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Model for the partition of temperature between electrons
and ions across collisionless, fast mode shocks
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Abstract. The partition of temperature between electrons and ions across
Earth’s bow shock is a long-standing problem in modeling particle entry into
the magnetosphere. Observations have shown that the ion temperature increase
across collisionless, fast mode shocks (as in Earth’s bow shock) is substantially
larger than that of the electrons. A model that can quantitatively explain this
result will provide a better understanding of the relationships between collisionless
shock parameters and particle behavior across the shock layer, finding applications
to multifluid models of particle entry to the Earth’s magnetosphere, as in the
polar rain. In this paper we present a model that quantitatively determines the
partition of temperature between the electrons and ions across the shock. The
model couples a simplified Vlasov guiding center ordered electron fluid problem
with the Rankine-Hugoniot conservation equations to determine the downstream
partition of electron and ion temperature given a few observational constraints.
We work in the deHoffmann-Teller reference Frame (HTF) because in HTF the
electrons are only coupled to the ions through the electrostatic potential. This
approach does not preclude the subsequent secondary thermalization of the ions
by means of wave-particle interactions. We demonstrate under this approximation
that the model recovers the electron temperature jumps of a new ISEE 1 database
of 129 Earth bow shock crossings developed and analyzed by Hull et al. [2000]. The
model also recovers trends in the downstream ion temperature at shocks observed

by ISEE 1 previously cataloged by Thomsen et al. [1987].

1. Introduction

Measurements [e.g., Montgomery et al., 1970; Scud-
der et al., 1973; Feldman, 1985; Schwartz et al., 1988]
have shown that although the plasma temperature in-
creases across collisionless, fast mode shocks, the ion
temperature increase is substantially larger than that of
the electrons (electrons receive ~25% of the total avail-
able random energy). These trends have been observed
at both strong and weak shocks with the differences in
the electron and ion temperature jumps being more pro-
nounced at shocks of greater strengths. An outstand-
ing problem of collisionless shock physics is a quantita-
tive determination of the postshocked partition of tem-
perature between electrons and ions. One-fluid con-
servation of mass, momentum, and energy determine
the total random energy available to the plasma as a
whole but can not determine how much gets partitioned
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to the separate electron and ion components. Several
mechanisms were proposed to explain the observed par-
ticle heating signatures [e.g., Sagdeev, 1966; Biskamp,
1973; Leroy et al., 1982; Paschmann et al., 1982; Sck-
opke et al., 1983, 1990; Wu et al., 1984; Goodrich and
Scudder, 1984; Feldman, 1985; Gosling end Robson,
1985; Winske et al., 1985; Scudder, 1995; Krauss- Varban
et al., 1995; Balikhin et al., 1998]. However, no model
for collisionless, fast mode shocks has been able to pre-
dict the full range of observed changes in electron and
ion temperature which is the topic of this paper.
Analyses of high time resolution field and ion observa-
tions [Paschmann et al., 1982; Sckopke et al., 1983, 1990;
Gosling and Robson, 1985] along with particle simula-
tions using detailed diagnostics [Leroy et al., 1982; Leroy
and Winske, 1983; Goodrich, 1985; Burgess et al., 1989;
Wilkinson, 1991] have resulted in the present under-
standing that the ion temperature increase at strong
and weak quasi-perpendicular shocks is a process ini-
tiated by the coherent Lorentz forces within the shock
ramp followed by subsequent thermalization via waves
farther downstream. With the ions being unmagne-
tized across the embedded DC electric and magnetic
field, this heating process is a finite Larmor radius ef-
fect. Most of the supersonic ions are directly transmit-
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ted, being slowed down and heated by the cross-shock
potential. A small, gyrophase-selected fraction of the
ion population (< 20% depending on shock strength) is
specularly reflected by the shock macroscopic electric
and magnetic fields. At quasi-perpendicular shocks,
the reflected ions gyrate back to the shock layer af-
ter gaining energy by drifting along the electric field
tangent to the shock surface, and the reflected ions
subsequently traverse the shock layer. Studies suggest
that the gross deformation of the ion velocity distri-
bution function associated with the specular reflection
process accounts for a substantial fraction of the total
ion temperature increase occurring across supercritical,
quasi-perpendicular shocks [e.g., Gosling and Robson,
1985, and references therein]. Wave-particle effects are
thought to reduce free energy sources induced by the
macroscopic fields and enhance the ion temperature as
the ions convect farther downstream [McKean et al.,
1995]. These irreversible temperature changes are small
compared to the bulk temperature changes caused by
the coherent forces within the shock layer.

Coherent aspects of electron temperature changes
have also received attention over the years. Goodrich
and Scudder [1984] suggested that electron energiza-
tion and hence the fluid electron temperature increase
at collisionless shocks can be explained by the adiabatic
motion of electrons in the shock DC electromagnetic
forces. This coherent electron energization process is
essentially a competition between the energy gained by
the embedded cross-shock potential and the energy lost
via the work done against the motional electric field in
traversing the shock layer. The study by Goodrich and
Scudder [1984] suggests that electron energization and
hence temperature change are best viewed as a coher-
ent process in the deHoffmann-Teller reference frame
(HTF). The HTF is that special frame of reference in
which the motional electric field vanishes. As a re-
sult, the HTF center of mass velocity and the mag-
netic field vector are parallel on both the preshocked
(upstream) and postshocked (downstream) sides of the
shock. A corollary to the HTF theorem is that the
electron bulk velocity is approximately field-aligned in-
side the current-carrying layer provided that corrections
that depend on electron anisotropy, inertia, and resis-
tivity can be neglected [Scudder, 1987]. Electron en-
ergetics is much simpler in HTF because the electrons
only gain the cross-shock electrostatic potential A®HT
in crossing the layer.

The typical shock length scales documented by mul-
tiple spacecraft (S/C) across Earth’s bow shock [Russell
et al., 1982; Scudder et al., 1986b; Newbury et al., 1998]
or seen in simulations [e.g., Leroy et al., 1982; Savoini
and Lembege, 1994] suggest that the typical electron
is magnetized in traversing the shock layer. With this
in mind, Scudder et al. [1986c] exploited conservation
of electron energy and magnetic moment constraints to
demonstrate via a Vlasov-Liouville (V-L) mapping that
the HTF potential is responsible for the lowest-order
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broadening of the electron distribution function parallel
to the magnetic field, providing a possible explanation
for the electron temperature increase across collision-
less shocks. Wave-particle effects, although required,
were found to provide secondary irreversible changes
to the electron distribution function by “cooling” over
inflated electron distributions. Other aspects of the V-
L mapping technique have been employed to estimate
A®HT across fast [Schwartz et al., 1988] and slow mode
shocks [Schwartz et al., 1987] using just a piece of the
electron distribution function. Recent studies [Scudder,
1995; Hull et al., 1998] employed the V-L approach us-
ing model electron distributions to illustrate the effects
of the shock macroscopic fields on magnetized electrons,
and hence these studies verified the claims of Scud-
der et al. [1986c] at all pitch angles. In particular,
the preferential perpendicular inflation signatures ob-
served at weak shocks [Feldman et al., 1983b], as well
as the nearly isotropic inflation signatures observed at
strong shocks [Montgomery et al., 1970; Scudder et al.,
1973, 1986a; Feldman et al., 1983a], are recovered by
the V-L mapping procedure [Scudder, 1995; Hull et al.,
1998] without invoking wave-particle effects.

Despite the understanding that plasma temperature
changes at fast mode shocks are primarily the result of
coherent processes, a model that can predict the parti-
tion of electron and ion temperature within the coherent
energization framework still remains to be developed.
In this paper a model for the partition of temperature
across collisionless, fast mode shocks is presented. A
theoretical model which follows the details of both the
electron and ion behavior across the layer is difficult
to develop, because plasma phenomena at shocks oc-
cur over a wide range of length and time scales. Such
an approach is not needed, since the change in the to-
tal pressure is guaranteed by the one-fluid conservation
laws and the partition of pressure can be determined by
determining either the electron or ion pressure change
across the shock.

Because ion behavior is more complex, our approach
is to develop an approximate multilevel theoretical
model that takes advantage of the much simpler adi-
abatic electron behavior in HTF. The multilevel model
couples a Vlasov guiding center ordered electron fluid
problem with the Rankine-Hugoniot (RH) conservation
equations to determine the downstream electron and ion
temperature given a few observational constraints. The
electron Vlasov problem determines the downstream
electron pressure and temperature, whereas the ion
pressure and temperature are determined by subtract-
ing the more tractable electron pressure from the total
pressure predicted by the one-fluid MHD conservation
constraints. In HTF the model assumes that the elec-
trons are coupled to the ions only through the electro-
static potential (e.g., there is no exchange of energy
and momentum between electrons and ions via wave-
particle interactions). The model’s emphasis on the
guiding center ordered electron behavior does not pre-
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clude the effects of the locally produced waves on the ion
thermalization process, for all the effects of the waves
are included in the measured ion fluid quantities which
when combined with those of the electrons determine
the shock one-fluid conservation laws we seek to en-
force and exploit in this paper. Under this approxima-
tion we show, for the first time, that the model recovers
electron and ion temperature changes consistent with a
broad range of shock observations.

The geometry and asymptotic states of 129 Earth
bow shock crossings observed by ISEE 1 used in this
study have been previously developed and characterized
in a recent study [Hull et al., 2000] by least squares fits
to a subset of the RH equations via the method of Vifias
and Scudder [1986]. A subset of the shock events have
ion temperatures adapted from Thomsen et al. [1987].

The paper is organized as follows. In section 2 an
overview of the approximate hybrid model (Vlasov elec-
trons coupled with MHD) is presented. The electron
Vlasov problem is discussed in section 2.1. Section 2.2
presents the model boundary electron velocity distribu-
tion functions used. The model assumptions are sum-
marized in section 2.3. The solution scheme for the
shape parameters that define f; and f; is discussed in
section 2.4. The model predictions on AT, and AT; are
compared to observations in sections 3 and 5, respec-
tively. In section 4 we discuss the model’s prediction
for the scaling of the empirically suggested « parameter
[Hull et al., 2000], which relates the HTF potential in-
crements to the magnetic field increments through the
shock. section 6 describes the development of a one-
sided predictive model based on what we have learned
from the two-point problem. Conclusions are presented
in section 7.

2. Model

The multilevel model can be organized into five steps
to be followed in order to obtain the downstream elec-
tron and ion temperature. An overview of the solution
scheme of the model is given in Figure 1. In step 1
we use Whang’s [1987] formulation of the RH relations
to solve for the downstream total pressure P, plasma
density N;, and magnetic field intensity B given the
upstream plasma density N;, shock rest frame plasma
bulk speed U,; along the shock normal, total plasma
pressure P;, magnetic field intensity B;, and the an-
gle 0,1 between the shock normal and magnetic field
vector. In step 2 the steady state electron Vlasov equa-
tion is solved by the method of characteristics in the
adiabatic approximation using prescribed fields [e.g.,
Scudder et al., 1986c; Scudder, 1995; Hull et al., 1998].
A well-posed Vlasov treatment requires a choice of the
upstream and downstream boundary distribution func-
tions f; and f; on in-going characteristics. The parts of
the electron phase space that are free to be chosen are
identified by the accessibility of characteristics to the
boundaries (see section 2.1). The construction of the
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electron problem is similar to the Vlasov-Poisson prob-
lem in which a standard method used to obtain a solu-
tion is to fix the boundary distribution functions f and
solve for the potential subject to the quasi-neutrality
constraint. In our Vlasov problem a functional form of
f at the boundaries is adopted on the basis of obser-
vations (see discussion in section 2.2). Specifying the
cross-shock potential A®HT and magnetic field jump,
the shape parameters 7, v, ¢, ¥, and A that define the
boundary f are iteratively solved (step 3 in Figure 1)
subject to quasi-neutrality (e.g., the downstream target
density provided from the solution to the RH relations)
and posed conditions on the upstream moments of f
(see section 2.4 for details). Once the shape parameters
are determined, the downstream electron pressure can
be calculated by quadrature (step 4). By subtracting
the more tractable electron pressure P,°¢ determined
from f;, the downstream ion pressure P;J*°¢ and hence
the downstream ion temperature can be obtained from
the Rankine-Hugoniot predicted downstream pressure
P,RH given by the following expression [Whang, 1987]:

(1)

In (1), pm = (mp + me)N represents the plasma mass
density. The A is used to denote the change of a phys-
ical quantity across the shock (e.g., AX = X, — Xy,
where X; and X, are the upstream and downstream
values of a physical quantity X). Observed shock quan-
tities are used to set the values of the model inputs Ny,
Uni1, P, = P;; + Po1, By, 0pn1, and A®HT, The result-
ing predictions of the theory are now determined and
will be compared to observed downstream electron and
ion temperatures.

P,RE = P, — p,,U, AU, — AB? /8.

2.1. Electron Vlasov Problem

The electron problem is based on the steady state
Vlasov equation in the adiabatic approximation. In
practice, solving self-consistently two steady state
Vlasov equations (one for the electrons and one for the
ions) and Maxwell’s equations for the shock electromag-
netic fields is a formidable task [Morawetz, 1961, 1962]
because physical processes that determine the shock
properties, such as the density variation, occur over a
wide range of length and time scales. A useful approach
is to solve the steady state Vlasov equation for the elec-
trons in prescribed DC electric and magnetic fields given
by

o(f)

ov =0,

of) | g v x (B)
vl Lo T ' ®
where the explicit time variation of the background dis-
tribution is assumed to vanish (e.g., 8(f)/0t = 0) in
the shock stationary frame. In (2), (f), (E), and (B)
represent the average (or slowly varying) one-particle
electron distribution function, electric field vector, and
magnetic field vector, respectively. Thus, given (E) and
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Solution Flow Chart
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Figure 1. Flow diagram of model solution scheme.

(B) the Vlasov equation is a linear first-order homoge-
neous partial differential equation which can be solved
by the method of characteristics. In the remainder of
the paper we adopt the more streamlined notation f,
E, and B when referring to the average macroscopic
quantities.

We work in the HTF in solving the electron Vlasov
problem because it is the simplest frame for describing
electron kinematics. The characteristic curves along
which f is a constant are defined by the electron or-
bits. However, not all of the electron orbits can access
all phase space boundaries that define the shock sys-
tem. In general, the determination of particle accessi-
bility across time stationary, spatially varying electric

and magnetic fields involves integration of particle or-
bits, unless there are enough constants of the motion
to reduce the number of degrees of freedom in the sys-
tem. In our model problem we take advantage of the
conservation of electron energy and magnetic moment
constraints specialized to HTF given by

E = %me [vlz(z) + vnz(:c)] — e®"T(z) = const, (3)
b= 5_____.__m;v(:)($) = const, (4)

where v (z) and v)|(z) are the local components of the
HTF velocity of the electrons perpendicular and paral-
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lel to the magnetic field, respectively. The generic ac-
cessibility of electron orbits to the boundaries defining
the shock system allows us to determine electron phase
space regions requiring a boundary condition specifica-
tion. Under the assumption that the shock magnetic
field is monotonic and that ®1T(z) is linearly related
to B(z) [Hull et al., 2000], downstream accessibility of
upstream electron orbits is determined by the condition
that vy > 0. Satisfying this condition, the downstream
velocity components (vg)|,v21) are related to the up-
stream components (vy)),v1.) as follows:

2 _
b

B 2
v+ (1= 22 Jora? + —ASHT, (5)
Bl e

me
B
(B_j) ’Ul-Lz.

We will use observations to set the values for A®HT and
B, in order to test the predictions of the model with em-
pirical estimates. The variable B; is determined from
the RH jump relations given a few upstream constraints.
The region of downstream electron velocity space within
ultimately to the solar wind at the other connection
point, the solar wind distribution should be a reason-
able lowest-order estimate of this region of phase space,
provided that the potential and the magnetic intensity
at the two magnetically connected points do not differ
substantially. Observational support for this approxi-
mation is provided by Fitzenreiter et al. [1990]. Con-
tours of constant f; are indicated in Figure 2a, illus-
trating the mirroring signatures embedded in the model
distribution. In the model distribution function, canon-
ical values of .06 and 6.0 will be assumed for § and
v, typical of the interplanetary medium at 1 AU. Fur-
thermore, we assume that there is no slippage between
the core and halo populations of the electron distribu-
tion function. In general, the core and halo popula-
tions have slightly different bulk speeds; however, this
difference is typically much smaller than the parallel
electron thermal speed. Therefore, in lowest order, we
assume ¥ = ¥, = ¥ in (8) and (9) in order to simplify
the problem and make it a more tractable one. Typi-
cally, the upstream electron distributions in the vicin-
ity of the Earth’s bow shock are slightly anisotropic
with T /Ter ~ 1.2. Thus we assume w = wj| = w1
in (8) and (9). However, even with this assumption,
the upstream electron pressure is not guaranteed to
be isotropic. With its in-going parts, fi has modest
anisotropy and heat flux built into it. The upstream
heat flux and thermal anisotropy could be constrained
further, however, at the expense of adding more free
parameters. A significant portion of the downstream
distribution function f; is determined by f; via the V-L
mapping. The downstream image of f; accessible to the
downstream side of the shock (regions I’ and IV”) is dis-
played in Figure 2b. Note that the region near the peak
of fi gets energized and deformed forming a pillow in

(6)

2
V2l
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front of the elliptical separatrix (dashed curve) provid-
ing a natural explanation for the formation of electron
beams found in the shock transition region and imme-
diately behind the Earth’s bow shock [Feldman et al.,
1983b]. The elliptical separatrix in Figure 2b distin-
guishes magnetosheath electron orbits that can access
the upstream side of the shock (regions I’ and IV’) from
those magnetosheath electron orbits that can not (re-
gions V and VI) because they get reflected by the elec-
trostatic potential. The in-going distribution function
in region V and its reflected counterpart in region VI
need to have a nonvanishing assignment in order for
a solution consistent with the RH expectation of the
density ratio to be possible (see section 2.4). Motivated
by observation of flat-topped electron distribution func-
tions in the magnetosheath, we assign the distribution
the ellipsoid defined by

B 2e
’U2”2 + (1 - §i> ‘Uzlz < ;AQHT (7)

e

has no characteristics that connect to the upstream
spatial boundary under the empirically motivated as-
sumption A®HT = kAB. The electron distribution
in this downstream velocity space region fgempse(vz)
is a boundary condition that requires specification to
be well posed. We demonstrate below that a nonzero
fge“ipse(vz) specification is required in order to obtain a
solution to the electron problem that is consistent with
the RH compression (e.g., quasi-neutrality), a stronger
condition than that the problem is well posed. The
boundary conditions once appropriately specified pro-
vide a unique solution to the Vlasov equation via char-
acteristics throughout the shock layer proper.

2.2. Model Electron Distribution Function

It is well known that any function of the constants of
the motion is a solution to the Vlasov equation. This
seems to suggest that the choice of the distribution func-
tion at the boundaries is somewhat arbitrary. How-
ever, we seek solutions of the time-independent Vlasov
equation that are consistent with the RH downstream
density that removes some of the freedom of an other-
wise unconstrained Vlasov boundary value problem. A
unique solution is possible with careful selection of the
boundary conditions that further define the system un-
der consideration. Because we wish to compare the re-
sults of the model to actual shock events, it is reasonable
to use observations of electron distribution functions as
a guide to select the functional form of the electron
distribution function at the upstream and downstream
spatial boundaries.

The shock layer with its electric and magnetic field
gradients modifies the unperturbed solar wind distribu-
tion function by reflecting electrons back into the up-
stream medium, the reflected population showing up
as a mirrored finite pitch angle high-energy tail in the
upstream electron velocity distribution function [e.g.,
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Figure 2. (a) Model upstream electron distribution
function with modified loss cone separatrix indicated
by dashed lines. Region I represents solar wind par-
ticles that have access to the downstream side of the
shock, regions II and III represent the mirrored popula-
tion, and region IV represents particles from the down-
stream side of the shock that leak into the upstream
side of the shock. (b) Downstream model electron dis-
tribution function. Region V represents the ellipsoidal
region which has no characteristics that connect to the
upstream side. Regions I’ and IV’ represent the down-
stream image of regions I and IV, respectively.

Feldman et al., 1975; Fitzenreiter, 1995; Klimas, 1985,
and references therein]. These nonlocal signatures of
the approaching shock layer in the observed upstream
electron distributions are naturally included in f; by us-
ing energy and magnetic moment conservation laws to
construct a consistent model upstream electron velocity
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distribution function [Hull et al., 1998]. The electron
energy and magnetic moment constraints conspire to
divide the upstream phase space into four distinct re-
gions based on the source of the electrons and whether
or not they have access to the other side of the shock
[Hull et al., 1998]. Figure 2a illustrates a generic mod-
ified loss cone separatrix (dashed lines) and the distinct
regions anticipated on the upstream side of the shock.
Region I represents solar wind electrons that can tra-
verse the shock, while region II are solar wind electrons
that cannot because they get mirrored from the shock.
Region III represents the back-streaming electrons that
have been previously reflected by the shock fields. Re-
gion IV represents magnetosheath electrons that can
leak back into the upstream side of the shock along
field lines. Because we desire a time stationary solu-
tion, regions that are dynamically connected must have
boundary values that are consistent with Liouville’s the-
orem.

An appropriate mirror-modified upstream distribu-
tion function must reflect the boundary conditions of
the system that connect to each of the four distinct re-
gions. We may thus consistently adopt the following
functional form for f; [Hull et al., 1998]:

fch(vln, v11) Region I
fen(vy;v1e)  Region IT
fch(—v1||, vi1) Region III
fen(vy,v11)  Region IV,

fi(vi) = (8)

where the empirically motivated solar wind distribution
used to construct fi(vi) is the core-halo model given by
[Feldman et al., 1975]

fan(vi) = eyt o T

T N (_ (a=9e) _ ¢>

§ (v ~%n)?
+ W«F’)’T"wzexp(“”—" -

Ywi %{) -(9)
In (9), & controls (but is not) the halo density frac-
tion, and 42 = T}, /7. controls (but is not) the halo-core
temperature ratio. The shape parameters 7, w|, wi,
e, and Yy determine (but are not) the total density,
core paralle] thermal speed, core perpendicular ther-
mal speed, and HTF parallel bulk speeds of the core
and halo populations of fu,, respectively. The distribu-
tion in region IV is the upstream image of the in-going
downstream magnetosheath electrons that traverse the
shock layer from the sheath to solar wind side. In our
model problem it is a boundary condition that is free to
be chosen. Following Fitzenreiter et al. [1990], we set
fi(vy,v11) = fen(vyy,v11) in region IV. As discussed
by Fitzenreiter et al. [1990], such a specification is not
as arbitrary as it may seem. The magnetic field lines
sufficiently close to the point of tangency will intersect
the curved bow shock at two locations. Since the dis-
tribution in region IV is connected to the sheath and
function in this ellipsoid region f;*"'P**(v;) by using a
mirror symmetric flat distribution model given by
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fzellipse(v2) = Af Sep('Uz_L — 0)’ (10)
where A, one of the shape parameters to be determined
by the model, represents the level to which the ellipsoid
is filled. The distribution function at the ellipsoidal
separatrix boundary f2°P(v2. ) is given by

T eel-(0) - (20) ]

sep _
f*(van) = 731203

J Y2 (BY\?
+ o= (50) () w0
where a? = (Bg - Bl)/Bl and ﬁz = (Bz - B1)/B2.

2.3. Assumptions

In this paper we will be working in the HTF be-
cause in HTF the electrons are coupled to the ions only
through the electrostatic potential. Consequently, we
can circumvent the complex behavior of the ions and
solve a more tractable Vlasov electron fluid-MHD prob-
lem for the downstream temperature partition. The RH
relations used in the model neglect the heat flux vec-
tor, assume isotropic pressure, and treat the plasma as
an adiabatic gas on either side of the shock. Thus the
standard [Boyd and Sanderson, 1969] isotropic one-fluid
pressure is related to the total plasma mass density as
P = Sop,], where Sy is the entropy stream tube con-
stant that, in general, changes across the shock layer
and v = 5/3. The isotropic pressure assumption for
the plasma as a whole need not imply that the pressure
tensors for the electrons, P,, and for the ions, P;, are
isotropic, nor that Py/P; = (Nz/N1)5/3.

In addition to conservation of electron energy, the
model uses the following simplifying assumptions. First,
the electrons are assumed to remain magnetized every-
where throughout the shock layer. Second, the field-
aligned flow approximation mentioned above is invoked.
With these two assumptions the electron magnetic mo-
ment is conserved, and the electron bulk flow remains
along the same magnetic flux tube of force as the elec-
trons traverse the shock in HTF. Third, the shock in
the model is assumed to be a time stationary, planar
layer. Fourth, the shock is assumed to have a monoton-
ically increasing magnetic field profile. The fourth as-
sumption more accurately describes weak shocks which
tend to have laminar magnetic field profiles. Strong
shocks tend to have nonmonotonic magnetic field pro-
files with a pedestal, overshoot, and undershoot region.
Nonmonotonicity impacts electron accessibility, the de-
tails of which have been summarized in other studies
[e.g., Hull, 1998; Hull et al., 1997; Hull et al., Electron
heating and phase space signatures at supercritical, fast
mode shocks, submitted to Journal of Geophysical Re-
search, 2000]. The model can be generalized to incor-
porate these nonmonotonic features to more accurately
determine electron temperature changes at supercritical
shocks.

In solving the Vlasov electron problem via the method
of characteristics, the regions of downstream electron
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velocity space that can not access the upstream shock
boundary is a boundary condition that is free to be spec-
ified (see section 2.1). Motivated by the pervasive flat-
topped electron distribution functions observed behind
strong fast mode shocks [Montgomery et al., 1970; Scud-
der et al., 1973, 1986a; Feldman et al., 1983b], we make
a fifth assumption that this region of downstream elec-
tron velocity space can be assigned with a flat-top distri-
bution model, the level of which is proportional to the
transmitted distribution function along the perimeter
of the ellipsoidal separatrix boundary (see section 2.2).
This assignment estimates contributions from magne-
tosheath electrons that have access to this ellipsoidal
region of velocity space (but not the upstream bound-
ary) and/or particles that get irreversibly scattered into
this region via waves. A sixth assumption required for
the V-L procedure [Hull et al., 1998] is that there ex-
ists a functional relationship A®HT = kAB, where AB
is the magnetic field jump and « is possibly a differ-
ent constant for different shock layers. The theoretical
model will use this relationship (which has empirical
support [see Hull et al., 2000]) to write the upstream
distribution function as a function of the magnetic field
jump and k, among other variables.

2.4. Solution Scheme for the Shape Parameters

An important step in the determination of T, is
to solve for the shape parameters 7, w, %, the as-
sumed proportionality constant x between A®HT and
AB, and A, which parameterizes the distribution in
the ellipsoid. To simplify the solution process, it is
convenient to introduce the dimensionless parameters
¢ = va/w = \/(2eA®HT/m,)/w, and v = Y/w and
solve for the redefined set 7, ¥, ¢, v, and A. A closed
set of equations for 7, ¥, ¢, v and A can be obtained
with the help of the RH jump conditions; the V-L map-
ping procedure provides functional relations of the elec-
tron upstream density N.;, upstream bulk speed Uey)|,
upstream temperature T,;, and the downstream den-
sity Ng2 in terms of the HTF potential and the shape
parameters. This is done by taking the appropriate
velocity moments of f; and f; (see Appendix A for de-
tails on the upstream moments and Appendix B for the
downstream moments):

Nea(n, é,v) = / dvifi(v1), (12)

Uea (1 6,) = - / dviogfi(v),  (13)
Tei(v,6,v) = %{/dﬁ(mn — Ueap))?fi(v1)

+ / dV1v1J.2f1(V1)},

Nea(n, é,v) = / dvafy(va).

(14)

(15)
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With the assumption that ¢ = ¢, = 9y, (13) is a sep-
arable function of ¥, ¢, and u (e.g., Uey(¥,4,v) =
pv(é,v)) and can be inverted to yield ¢ as a func-
tion of ¢ and v given the upstream electron bulk speed
(see equation (A6)). The variables ¢ and v can be
determined for fixed A by zeroing the following com-
posite function involving the upstream temperature
Te1[¥(9, 1), ¢, v] and the compression ratio p(¢,v) =
Nea/Ney:

F(p,v) = Fr(d,v)+ Fpld,v) =0, (16)

where
(TellBC - Tel[";b(qba V)y ¢a V])z
Fr(¢,v) = T2 nc , (17)
pom R

P?|ru

The first term in (16) is a constraint imposed on ¢ and
v by the upstream electron temperature boundary con-
dition T,1|pc. The second contribution to (16) is a con-
straint on the electron density ratio p(¢,v) = Nez2/Nei.
In general, the density ratio is a function of A through
N,2; however, in solving for ¥, ¢, and v we fix A to be
a nonzero value and then adjust its value until A®HT,
converges to A@ﬁg. Any solution to the Vlasov equa-
tion will be consistent with the conservation of number
flux across a time stationary shock, but it is not guar-
anteed that N,, will match the RH expectation under
quasi-neutrality and zero current assumed on both the
upstream and downstream asymptotic states. Consis-
tency with RH is achieved by requiring p(¢,v) = pru,
where pry is the RH predicted electron density ratio.
The parameter 1 can be determined from (13) and (A5)
once the optimal values for ¢ and v have been deter-
mined. The last parameter 7 is then determined from
(12) and (A2). We demonstrate that a solution to (16)
is not possible if we set f;*"'P*® = 0; this is demonstrated
graphically in the top panel of Figure 3, which shows
that the zero-level curve of Fr (solid line) does not in-
tersect the point where F, = 0 (under the assumption
that NP — 0 in (12) and (B3)). However, a unique
solution to (16) can be found by filling the ellipsoid to
a level proportional to the average value of f, along the
separatrix perimeter. The unique solution to (16) is in-
dicated by the asterisk in the bottom panel of Figure 3
at the intersection of the zero-level curves of Fr (solid)
and F, (dashed). Figure 3 demonstrates the need to
specify a nonvanishing £,°""P*® for the problem to be con-
sistent with the electrodynamics of quasi-neutrality, a
stronger condition than that it is a “well-posed” Vlasov
problem. Part of the f, is determined by employing Li-
ouville’s theorem to map the f; along characteristics to
the downstream side. The £°"'P*® cannot be arbitrar-
ily defined and still satisfy the time-independent RH
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equations with a quasi-neutral fluid. The parameter

A is determined by iteration subject to the constraint
ARHT — AHT

mod — exp*

3. Model Results on AT,

The predictions of the model for AT,™°? are com-
pared to experimental values for AT,**P from an ex-
tensive electron moment and magnetic field data set
of 129 Earth bow shock crossings observed by ISEE
1. The electron measurements, taken by the Vector
Electron Spectrometer (VES) on board ISEE 1 [Ogilvie
et al., 1978], were corrected for the spacecraft floating
potential and characterized by the best possible deter-
mination of the local shock geometry and shock veloc-
ity via an RH analysis [Hull et al., 2000]. The shock
data set encompasses a variety of shock conditions and
includes some events with unusually large AT, P fea-
tured in earlier studies [ Thomsen et al., 1987; Schwartz
et al., 1988]. The results of the model for the elec-
tron temperature changes are summarized in Plate 1.
Plates la—1c are comparisons of the predictions of the
model (z axis) and the observed changes (y axis) in the
parallel, perpendicular, and total electron temperature,
respectively. These plots are color-coded to illustrate
the dependence on the HTF upstream electron thermal
Mach number Myrr1 = Un1/(Vihe1cosOpn1), where
Up1 and Vipe: represent the upstream normal bulk flow
and the electron thermal speed, respectively. Values
of Murri &1 indicate where the field-aligned electron
flow approximation [Scudder, 1987 is expected to break
down because electron inertia is no longer negligible. In
this regime, the typical electron has difficulty respond-
ing to magnetic field gradients and tends to slip mag-
netic field lines while traversing the shock layer. Such a
regime requires a more complicated V-L mapping than
that undertaken here.

Plates la—1c show that in addition to recovering the
total temperature changes, the model also recovers the
trends in the perpendicular and parallel degrees of free-
dom throughout the entire range of observations includ-
ing the extreme values of AT, (2 200 eV). It is not clear
why the Vlasov model should work in the regime where
the field-aligned flow approximation breaks down. One
possible explanation is that the slippage across mag-
netic field lines associated with large electron inertia
is suppressed by the magnetic field’s tight grip on the
electron orbits implied by a lower 8.. The events char-
acterized by large Myrr; in this paper tend to have
smaller 3. and vice versa [Hull et al., 2000]. The limit
of small B, usually corresponds to the small gyrora-
dius limit. In this regime, elgctrons only get energized
by A®HT ~ — [deE)/(f-b) (where E is the elec-
tric field component parallel to the magnetic field unit
vector b) as the electrons follow a common path along
magnetic field lines in traversing the shock maintaining
constant u [Goodrich and Scudder, 1984]. For the high
B. and high Murr;, cross-field drifts such as grad B
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Figure 3. (top) graph showing that F(¢,v) can not be zeroed when the ellipsoid is not filled.
(bottom) graph showing that there exists ¢ and v such that F(é,v) = 0 when the ellipsoid is

filled.

and curvature drifts become more important and im-
pact electron energetics as the electrons are no longer
field-aligned. The V-L mapping in this regime must
conserve generalized momenta and need not be accom-
plished field line by field line as in our model. The cross-

field drift V; that the typical electron in this regime

undergoes effectively enhances the accelerating normal
electric field the electrons see in traversing the shock

by EXf ~ E)/(f- b) + V4B, , similar to the way ion
drifts along the shock surface in HTF enhance the de-
celerating normal electric field the typical ion sees in
traversing layer.

The experimental study by Hull et al. [2000] found
that AT, is linearly related to A®HT with a slope
(a) =2.040.1. Hull et al. [2000] suggested that this is
indicative of a polytrope with an average effective poly-
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Plate 1. Comparisons between the predictions of the model and the observed changes in the
(a) parallel, (b) perpendicular and (c) total electron temperatures across the database of shock
events. The color indicates the Myrr; dependence.
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trope index {ves) = {@)/({a) —1) = 2.0 £ 0.1. Hull
et al. [2000] further demonstrated that this is consis-
tent with the most probable v, = 2.4 4 .8 determined
from fits to N,(t) and T,(¢) [Hull, 1998]. Implicit in the
model’s recovery of the AT, is the recovery of this linear
relationship between AT, and A®HT (e.g., the recovery
of the electron polytrope behavior). The model’s re-
covery of the relation between AT, and A®ET is not
circular, as might be suspected from the A®ET con-
straint imposed on the model. The expressions (A9),
(A10), (B11), and (B13) used to derive AT, are non-
linear functions of A®HT, suggesting that the recovery
of the linear relationship between AT, and A®HT is
not guaranteed. Of particular note is the fact that the
polytropic behavior is born out of the model which is
based on a fully reversible description of electron behav-
ior across the shock. A polytrope relation is a simpli-
fying mathematical closure approximation that is not
well understood. The model suggests that the underly-
ing physics is adiabatic motion of electrons in the shock
macroscopic electromagnetic fields; a consequence of
the Vlasov connectivity seems to be this unsuspected
local functional relationship between P, and N,.

4. Predicted Scaling of «

For a number of shock crossings, depending on the
electron (., the incremental changes in the magnetic
field § B were found to be proportional to the incremen-
tal changes in the HTF potential §®"7T with a propor-
tionality constant x assumed to be a fixed constant for
a given shock crossing [Hull et al., 2000]. Such a re-
lationship has important implications on the dynamics
of electrons across the shock and motivates the rela-
tionship A®HT = kAB exploited by the model. The
electron moment dependence on x is implicit in the di-
mensionless potential ¢ = vg/w = 1/(2ekAB/m,)/w.
An approximate expression for k in terms of upstream
conditions and shape parameters can be derived from
(AB) by taking advantage of the fact that the halo den-
sity fraction, 4, is usually small and by solving for the
dimensionless potential ¢ perturbatively. Under the as-
sumption that § is small, (A5) reduces to

1 — B3 exp(—£€2)
1+ Bexp(—£€2) erf(Bv) |’

where 3% = (B, — B1)/B; and €2 = ¢%/a? + A?v? with
a? = (B2 — B1)/B; and \? = 1 — (3%, respectively.
Rearranging (19) and solving for ¢ yields the following
expression for the lowest-order estimate of x°:

Uy = 9 (19)

(20)

where

o= (Uelnﬁ;rf(g”)“Jf Ws)a*’f. (21)
— Vel
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Equation (20) predicts that « should scale as the mag-
netic moment per unit charge of a typical thermal elec-
tron. The interpretation of the scaling in (20) is that a
significant fraction of the upstream electron distribution
must make it through the shock in order to satisfy the
plasma’s desire to be quasi-neutral [Hull et al., 2000].
The Ino factor, although a fixed constant for a given
shock crossing, is not guaranteed to be a global constant
and should vary depending on shock conditions.

To test the predicted scaling, we computed x from
A®HT and AB for the 129 shock events used in this pa-
per. The ratio 7scate = #/(kTe11/€B1) is summarized in
the histogram illustrated in Figure 4. The most prob-
able ratio 7scale suggests that electrons with perpendic-
ular energies below roughly 3 times the perpendicular
thermal energy within the modified loss cone make it
through the shock layer. This represents [1—exp(—3)] ~
.95 of the thermal electrons. The rcaje in Figure 4 are
not Gaussian distributed, having a tail toward higher
values of 7scale. These events are characterized by higher
values of 8.2 1. The measurements that determine
Tscale in these shock events are highly aliased and should
be viewed with caution. The spread in the distribution
probably reflects x’s dependence on other characteris-
tic shock parameters such as Myrr;, A(m,U2/2), and
0Bn1. The relationship between x and other character-
istic shock parameters will be explored in future work.

5. Model Results on T;

The model prediction of the downstream ion tem-
perature 7;/°°¢ is determined by subtracting the model
determination of the electron pressure from the RH ex-
pectation of the total pressure change APRH given by
(1). For comparisons with the model, we have used a
previously cataloged ion data set [ Thomsen et al., 1987;

200 T
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T
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Figure 4. Histogram of the ratio x/(kT11/B1)-
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Schwartz et al., 1988] measured by the Solar Wind Ex-
periment (SWE) on the solar wind side and by the Fast
Plasma Experiment (FPE) on the downstream side of
the shock [see Bame et al., 1978, for instrument details].
Ion temperatures were available for only 38 of the shock
crossings used in this study. Averages of the maximum
and minimum values at the shock asymptotes were used
to estimate the upstream and downstream ion tempera-
tures. The reported total ion temperature was approx-
imated by the FPE team as T; = (Tj + T;1)/2; this
approximation has the effect of systematically underes-
timating/overestimating the temperature computed via
trace(P;)/(3N;) (P; and N; are the ion pressure tensor
and ion density, respectively) when T;) is less/greater
than 7;;. This effect is relatively small in the limit
of small anisotropy, which tends to be the case. The
shock geometry was determined via an RH analysis us-
ing electron data measured by the VES instrument on
ISEE 1. We did not have ion flow vectors, thus electron
flows and densities in addition to magnetic field data
were used to compute APRH,

Figure 5a compares A PRH to the observed total pres-
sure change AP®*P. In Figures 5b and 5c the resulting
model predicted ion pressure change A P,™°d and down-
stream ion temperature 7;°¢ are compared to the ob-
served ion pressure change AP,*** and observed down-
stream ion temperature T}, T, respectively. The verti-
cal error bars indicated in Figures 5a-c provide a lower
bound error estimate, representing the propagated un-
certainty associated with the average asymptotic elec-
tron moment and magnetic field quantities used to com-
pute APRH A p med an4 T, o4, respectively. The
open circles represent shock crossings characterized by
normal shock propagation speeds in the S/C frame of
reference that are greater than 150 km s~?!, determined
from the RH analysis using electron data. Because of
the speed at which these shocks convect by the S/C, the
asymptotic states of these atypical bow shock events are
not accurately determined. The best fit slope indicated
by the dashed lines in Figures 5a-c suggests that the
model predictions APRH A p,mod and T4 are con-
sistent with their observed counterparts over the range
of shock conditions, though there is considerable scat-
ter. The correlation coefficients for the comparisons
in Figures ba-c are 0.79, 0.69, and 0.62, respectively.
Because the ram energy contribution to the change in
pressure is weighted by the ion mass, small errors in
the empirical estimates of the normal flow speed and
density can result in large changes in energy available
for heating and hence errors in the predicted ion tem-
perature. As an illustration of the sensitivity to er-
rors in the flow, a canonical normal electron bulk flow
of 300 km s~! with an error of 25 km s~! gives rise
to an error in the model downstream ion temperature
§(AT;) ~ 2mpU,8U, = 2 x 10° K comparable to many
of the error bars in Figure 5c. A modest relative uncer-
tainty in the density of §N1/N1 = .2 gives rise to similar
errors in T4, In addition to this complication, the
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VES electron detector and the ion sensors were not in-
tercalibrated. Systematic departures between these de-
tectors can also impact the results. Despite these prob-
lems the model approximately recovers the observed to-
tal pressure change and hence the ion pressure change
and downstream ion temperature for a variety of shock
upstream conditions. It is our opinion that the prop-
agated uncertainties associated with the electron bulk
speed and density and the systematic uncertainties be-
tween the electron and ion detectors do not detract from
the attractive explanation for the partition of tempera-
ture advanced by the Vlasov mapping of this paper.

6. One-Sided Predictive Model

One of the goals of this paper is to develop a one-
sided predictive model for the partition of temperature
for the electrons and ions as they traverse the shock
layer. The model developed in sections 2.1-2.4 relied
on the measured two-point A®"T as a constraint in or-
der to recover the electron temperature changes for a
variety of shock conditions. The A®HT was needed to
constrain the electron distribution function f;*"P* at
the downstream boundary inaccessible to the upstream
side. Without this constraint the assignment of f;*""P*¢
would be arbitrary. The development of a one-sided
version of the model requires a recipe for specifying the
downstream boundary £,°P*® essential for a well-posed
problem in terms of upstream conditions, and hence
A®HT can be determined so that quasi-neutrality is sat-
isfied. The virtue of using A®HT to constrain f;*/liPs
is that it allows for the possibility of “learning” how to
specify. f,P% The existence of such a recipe is sug-
gested in Figure 6, which compares the filling level A of
fzemp“e with Myrr. A polynomial fit to A and Myurr
in semilog space yields

A= exp(—2‘3 + 1.2Myrr + 0-13MHTF2)‘ (22)
The expression (22) suggests that the two-sided prop-
erty of the V-L problem could be broken by such an
empirical basis.

With the adopted filling recipe (expression (22)) the
V-L-based electron problem is carried out in a manner
similar to the two-point problem discussed above, ex-
cept now the downstream level is determined by (22)
and A®UT is a fit parameter, determined so that the
upstream boundary conditions and the RH expectation
on the downstream density are satisfied. = The one-
sided model predictions on the electron pressure change
AP,Pd are compared to the observed electron pressure
change AP,**P in Figure 7a. Figure 7a shows that the
AP,P™d is in good agreement with the AP,**P through-
out most of the range of observations. The correlation
coefficient is 0.7, and the best fit slope (dashed line) is
.97+.10 in Figure 7a. Figure 7b compares the predicted
temperature change AT,P™? to the observed tempera-
ture change AT,**P. The AT,P™? values are in rough
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Figure 6. Comparisons of A with Mytr.

agreement with the observations, although the model
results are smeared out (correlation coefficient is .6)
compared to the two-sided results illustrated in Plate
lc. The model’s less accurate AT.P™¢ determination
reflects inaccuracies introduced by specifying f,*/P*¢ us-
ing (22). The moment temperature is of the following
form:

P, _ m, [y f(v)v*dvsin6dods

kT, = — e - .
N, 3 [y f(v)v2dvsinfdfde

. d .
Because of the integrand’s v* dependence, P,5™ is rel-

atively immune to inaccuracies in assigning the form
of fgeuipse, with much of the contribution to the down-
stream pressure coming from regions outside the
oval. The model downstream electron temperature
T3 red, however, is much more sensitive to inaccuracies
in fzempse because of the denominators v? dependence.
While the model fit of (22) recovers the trends in AP,
more accurate AT, requires a more faithful reproduc-
tion of A®HT. Note that the dispersion in Figure 7b at
low AT, is where errors of 100% in A®HT are common
place when using (22) as an empirical basis to remove
the inherent two-sidedness of the Vlasov equation. The
one-sided model provides substantially more accurate
predictions of the downstream electron pressure and
temperature and hence downstream ion pressure and
temperature from one-fluid conservation laws than do
estimates provided under the equipartition assumption.

Under equipartition the electrons and ions are as-
sumed to have equal pressure. The equipartition expec-
tation on the electron pressure change AP = AP/2
is computed from (1) using moment and field data.
Figures 7c and 7d compare the equipartition expecta-
tion on APZ9 and electron temperature jump AT;9 to
observations, respectively. Clearly, Figures 7c and 7d
demonstrate that equipartition fails miserably, tending
to overestimate the AP, and hence AT, over the broad
range of shock conditions as indicated by the best fit
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Figure 7. Comparisons of (a) the one-sided model predictions on the electron pressure change
AP,Pd and (b) temperature jump AT, with the observed pressure change AP,*® and
temperature change AT,®*P, respectively, and comparisons of (c) the equipartition expectation
on the electron pressure change AP,®d and (d) temperature jump AT, with AP,**P and

AT, *P | respectively.

slopes (dashed line) of 4.4+ .2 and 5.2+.3 in Figures 7c
and 7d, respectively. The solid lines in Figures 7c and
- 7d indicate unity slope. Overestimating AP, implies
that equipartition will underestimate the ion pressure
change. For this reason, results of models which use the
equipartition assumption must be viewed with caution.

7. Conclusions

The downstream partitioning of temperature between
electrons and ions across collisionless shocks is viewed as
the result of the different modes in which the electrons
and ions interact coherently with the same shock layer:
the ions are unmagnetized; the electrons are nearly fully
magnetized. However, the differential response of the
electrons and ions to the shock field structure makes
solving the Vlasov-Maxwell problem an arduous task.

To circumvent the difficulties associated with the nu-
merically stiff Vlasov-Maxwell problem, we have devel-
oped an approximate multilevel model for the partition
of temperature that incorporates the simple behavior
of electrons across collisionless, fast mode shocks, and
we compared the predictions of the model to a large
database of Earth’s bow shock crossings. For the first
time the trends in the perpendicular and parallel elec-
tron temperature jumps and therefore AT, for the “typ-
ical” as well as the “extremes” of the observations have
been recovered. The trends in the ion pressure jump
and hence the ion temperature jump determined by
subtracting the model-predicted downstream electron
pressure from the total downstream pressure predicted
by RH are also recovered. By inference, the results of
the model support the notion that in HTF the electrons
are coupled to the ions only through A®HT and that the
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wave-particle coupling between electrons and ions can
be neglected in lowest order.

Implicit in the model’s recovery of AT, is the recovery
of the linear relationship AT, and A®HT [Hull et al.,
2000] which is a reflection of the average electron poly-
tropic behavior through the shock layer. Recovery of
the linear relationship between AT, and A®HT is quite
remarkable and not obvious from (A8), (A10), (B10),
and (B13), which are nonlinear functions of A®HT that
determine AT,. The model suggests that the electron
polytrope relation is the macroscopic restatement of the
Lagrangian free-streaming motion of magnetized elec-
trons through the shock macroscopic fields.

We determined theoretically that the empirically sug-
gested « parameter [Hull et al., 2000], which relates
the HTF potential increments to the magnetic field
increments through the shock, scales in leading order
with the average upstream electron magnetic moment.
We demonstrated that this scaling was consistent with
that inferred from observations. Viewed as an equa-
tion of state relating the microphysical properties of
the plasma to the macrostate of the shock, the rela-
tion A®HT = KAB summarizes the tension between
the tendency of the magnetic field to repel electrons and
the desire for the plasma to maintain quasi-neutrality
with zero current along the shock normal. The lowest-
order scaling of x with respect to kT, 1/B; reflects the
fact that a significant fraction of the electron population
must traverse the shock layer to satisfy quasi-neutrality,
since the supersonic ion’s inertia virtually guarantees
that most of the ions jump the layer.

Given what was learned from the two-sided model, a
version of the model was developed to estimate the elec-
tron pressure change and hence the electron tempera-
ture change given only few upstream constraints. This
one-sided version of the model roughly recovers the ob-
served electron pressure and temperature change with
much greater accuracy than do models which employ
the equipartition assumption. The equipartition expec-
tation was shown to overestimate the electron temper-
ature change by a factor 4.4, which leads to underesti-
mated downstream ion temperatures. More precise pre-
dictions from the one-sided model requires more precise
recovery of A®HT,

Appendix A: Upstream Electron
Moments

Velocity moments of f; and f, result in transcendental
equations that can then be solved to yield the shape
parameters of f; and f so that the Rankine-Hugoniot
relations and the conditions on the upstream moments
of fi are satisfied. We give analytic expressions for the
upstream moments in terms of the shape parameters of
fi and f,. Upstream electron moments involve integrals
of the form

/d3V1f1(V1)'H(V1)v (A1)
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where H(v1) is a function of the upstream velocity.

A1l. Upstream Electron Density

Setting #(v1) = 1 in (Al) yields the upstream elec-
tron density:

Nel(n, ¢, V) = 7](1 - 5) |:1 +ﬂe—£gel’f (,BV)]
+nd [1 4 Be 6k erf(%ﬁ)] . (A2)
where
€2 =¢?/a® + 202, (A3)
g = e (A4)

42
with the following ancillary definitions: v = ¢ /w; ¢
vg/w; a® = (By—B1)/B1; 8% = (By—B1)/Bs;and A? =
1— 2. The mirror-modified distribution function fi(v)
has an electron density that differs slightly from the
core-halo model total density, n. The corrections to the
core-halo contribution to the electron density represent
the nonlocal mirroring signatures of the approaching
shock layer discussed above. It is clear from (A2) that
7n is only synonymous with N,; in the limit 8% — 0,
where the shock strength vanishes. The inferred number
of reflected electrons depends on the size of the cross-
shock potential as embedded in ¢ and the sonic Mach
number of the shock v.

Il

A2. Upstream Electron Bulk Speed

In the HTF the upstream electron bulk speed is par-
allel to the upstream magnetic field and is obtained by
setting #(v1) = vy in (A1) and dividing by the elec-
tron density, which gives

%’/’—(1 - a)(1 - ﬂae—ﬁi)

el

ny
Nel

Uel||(¢7 ¢$ V) =

+

5(1 - ﬁ3e—€5). (A5)

As a cross check of the functional form of Uey), we im-
mediately see that ¢ = U,y when the upcoming shock
disappears (32 — 0) as expected. A closer inspection
of (Ab) reveals that the net effect of electron mirroring
(8% # 0) is to reduce the unperturbed solar wind bulk
speed, 1. Moreover, (A5) can be inverted using (A2)
to yield ¢ as a function of ¢ and v given the upstream
bulk speed:

= Uej)(1 — 8)[1 + Be 4 exf(Bu)]
(-0(mee) +i(i-pes)}
Ueqyd[1 + Be~tn erf(p_y—")]}
{0-0)(1-pee) +6(1-pes)

+

(A6)
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A3. Upstream Electron Pressure

The upstream pressure tensor is gyrotropic and is
given by the following expression:

Pey = Pybb + Py (I - bb), (AT)
where I is the unit tensor and b is the magnetic field
unit vector. The parallel contribution to the upstream

random electron pressure is given by
P1]| = Hel” - meNeerlnz) (As)

where the dynamic pressure IT,y)| is obtained from (A1)
by setting H(v1) = '01“2 and multiplying by m,. which
leads to the following relation

Hel“ = men(l — 5)(%)2{% -+ y2

+ [,341/ exp(—B2v?) + ('%i + ,351/2) erf(,@u)} e—&ﬁ}
+ mené(’—yg&—)z{% + :—: + ﬁex (—'8’2;2)

(A9)

ﬁ:} ’351,2 ,BV e
-1—(2+’72 )erf(’y)e .
Assigning H(v1) = v11? in (Al) and multiplying by

me /2 yields the perpendicular contribution to the elec-
tron pressure given by

. 1—-4§ 2 2/\2 5
PIJ_ — m 77(21/2 )1/) {1 + Vf/; exp [_ﬁZVZ]e—ﬁc

+ ﬂerf(ﬂu) (1 + )‘_2 + Z_Z +,321/2>\2> e_gg}

2

21J2

s

2,2 212
L MmendY’Y {HVﬁ/\ ox [_ﬂ

202 VY 72

2 2 2,292
+ﬂerf(ﬁ7—y) (1+%+ af_fy?+ﬂ :2}\ )e‘ﬁi}.(AIO)

The upstream temperature T,y is obtained by the fol-
lowing:
Py 2Py

T =
el Nel

(A1)

Appendix B: Downstream Electron
Moments

A similar set of expressions in terms of the shape pa-
rameters can be obtained by taking velocity moments
of the downstream distribution function f;. In addition
to contributions to f, from electron orbits that connect
to the upstream side of the shock, there may be contri-
butions to these moments from electron orbits having
origins farther downstream of the shock that connect
to the region inaccessible from the upstream bound-
ary, and/or that can not access either boundary. These
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three classes of characteristic curves are well known in
solutions of partial differential equations by the method
of characteristics [e.g., Morse and Feshbach, 1953].
The need to specify a nonvanishing electron distribu-
tion function (e.g., A # 0) in the ellipsoidal region is
discussed in section 2.4. In general, the odd moments
of the downstream electron distribution function deter-
mined in the shock rest frame, such as the number flux
or energy flux, are independent of the functional form of
£P* because the distribution function in this region
must be mirror symmetric, whereas the even moments
such as the density and electron pressure will be depen-
dent. These contributions will be denoted by using the
superscript “ellipse” in the moment equations below.

Evaluation of the downstream moments over down-
stream velocity space determined by the V-L mapping is
complex because of the ellipsoidal boundary (as in Fig-
ure 2b). Transforming to upstream velocity space vari-
ables dramatically simplifies the calculations. Thus, in
computing the mapped contribution to the downstream
electron moments we use integrals of the form

/d3V2sz_L(V2)’H(V2) = /d3V1 5V1
xfilvi(va)]H[va(v1)], (B1)

where #[v(v1)] is a function of the upstream velocity
through the conservation of energy and magnetic mo-
ment relations. In (B1), Liouville’s theorem was used
to write f "¥(vy) as the same functional value at the
other boundary, fi[vi(vz)]. The magnitude of the de-
terminant of the Jacobian matrix, determined from (6),

is given by
2
.
- \Bs

B1l. Downstream Electron Density

5V2

vyl
Vv ? +ve? —a?uy) 2

Sva
5V1

(B2)

The downstream density is given by the following ex-
pression:

Nep = 77(1——5)(%) %/_ZdTexp[——(T—u)z]
X(,’_z—ig)EA(Xﬂ)
+ 7)5(%) —\/2—;/;@) drexp[—(r—— s)z]

T2 2
X ) A(x+n)
g

+ Nezellipse, (B3)

where A(z), related to Dawson’s integral, is defined as

A(z) = zexp (—.’cz) ‘/: dsexp (sz). (B4)
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The x4, and x4n are given by

e
xeelr) =\ gL (85)
72 4 (¢/7)?
ean=y O
In (B3), NP given by
ellipse 4A77¢ 2
Noo®! s/ (1= 0o (-v?)
] V2

+ v exp(-—:y—z-)] (B7)

represents possible contributions to the downstream dis-
tribution function from electrons farther downstream in
the magnetosheath that have access to the ellipsoid re-
gion (as in Figure 2b) but do not have access to the
upstream side of the shock.

B2. Downstream Electron Bulk Speed

The downstream electron bulk speed is trivially re-
lated to the upstream electron bulk speed through the
steady state continuity equation for electrons and is
given by the following expression:

2
N, 1 (83 _ NeerIH Bz
Ul = N (E) Y

The ellipsoid contribution enters here only through N.,.

(B8)

B3. Downstream Electron Pressure

The downstream pressure tensor is defined by the fol-
lowing expression:

Pex = PZHBB + P2.L(I - BB): (BQ)

where 1 is the unit tensor and b is the magnetic field unit
vector. The parallel contribution to the downstream
electron pressure is defined as

Pyj = Iy (B10)

Iy is obtained from (B1) by setting H[vz(vi)] =
vg)*(vy),v11) and multiplying by m,, which leads to
the following relation:

2
- meNeZUeZH .

Moz = 7:;%7(1 - 5)(%)2/_‘1 dTexp["(T_ y)z]
{ITI(T +¢ )% o? (;57::_452) 5A(X+c)}
+ %5(‘?_:/’)2/—: dfexp[_(T_ %)z]

2) 2 A(X+h)}

2, $7\3 2 7’
X{ITI(T +;) —-a (7-2+93
(B11)

ellipse
+ Moy
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where the ellipsoid contribution to the parallel pressure

Hzlzll‘]pse is given by

ellipse 4m8A77¢5 ‘l)b
i 15787 (}3) (1= exp(=?)
) v?
el =) (B12)

The perpendicular contribution to the pressure tensor
is obtained by setting #[va(v1)] = v21?(vy)),v1) in (B1)
and multiplying by m. /2, which results in the following

men(l —

expression:
\/7—r ( ) / drexp[— (1 — v)?]
() Joes ("*“}
+ - menJ (a Fﬂb) / d'rexp T—— ;) ]
( r? ) (m)]
T2+ %2

2
ellipse
+ P

Py, =

¥(x+n) +

(B13)

where ¥(z) is given in terms of Dawson’s integral by
the relation ¥(z) = z?[A(z) — 1/2]. The ellipsoid con-
tribution Pzeﬁ’pse is represented by

e () [ - 8y exp(-?)

+ F%exp(—:—;)].

The downstream temperature T2 is obtained by the
following:

Pelhpse

(B14)

P. 2P,
S i Ty (B15)
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