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Transverse Instability of Magnetized Electron Holes
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We study a transverse instability of the nonlinear equilibria known as electron phase-space holes in
the presence of a magnetic field. The instability is intrinsically two dimensional and is determined by
the dynamics of the trapped electrons. It depends on hole amplitudes, ambient magnetic fields, and the
perpendicular velocity spread. The long-standing hole stability problem in multiple dimensions can be
characterized by the gyro-to-bounce frequency ratio. A low ratio associated with a small perpendicular
velocity spread results in a disintegration of the positive potential spikes.

PACS numbers: 52.35.Sb, 52.35.Qz, 52.65.Rr, 94.20.Rr
Holes in the electron phase space, or phase-space vor-
tices, have been known since early simulations of the two-
stream instability [1,2]. They have also been observed in
laboratory experiments with a magnetized, plasma-loaded
waveguide [3] and have been invoked to interpret bipo-
lar electric pulses measured in the magnetospheric plasma
[4–6]. The electron holes are exact, nonlinear solutions to
the Vlasov-Poisson equations that involve a clump of elec-
trons trapped in a phase-space vortex. The resulting den-
sity inhomogeneity creates a positive potential hump which
self-consistently traps the electrons. While they persist
for a long time in one-dimensional simulations, e.g. [7],
they were seen to disintegrate when allowed to evolve in
a space with multiple dimensions [1,8]. 2D simulations
with a substantial background magnetic field B0, how-
ever, clearly demonstrated that electron holes can be stable
[9–11]. In 2D they form tubes in phase space with the
axes directed transverse to B0. Correspondingly, the as-
sociated potentials form positive ridges running transverse
to B0.

This paper addresses the instability of the electron hole
due to transverse perturbations and determines how much
magnetic field is required to stabilize it. Since the structure
is supported by a clump of trapped electrons, parameters
characterizing their dynamics can be expected to be essen-
tial. Two such parameters are the bounce frequency of the
trapped electrons vb and their cyclotron frequency Ve. As
will be shown, the relation between vb and Ve is the fac-
tor determining the stability of the hole structure.

Model.—Let 2e, m, and Ve � eB0��mc� be the
charge, mass, and cyclotron frequency of an electron, and
let Tek (Te�) be their parallel (perpendicular) temperature
defined as second moments with yek,� � �Tek,��m�1�2.
The dimensionless units used have time in the inverse of
the plasma frequency ve �

p
4pe2n�m, velocity in yek,

distance in Debye length ld � yek�ve, and potential in
my

2
ek�e. Ions are assumed infinitely massive and do not

participate in the instability.
Using observations of stable potential spikes on magne-

tized field lines [5], we describe the potential structure in
the comoving frame along B0 as
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f�x,y� � c exp�20.5x2�D
2
k�f�� y� � f0�x�f��y� ,

(1)

where x and Dk are the coordinate and half width paral-
lel to B0, and f�� y� describes a transverse profile whose
scale is assumed large compared with the electron gyrora-
dius. The trapped electrons gyrate about the magnetic field
while they bounce back and forth in the parallel direction.
The trajectory of a typical electron in phase space is com-
posed of two oscillators with the cyclotron frequency Ve

for the transverse motion and the bounce frequency vb for
the parallel motion:

vb �
q

c�D
2
k . (2)

If the potential is homogeneous in the transverse direc-
tion, f� ! 1, there exists an exact, stationary solution.
The self-consistent electron distribution can be computed
by the Bernstein-Greene-Kruskal method. An example
was presented in [11]. It reads

F�x, yx , yy , yz� � F1�w� exp�20.5�y2
y 1 y2

z ��Te�� ,

(3)

where w � y2
x 2 2f�x� is twice the parallel energy and
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p
2w

pD
2
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2w � �4 2 2w 1 w2�

for 22c # w , 0 , (4a)

F1�w� �
6
p

2
p�8 1 w3�

for w . 0 . (4b)

The trapped distribution (4a) has a hollowed out shape, the
logarithm taking negative values about w * 22c , while
the passing distribution (4b) has a flattop shape. The con-
dition F1�w� . 0 forms an existence line in �Dk, c� pa-
rameter space, which dictates a monotonically increasing
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relation between amplitude and width. This relation stands
in contrast to the inverse relation for a standard soliton, but
is supported by magnetospheric observations [5,11].

Transverse instability.—We load the distribution func-
tion (3) in a 2D particle-in-cell code, and compare the evo-
lution for two cases: gyrofrequency larger and smaller than
the bounce frequency. In both cases the initial potential is
characterized by c � 0.8 and Dk � 3; hence, vb � 0.3.
Electrons are loaded along x in a way that reproduces
the inhomogeneous function F�x, yx , yy , yz�. Along the
y direction, the particles are distributed in a random, sta-
tistically homogeneous way. Ions form a homogeneous
neutralizing background. Although a few runs were per-
formed on a larger grid, results shown here are obtained on
32 3 32 Debye lengths with typically several million par-
ticles, hence, a resolution of *103�l

2
d .

For a gyro-to-bounce frequency ratio larger than unity,
the potential structure maintains well its profile, as was
shown in [11]. In sharp contrast, Fig. 1 shows the poten-
tial evolution for a gyrofrequency (slightly) smaller than
the bounce frequency: Ve � 0.2 vs vb � 0.3. Three suc-
cessive snapshots (t � 0, 100, 130) are displayed by means
of contours, the first accompanied by line plots of f in x.
The snapshot t � 100 reveals a transverse undulation in
the contours. The magnitude rapidly increases afterwards,
clearly demonstrating an instability. By t � 140, the po-
tential structure has been leveled. We stress that the values
of the contours do not change, as the instability develops,
but their shapes do, indicating a redistribution of the charge
density in the transverse direction y. Furthermore, the re-
distribution appears to take place near the maximum of the

FIG. 1. History of the potential f�x, y� where x is parallel to
B0. Unstable case (Ve � 0.2 , vb � 0.3). Three snapshots
of contours at time � 0, 100, 130. (Upper left) Cuts in x at
y � 8, 16, 24 of the initial potential. The structure is destroyed
by a transverse instability. By t � 140 (not shown) the potential
hump is leveled. Units: distance ld , time v21

e , potential Tek�e.
potential (x � 16) as evidenced at t � 100. We take it as
an indication that the trapped electrons are involved.

Analysis.—The stability analysis of a nonlinear equi-
librium such as the one presented here entails assuming
an arbitrary perturbation and integrating the Vlasov equa-
tion along characteristics defined by the nonlinear particle
orbits. The integration provides us with the perturbed dis-
tribution function that is then combined with the Poisson
equation to yield a dispersion relation [8,12]. The task
is rather formidable in the case of the trapped electrons,
whose orbits both bounce and gyrate. Instead, we use par-
ticle in cell (PIC) simulations and numerically investigate
the evolution of the perturbation. Propagation of the in-
formation along the trapped orbits will automatically be
accounted for.

To this end, we first model the perturbation of the poten-
tial observed in runs such as the one presented in Fig. 1,
and modify accordingly the equilibrium potential. The
combined potential reads

f�x, y� � c exp

∑
20.5

µ
x 2 eDk cosky

Dk

∂2∏
, (5)

where e , 1 is a measure of the perturbation and k is its
transverse wave number.

To start the simulations, electrons are loaded at time
t � 0 so as to produce potential (5). The result is shown
in Figs. 2(a) and 2(aa) by means of contours in the �x, y�
plane for the following parameters: c � 1, Dk � 3,

FIG. 2. Initial perturbation and evolution after a bounce period
when Ve , vb . (a) and (b): Potential f�x,y� with contours
from 0.0 to 0.8 by increments of 0.2. “H” refers to high. (aa)
and (bb): Charge density associated r�x, y�. Solid contours
for r � 0.0, 0.05, and 0.1; light gray shading for r & 20.05;
darker gray, r & 20.1. Note the electron accumulation and the
associated dramatic increase in the undulation of the potential.
For details, see text.
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k � 0.39, and e � 0.3. A translation in x has been
performed to center the potential structure around x � 16.
Panel 2(a) displays f�x, y� with contour levels from 0.0 to
0.8 by steps of 0.2. Note the transverse undulation of the
contours, especially near the potential high, marked with
“H.” Panel 2(aa) displays the associated charge density
r�x, y�. We use solid contours at levels 0.0, 0.05, and
0.1, and gray shading to indicate negative r & 20.05.
As expected, one has a band of positive charge density
(the electron hole) surrounded by areas of negative r. By
differentiating (5), then expanding in e, one can check
that the charge density r0�x� 1 er1�x, y� is made of,
respectively,

r0�x� � f0�x� �D2
k 2 x2��D

4
k , (6)

r1�x, y� � f0�x� �3D
2
k 1 k2D

4
k 2 x2�x cos�ky��D

5
k .

(7)

The unperturbed charge density is symmetric in x, while
the perturbation is asymmetric in x and has a periodic
variation in y, as seen in panel 2(aa).

Several runs were carried out with varying parameters
such as Ve and Te�, while keeping c � 1 and Dk � 3;
hence, vb � 0.33. To illustrate the evolution when the ra-
tio of cyclotron-to-bounce frequency is less than unity (and
ye� � 0.1), Figs. 2(b) and 2(bb) show a snapshot after
a bounce period. From the charge density plots, the grey
spots are conspicuously growing, which indicates an accu-
mulation of electrons in particular locales. These electron-
rich spots are defined by the concave portions of the
potential contours, e.g., x 	 20 and y 	 8. As trapped
electrons move in the potential well, they are focused by
the transverse gradients of the potential into those areas
that already have a surplus of electrons, in agreement
with (7). This means that the transverse undulation in the
potential becomes more pronounced as seen from panel
2(a) to 2(b).

The principle is illustrated in Fig. 3, which depicts elec-
tron trajectories in �x, y� of particles that have no per-
pendicular kinetic energy. Starting from a turning point,
equations of motion in the potential given by (5) are in-
tegrated for a little over half-a-bounce period. The left
and right display shows trajectories initiated at the left and
the right turning point, respectively. Because the focusing
brings electrons into locales that already have a surplus of
electrons, the perturbed potential is enhanced, leading to
an instability. The characteristic time scale is expected to
be given by the bounce period.

Additional evidence of the focusing can be found by in-
specting electron distribution functions (not shown) from
the PIC simulation of Fig. 2. The fluxes of trapped elec-
trons about x � 16 are clearly asymmetric with more par-
ticles moving to the right where y � 8 and conversely
where y � 16.
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FIG. 3. Trajectories of trapped electrons illustrating the focus-
ing. The display shows the trajectories starting from a turning
point for a little over half-a-bounce period. Compare to panel
(bb) of Fig. 2.

An effect that can offset the focusing, and thereby pre-
vent the instability, is the spatial dispersion of the electrons
during one transit between turning points due to their per-
pendicular velocity spread ye�. The focusing requires that
ye� causes a negligible distortion of the trajectories; i.e.,
the perturbed perpendicular deviation, for weakly magne-
tized electrons, needs to be much smaller than the potential
wavelength:

ye� ø vb�k . (8)

Increasing ye� to 0.2 confirms that less focusing occurs
and a run with ye� � 1.0 shows no instability.

The unstable run presented in Fig. 2 had Ve , vb . If
one increases the magnetic field such that Ve . vb , leav-
ing everything else the same, the y undulation decays af-
ter a few oscillations. As the trapped electrons bounce
back and forth, the magnetic field guides them and pre-
vents them from being focused by the transverse gradients
of the potential. The nonlinear equilibrium is thus stable.

Discussion.—We have studied a transverse instability
of the nonlinear equilibria known as electron holes that is
due to the motion of the trapped electrons. In this sense
it is reminiscent of the sideband instability of a large am-
plitude wave [12,13]. However, the physics is intrinsically
two dimensional and quite different. The transverse gra-
dients of the potential focus the trapped electrons into lo-
cales that already have a surplus of electrons, which results
in larger transverse gradients and thus more focusing. It
is thus a self-focusing type of instability that acts at the
level of the particle trajectories. Note that the instability
is determined by the dynamics of individual particles and
not necessarily by their collective response to a perturba-
tion. To occur, it requires the ratio of gyro-to-bounce fre-
quency to be less than unity and it is favored by anisotropic
distribution functions with a narrow spread in the trans-
verse direction.
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The present analysis explains the long-known results
that simulations of the two-stream instability can lead to
long-life electron holes in a one-dimensional geometry but
not in geometries with multiple dimensions [1]. Those
simulations, having no background magnetic field, auto-
matically satisfy the transverse instability criterion. Fur-
thermore, distribution functions relaxed from an initial
two-stream configuration are anisotropic with a compara-
tively small perpendicular velocity spread.

The theory also applies to more recent simulations that
include a background magnetic field B0. While [9,11] as-
sume a strong magnetic field such that Ve � 5ve, [10,14]
consider weaker fields. In particular, [14] observed two
classes of coherent potential structures appearing in their
simulations; while the large structures were quickly unsta-
ble, the weaker ones were stable. Applying with hindsight
the gyro-to-bounce criterion, the large, unstable structures
are found to have a sufficient electric field to satisfy vb .

Ve and conversely for the weaker ones [15].
We emphasize that the instability described here is

different from another instability recently discussed [16]
that was observed in simulations of a strongly magnetized
plasma, in which Ve � 5 ve . vb . The instability,
which was slow to develop, involving time scales of
hundreds of v21

e , had no connection to trapping yet
involved the emission of electrostatic whistlers.

Recent satellite measurements of bipolar electric spikes
have been interpreted as signatures of phase-space holes.
Three spacecraft, FAST, Polar, and Geotail, all equipped
with a wave form capture receiver, yet following very dif-
ferent orbits, have gathered data on electron holes in vari-
ous parts of the magnetosphere. (See, e.g., [4] for Geotail,
[6] for Polar, and [5] for FAST.) Our results are consis-
tent with the global trend of the data. The most intense
electric fields are observed close to Earth where the mag-
netic field is the strongest, meaning a higher cyclotron
frequency. This allows for a faster bounce vb and thus
larger electric fields. Finally, since the nonlinear poten-
tial spikes have been associated with parallel electric fields
[5], their stability is crucial for anomalous resistivity and,
hence, the formation of electric fields in many magnetized,
astrophysical objects.

The simulations were performed using the Cray T90
of San Diego Supercomputer Center. The research was
supported by the following grants from NASA: NAG5-
6985, NAG5-4898, NAG5-3596, and NAG5-3182.
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