-
tuations are observed with dn/n, ranging from 0.5 to
5.0% and with characteristic length scales (L) rang-
ing from 50-800 m, where L, is defined as the spatial
size of an observed cavity from its center to the point
where the density returns to the background level, and
on/n, describes the maximium depth at the center of
the density cavity. The ratio n''/n, can be estimated
by n''/n, ~ (20n)/(L2n,). Substituting these observed
values into (7) leads to a frequency separation of 100
to 4000 Hz. Figure 2 shows the dependence of Aw on
on/n, and L,. The observed separation between the
HF chirps is usually below 2 kHz, constraining the size
and depth of the density cavities which can trap the HF
chirp producing waves. For example, taking én/n, =
1% and Aw = 2000 Hz requires L, ~ 100 m; these num-
bers are consistent with density fluctuations observed
within the HF chirp regions during the PHAZE II flight.
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Figure 2. Relationship of Aw to n"/n, and L,. Each
line represents a different value of dn/n,, the x axis
represents L,. The plot covers observed ranges of dn/n,
and L, for density fluctuations observed near HF chirps.
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The number of modes in the cavity can be limited
either by the depth of the density cavity dn/n, or by
cyclotron damping. Under the conditions of Fig. 1
a 1% (6n/n,) cavity of 400 m width could contain at
most ~ 10 modes (with the constraint that the eigen-
frequency is no more than 0.5% greater than fp.). A
shallower or narrower density well could not support
as many modes. Cyclotron damping becomes signifi-
cant if k;/k, ~ O(0.1) [Newman et al., 1994] and also
can limit the number of modes. In Fig. 1, the num-
ber of modes that can exist without severe damping is
shown by the number of modes to the left of the dashed
line representing k,/k., = 0.05. Cyclotron damping,
under the conditions of Figure 1, would also restrict
the number of modes to less than 5-10. The larger
damping experienced by the higher j modes as k;/k,
increases may help explain why relatively low numbers
of HF chirps are usually observed outside of the density
cavity. The predicted number of modes in the cavity (5-
10 for én/n, ~ 1%) as determined by either the finite
dimensions of the cavity or cyclotron damping agrees
with the observations of the HF chirps in the cavities.

Interpreting HF chirps as quasi-trapped eigenmodes
in a parabolic density well predicts that the frequency
spacing of the waves does not depend on the mode num-
ber j as observed. The range of frequency spacings
predicted by the eigenmode theory (0.1-4 kHz), based
on the observed én/n, and L, of density fluctuations
observed near the same times as the HF chirps, spans
the range of observed spacings. Conversely, the val-
ues of n” /n, predicted by the theory for the observed
HF chirp frequency spacings (0.3-2 kHz) are consistent
with the characteristics of density cavities observed co-
incident with the most intense HF chirps.

Since k, remains constant, the waves remain in res-
onance with the beam electrons, the waves grow con-
tinuously, and energy accumulates in the trapped wave
modes. The dispersion relation indicates that for cer-
tain values of j the parallel group velocity, v,,, remains
close to zero, implying that modes near this j value
would stay at approximately the same altitude along
the field line as they grow.

A puzzling aspect of the HF chirp observations is
their escape from the density cavity that creates them.
HF chirps are often observed outside of density deple-
tions [McAdams and LaBelle, 1999]. One possibility
involves trapping inside a density cavity that does not
provide 47 steradian containment, for example, a “box
canyon” type of density cavity where one side is open
but the other walls provide enough of a resonant cavity
to trap the wave power. The waves can then leak out
through the dip in the walls. A second possibility is tun-
nelling through a spatially thin density cavity boundary.
For an HF chirp with f = 2.106 MHz propagating per-
pendicularly into a boundary where f,. = 2.126 MHz,
the skin depth is approximately 6.7 m. If the den-
sity barrier is thin enough to allow a significant frac-
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tion of the wave power through into a lower density
region, the wave can then propagate freely until it is
refracted enough that its angle of propagation becomes
too oblique and it is cyclotron damped. Some evidence
of this type of wave tunneling is seen in the HF chirp
observations [McAdams and LaBelle, 1999]. A third
possibility would be a non-linear wave process in the
cavity leading to wave mode conversion.

The propagation characteristics of the HF chirp waves
outside of the cavity are beyond the scope of this pa-
per; however, Landau or cyclotron damping of oblique
L/UH waves may account for the short duration of the
HF chirps. If the escaping waves propagate more than
a few degrees from parallel, they are quickly damped
by electron cyclotron damping [Newman et al., 1994].
Alternatively, the escaping waves may refract (change
in k) so that they experience strong Landau damping.

Finally, it is worth addressing the unequivocable ob-
servation that the vast majority of the HF chirp emis-
sions exhibit frequencies which decrease in time [McAdams
and LaBelle, 1999]. If the electron density structure
which imposes the eigenmodes results from precipita-
tion induced ionization in the ionosphere which sub-
sequently diffuses up the field lines, the movement of
the density structure up the field lines means that the
trapping conditions are produced at successively higher
altitudes where the resonant frequencies are lower. Fur-
ther treatment of this issue is beyond the scope of this
paper and is left for more detailed modelling.
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