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Abstract Spectral density per unit mass

15The solar wind is a collisionless, strongly turbulent 10

plasma in supersonic, spherical expansion. In the 10
Alfvenic regime -time scales ranging from a few hours ~ 10

to a tenth of a second- the MHD turbulence exhibit ~
what appears like an inertial domain, with power law ~
spectra, scale invariance and strong intermittency with "3-

a mixture of of random fluctuations and small scale ~
"singular" structures as in ordinary fluid turbulence.
These singular stuctures take the form of current sheets
-as in numerical simulations of MHD turbulence- of
shock waves, flux tubes and magnetic holes. I will dis-
cuss in particular the use of the Haar Wavelet Trans-
form to analyse the intermittent structure of solar wind
turbulence.
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Figure 1: Overview of the magnetic and electric spec-
tral densities

Introduction1

In the solar wind, the electromagnetic fields and plasma
properties show fluctuations over a wide range of time
scales with properties which been reviewed in a number
of papers (see for example Mangeney et al,1991, Gold-
stein et al.,1995, Tu and Marsch, 1995, Horbury, 1999).
We do not want here to provide another review paper,
but more modestly to point out the advantages of the
wavelet transform in the analysis of the intermittence
of the solar wind turbulence.

Before discussing this point, it is however useful to
describe, even summarily, some of the most basic fe-
tures of solar wind turbulence.

Figure 1 which summarizes some typical observa-
tions, taken during 38 days (20th May to 26th June
1995) in the ecliptique plape at the L1 Lagrange point
by the Wind spacecraft in a very broad domain of time
scales going from the rotation period of the sun to the
local electron plasma period. Data from several in-
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struments have been combined. In the low frequency
domain, the magnetic field data (with 3 sec resolution)
come from the MFI experiment (Lepping et al., 1995)
while the plasma data (also with 3 sec resolution) come
from the 3D-Plasma experiment (Lin et al., 1995). At
higher frequency we have indicated the data obtained
by Leamon et al. (1998) with the high resolution mag-
netic field data from the MFI instrument. At still
higher frequency, data obtained on board of the He-
lios spacecraft by Denskat et al. (1983) are also re-
ported, as well as data obtained from the FFTM spec-
tral analyzer from the Waves experiment (Bougeret et
al. , 1995). All these data concerned the magnetic field
measurements which are available up to few hundred
Hertz where the instrumental noise becomes usually
dominant; above a few tens of Hertz, ac elctric field
data from the FFTH and TNR spectral analyzers from
the Waves experiment (Bougeret et al. ,1995) have
been also plotted. Note that since, as usual, the ob-
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servations are made at a given point -the spacecraft -
which moves very slowly compared to the speed Vsw
of the solar wind, a temporal variation on a period t
corresponds to a spatial variation on a scale I = tV sw
along the direction of the flow, i.e. the radial direc-
tion if the fluctuations are "frozen" in the solar wind.
This is a good approximation since Vsw is much larger
that the characteristic speeds of the solar wind plasma,
either the Alfven speed v A or the ion sound speed c,.

In the figure 1, spectral power density per unit
masses are plotted against frequency because these
quantities are relatively insensitive to variations with
radial distance, allowing easy comparison with data ob-
tained in other regions of the solar wind. At the largest
scales, i.e. the longest periods, the kinetic energy dom-
inates -corresponding to the differential streaming of
fast and slow winds. In the "Alfvenic" range, the do-
main of frequencies between f. "'" (10 hours)-l and
the proton gyrofrequency fci = Oi/2rr which is on the
average "'" 0.1 Hz during the period considered here, (
Oi = eB / M, B being the magnitude of the magnetic
field and eand M the charge and mass of a proton),
there is is roughly equipartition between magnetic and
kinetic energy. Around the proton cyclotron period,
the magnetic power spectrum begins to steepen. It
is surprising to see how well data coming from dif-
ferent instruments, taken at different times, do match
together (note however that the FFTM data are con-
taminated by noise around 100Hz). At still higher fre-
quencies, between the proton and electron plasma fre-
quencies fpi =; I.J.Ipi/2rr "'" 500 Hz and fpe = I.J.Ipe/2rr
"'" 20 kHz (l.J.Ipi = (ne2/l1.oM)1/2 , I.J.Ipe = (ne2/l1.om)1/2,
n the plasma number density, m the electron mass and
11.0 the mil-gnetic permeability of vacuum) one observes
the "ion accoustic noise", a highly intermittent elec-
trostatic noise which rises several order of magnitude
above the thermal noise of the plasma.

The spectral densities shown in figure 1 are aver-
aged over the whole '38 days period considered here;
this means in particular that we have included the suc-
cession of fast and slow streams .observed during this
period in the low frequency part of the spectra and that
we have not taken into account the differences in the
Alfvenic range between these fast and slow streams.

The " Alfvenic" range has been extensiveley studied,

to answer the question of wether what we observe in
this range is the result of a NL cascade or the remains of
a spectrum of Alfven waves injected in the corona into
the expanding Solar Wind. There is now a general con-
sensus that, within the inner heliosphere, at least the
small wavelengths are affected by non-linearities and

that, correspondingly, energy cascades towards smaller
and smaller wavelengthes. While the Alfvenic turbu-
lence is observed to be made of finite amplitude Alfven
wave type fluctuations propagating away from the sun,
t.he nonlinear cascade does not seem to be strongly af-
fected by the Alfven effect which will be described be-

low, contrary to the prediction by Iroshnikov (1963),
Kraichnan (1965) and Dobrowolny et at. (1980). In-
deed, one of the important characteristics of the tur-
bulence in the range I. $ I $ Ici is that the power
spectra have the form of power laws with spectral in-
dices varying the from the Kolmogorov K41 prediction
of -5/3 -for the magnetic field fluctuations to the IK
prediction of -3/2 for the velocity fluctuations ( Gold-
stein et al.,1995, Tu and Marsch, 1995, Horbury, 1999).

The privileged tool in the analysis of turbulence in
space plasmas has long been the windowed Fourier
transform (WFT) where the piece of signal contained
in a time window of length T is analyzed to determine
how each frequency band contribute to the total vari-
ance of that particular piece of signal. The window is
then moved in order to cover the whole interval under
consideration, and get an idea about the time variation
of this spectral information. The WFT has therefore a
time resolution equal to T and a frequency resolution
Lli = lIT, so that if one decreases the window length
to have better time resolution, one deteriorates the fre-
quency resolution. Actually the WFT is one particular
member of a family of tools of signal analysis depend-
ing on two parameters -the first one being the shift be-
tween successive positions of the analyzing window and
the second one characterizing the resolving efficiency at
a given position of the window. Another class of that
family is the wavelet transfor~, which favors the time
resolution at the expense of frequency resolution, in
degrees depending on the particular wavelet which is
used. For example, the Haar wavelet, used here, has a
very good time resolution, but a poor frequency res.olu-
tion. While the use of this wavelet is not convenient in
situations where narrow spectral peaks are the objects
of the investigation, it seems to be well suited to the
study of solar wind turbulence, characterized by fea-
tureless average power spectra, and strongly intermit-
tent behaviour, similar to what is observed in strongly
turbulent neutral flows, where the fluid velocity com-
ponents measured at a given point look like a usual
random signal but with intermittellt bursts of strong
variations (see for example Sreenivasan and Antonia,
1997).

Because the wavelet tralldform remains relatively
unfamiliar in the space physics community, we shall
present now a very simple description of the Haar
wavelet transform (HWT), refering the reader for fur-
ther details, for example to the book Wavelet in Ceo-
phy.~ics, (Wavelets Analysis and its Applications, Vol
4).

2 The Haar wavelet transform

Collsider N = 2M successive samples {Yj}l< '<N mea-
-.1-

sured at times l.j = (j -l)Lll. of a (~cntered randolll
quantity y, wit.h variance lT~. The dis(:ret(~ orthogo-
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nal wavelet transform ( see for example, Katul et al.,
1994) ay(i, m) of the signal is defined as the discrete
convolution product of y with a scaled and translated
"analysing" wavelet 1/I(t):

6.tm (1)

At "scale" m $ M, the scale factor is 6.tm = 2m 6.t
while the wavelet coefficient ay is sampled at times ti,m
= i6.tm.

There is a similarity with the WFT which can be
summarized as follows. In the WFT, one chooses a win-
dow of analysis, say T = 2K 6.t, K < N 12, to achieve a
given frequency resolution 6./ = liT and this window
is diisplaced with steps equal to T. At each successive
position of the window tiK} = (k -1/2)T, k = 1, ...,
one performs a discrete Fourier transform :=

=1 k+K
bK(!t, k) = 2K L Yj exp 271"iltj/T

j=k-K
(2) =

In that case, to obtain the wavelet coefficients at
scale m + 1 we evaluate first the smoothed (over 2m
points) signal y(m) made up of the 2M-m samples

giving K + 1 complex amplitudes at frequencies i !I
= l~f, I = 0, ..., K for each position of the window.
Equation (2) can be written in a form similar to equa-
tion (1) l=i+2m

(m) - 2-m '\:"""' YI
y. -L I

2m1=;-
N

bK(j"k) = L1/iw/' (I (tj -t~K))) Yj
1=0

calculated at the points

with
~ i ~ 2M-~t~m) = (2m -1) 6.t/2 + (i -l)6.tm, i

tflJUlt(t) = (~ )
2K separated by the scaled time interval ~tm. The suc-

cessive smoothing on larger and larger scales can be
YT(t) being the characteristic function of the interval obtained by the simple iteration:
-T/2 $ t $ T/2. However, there is a basic difference
sinc~ only the exponential part o~ the analys~n? sig- y!,n+l) = ! {Y~~1 + y~:n)}
nal is scaled and translated, the wmdow remammg of 2

constant support. (rn = 0 correspond to the original data) while the "flllc-
For the WFT, the Bessel-Parseval theorem ellsures t t ."£ (m+l) t tl t I + 1 ., b.lIa Ion uy. a la sca e m IS given ythat the total variance< y2 >TIS the sum of the spec- .,

tral densities P(/I) = IlbK (/1)112 T in each Ii" indepen- ('n+l) -1 { (,n) (m)'
dant freqllency bands OYi -"2 Y2i+l -Y2i

and is relat{~d to the discrete wavelet coeffi<.~ient byk+K
L (Yj)2 = L P(!t) ~!

j:k-K l:l,K

? 1
O"~ = ~ ( :~)2/{

(ly(i, Tn + 1) = 2m/2dy~m+l)

Similarly the N -1 wavelet coefficients {ay (i ,m)} ,
for i = 1, '" 2M-mand m = 1, ,., M satisfy a Bessel-

Parseval identity

a.~ may be very easily checked.
The upper panel of figure 2 illustrates this procedure

for the calculation of the i = 21 wavelet l~oefficient at
s(.:ale m = 5 of the x component Bx of the magnetic

field, uBr(21,5). The initial data, a small arbitrary
sample of data from the Cluster FGM experiment at
4 se(; resolutiOlI, are plotted in the uppf~r pallel for the
time interval [4.:~-4.4] {IT versus time in dc(:imal hours;

M 2M-mN(T~ 
= L L lay(i, m)12

m=1 ;=1
(4)

alld are fully equivalent to t.he dat.a

In writing equation 2, we have assumed a square win-
dow for simplicity; other windows can be used to reduce
noise, sidelobe effects, et The important point here,
however, is that each Fourier component can be viewed
as a mean value over the same 2K points, so that all
coefficients have the same time resolution T what is
clearly unsatisfactory if the signal presents localized
spikes of duration smaller than T superposed on more
regular variations covering the whole range of available
frequencies.

Therefore, it seems convenient to use a wavelet trans-
form (HWT), because of its good time resolution,
which allows to localise singular features in the dis-
tribution of these fluctuations.

The particular wavelet we shall use here is the Haar
wavelet defined as

1/;(t) -1 for 0 < t < 1/2

-1 for 1/2 < t < 1

0 elsewhere
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10/12/2000-FGM,C1 Doob,1953). For a white noise, on the contrary,

Iy(t + r) -y(t)1
lim -t 00

,.-+0 T

even in a statistical sense, since
(Iy(t + r) -y(t)12) = 2u~ = constant, indepen-

dant of r. In the discrete case, the rms value of the
derivative is of course limited to V2u / ~t.

One can wonder wether smoothing the signal over
an interval T, for example by introducing

I j T/2

Y=r dt'y(t+t')
-T/2

4.350 4.360 4.370 4.380 4.390 4.400
t(Hour)

results in better differentiability. Using T to measure
the displacement T = (T, the "derivative at scale T "

can be defined as

---
-Ii

~"...~
~
i, -
't\j

~

Iy(t + (.T) -y(t)1 1
(X-

(.

~

DT Y = lim .
(-+0 (.T

which diverges also for (. -* 0 since the variance of
-' 2fT4.350 4.360 4.370 4.380 4.390 4.400 Y IS 0""

t(Hour) In terms of the wavelet coefficients of the signal y
and its successive smoothings y(m) , the "derivative at

Figure 2: Illustration of the computation of wavelets scale m" can be also defined as

coefficients oy(m+l)
Dy(m) = 2 '= 2-3m/2 2ay(i,m+ 1)'

~t6.tm ,

which is a random variable with arms
in this case, t\m) = 4.35647 and 6.tm = 0.0172262 so value [D y (m)] = 2-3m/2 [ Dy(O) ] ,where, rm" rm"
that the corresponding wavelet after scaling and trans- [Dy(O)] = 20'y/6.t is the smallest scale derivative
lation is defined by ttlk,m(t) = 1 for 0 < tc -t < for ou;g"aussian example. This relation is more
0.0172262, ttlk,m(t) = -1 for 0 < t -tc < 0.01722621 illustrating when proceeding from large to small scales
and ttlk,m(t) = 0, elsewhere.

j' ..-c;.."'-"~""c_- .1--- ," [Dy(mJ]rm" = 23(M-m)/2j (Atm)-3/2In the same panel of figure :}; , we have also urCiwn thiS
\\"avelet or more precisely the function (bxl + bx2)j2 +
(bxl -bx2)t/I/c,m(t)j2 where bxl and bx2 are respec-
tively the mean values of the signal in the intervals
corresponding to the positive and negative parts of the
wavelet, indicated by the stars and squares on the B~
plot; they are also, up to scaling factors, the values of
y(m)(ll) and y(m)(12). In the lower panel of the figure
2 we displayed the corresponding wavelet coefficients,
more precisely the fluctuations oy(m+l).

The wavelet coefficients are still random quantities
whose statistical properties allow to characterize the
state and the degree of "smoothness" of the turbu-
lent field. Consider for example the case when y is a
white, gausian random noise. Such a random function
is nowhere differentiable (even in a statistical sense,
known under the name of mean square differentiabil-
ity); indeed there is mean square differentiability only
if high frequencies are not too prevalent i.e if J df
r P(J) < 00; then mean square derivative and ordi-
nary derivative are almost everywhere identical (see

which shows that y(m) has a statistically greater

and greater derivative as the scale decreases, m -t 0,

6.tm -t 6.t a consequence of the well known fact that

a gaussian noise is not differentiable.

For a gaussian noise, the statistics of the vari-

able Dy('!') is fully determined by by its variance,

[ Dy(m) ] 2 .If the noise is not gaussian, the second

rml

order moment [Dy(m)]:ml =< (Dy(m»)2 > is not suf-

ficient to determine its statitical properties; the most

complete information is provided by the probability

distribution function (pdf) of Dy(m) or, equivalently

the full set of moments < (Dy(m»)2P >, p = 1,2, These moments are determined by the "structure func-

tions" S~(t, m) =< Iy(m)(t + 6.tm) -y(m)(t)12P > of

the smoothed signal y(m) and consequently b~ the mo-

ments of the wavelet coefficients < lay(i, m)1 P >

SP(t, m) < lay(i, m)fP > (5)

y (2m/26.t)2P
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proper scaling then, (a;+l] rm, = 2m/2 (2-m/2Yrm,) =
Yrm, as observed in figure 3.

Let us now consider a more sophisticated signal, in-
troduced by Benzi et al. (1993)), which has the prop-
erty that

BPy(m) "'" m(p

where (p is not a linear function of p as one would
expect in a gaussian signal but is very similar to what
is observed in developped turbulence. This property
defines a multiaffine random variable, a central concept
in the mutifractal formalism. The signal is constructed
in the following way. First one chooses arbitrarily the
value of the unique wavelet coefficient at the coarsest
level. At the next level, m = M -1, the two wavelet
coefficients ay(l, M -1) and ay(2, M -1) are obtained
by multiplying al;l by random numbers

ay(1, M -1) = {l1Jla~

a~ (2, M -1) = {21J2a~

(7)

Figure 3: Wavelet spectral density and probability dis-
tribution of wavelet amplitudesi for a gaussian signal

Note that the definition (5) of the structure func-
tion refers only to quantities defined at scale m while
the conventional definition of the structure function at
scale m which would be < Iy(t + ~tm) -y(t)12P > con-
tains still informations about scales which are finer that
m; in practice this difference does not appear to be im-
portant. By comparing the relations (3) and (4) it can
be seen that the second order moment (p = 1) at scale
m is directly related to the usual power spectral density
( see Katul et al., 1994) at frequency 1m = 1/ ~tm:

., < lay(m)12 > ~t (6)
Py(fm) = ,

ciA In(2)

Note that the average is taken over the interval cor-
responding to the WFT window and that Py(fm) is
actually also an average of the WFT power spectrum
over logarithmically spaced frequency bands ~fm =
In(2)J ~tm, what explains why power spectral density
calculated in this way are much smoother than those
obtained directly from WFT.

The wavelet spectrum is plotted in the left panel
of figure 3 while the histograms of the wavelet coeefi-
cients for m .$ M are plotted in the right panel with
a different symbol for each value of m. It is seen that
the histograms are gaussian and almost identical to
the probabilty law of the random variable y. This is
easily understood since the mean values y(m) are also
distributed in a gaussian way but with an rms val-
ueof y~~~ = 2-m/2Yrml implying that the fluctuation
oy(m+l) is gaussian with the same rms value. With the

where the {k are chosen independantly in a random
sequence of::i:1 and the 1Jk are also independant random
numbers -the particular choice of the probability law
having no influence on the qualitative properties of the
model). This procedure is repeated at each level of
decreasing m with the same rule relating the mother
wavelet amplitude and its two daughters.

The specific realisation which we have used here is
characterized by M = 17, aAJ = 1.777 while the 1Jk
are chosen with uniform probability in the interval

[0.31,0.89].
The corresponding wavelet spectrum is plotted in

the right panel of figure 4 and the wavelet coeeficients
histograms for m :5 M are plotted in the left panel. It
is seen that the spectrum has the shape of a power law;
while the pdf's llm(ay(m)) obey the scaling relation

2-(m-lJ/2llm(2(m-lJ/2ay(m)) = lll(ay(l))

which is, as expected different, from the preceding
gaussian case, and indicates a self similarity between
the statistical behaviour at the various scales. Note
that this scaling relation has been used in figure 4 to
superpose all pdf's.

3 Phenomenologies

In the absence of a well accepted theory, a number
of phenomenological models have been developped in
fluid dynamics or MHD to understand the observed in-
termittency and scaling properties of fully developped
turbulence.
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into contact. Since there are no typical time or length
scales imposed from the outside, the only typical time
which one can think of for such an interaction at scale
l is the "turn over" time

TN L ,..., r-:-
1

During this time the two eddies will exchange an
energy of the order of their own energy (cSUI)2 so that
the energy flux at scale l is

E
2
U
IIc.
VI

t.
R ~

TNL
~

I(/'" "'"

The scaling properties of the transfer rate fI under
the transformation (8) are

~ -t (31£-1£/{/'"'"

In the inertial range, and in the stationary state, it
seems natural to require that the energy flux is inde-
pendant of the scale and equal to a constant (

Figure 4: Wavelet spectral density and probability dis-
tribution of wavelet amplitudesi for a multiaffine signal il = i

at

3.1 Incompressible neutral fluid This specifies the index Jl of the scale transformation,
since then 3Jl- 1 = 0 and dUI ""' (£1)1/3, leading to the

The simplest case is that of an incompressible fluid, well known Kolmogorov power spectrum. Note that
whose governing equations in the limit of infinite the velocity signal, in that case, is not mean square
Reynolds number Re -+ 00, the Euler equations, are differentiable. Clearly this is valid only in the inertial

au regime; at smaller scale, dissipative effects become im-
+ u .\7 u = -\7p port ant so that the spectral power drops abruptly and

differentiability is recovered.
This model is essentially based on the scaling invari-

\7 .u = 0 ance of the Euler equations and simple phenomenolog-
ical considerations, without reference to the details of

u being the velocity and p the pressure. It is impor- the nonlinear interactions wich are responsible for the
tant to note that these equations are invariant under energy transfers.
the scale transformation

Incompressible
Alfven effect

MHD and the3.2r -+ (r; u -+(Ilu;t -+ (i-Ill ..;p-+(2(1J-1)p (8)

(, being an arbitrary scale factor and I" an as yet
undetermined exponent. One may assume that these
transformations apply also between different scales if
some scaling property is observed, <: being then the
ratio between the two scales.

The following argument, due to Kolmogorv (1941,
referred to as K41 phenomenology) allows to determine
the exponent 1". In an incompressible fluid, an "eddy",
that is a perturbation c5UI of scale 1 ( the generalisation
of the fluctuation introduced above) will not propagate
but will be advected by other eddies of larger scale; if
the scale difference is too large the smaller eddy will
be advected almost without deformation by the larger
ones; significant exchange is expected only in the in-
teraction of eddies of similar sizes which are brought

What happens in a magnetized plasma'? We assume
now that the fluid is electrically conducting and inter-
acts with a magnetic field B while being still incom-
pressible, so that the mass density e = eo = canst,
and a." a consequence, the velocity field v is purely
solenoidal, \7 .v = O. Then the governing equations
can be simplified, by using dimensionless variables. Let
L be a characteristic length, U , a characteristic fluid
velocity, tH = L/U, a characteristic time, Bo a char-
acteristic magnetic intensity and CA = Bo/(Jloeo)1/2 a
characteristic Alfven velocity. Using the dimensionless
variables

~ ~ ~ v b CA B ~ P

r=Lr;t=tHt;U==-; =--;p=~U U Bo (!oU
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the basic equations of incompressible MHD can be which is arbitrary except that it has to be perpendic-
written as ular to the ambiant magnetic field boo

However, since the equations are not linear, a linear
~ = Vx (u x b) + ~.6.b (9) superposition of these two solutions has no s;hance to
at Rm be a solution! On the contrary this is the best situa-

tion to have significant nonlinear effects, since the two
au 1 equations (12) clearly show that the nonlinear terms
at + u .V u = -Vp + (V x b) x b + F.6.u (10) are proportional to the amplitudes of the two waves

J propagating in both directions. This immediately sug-

gests that MHD turbulence can be quite different from
V .u = V .b = 0 incompressible fluid turbulence, where propagation ef-

" fects are absent. A simple model, proposed indepen-
!hese equatIons contaIn only two par~meters the dently by Iroshnikov (1963) and Kraichnan (1965) (re-

fluId Reynolds number. Re and the magnetIc Reynolds ferred to as IK phenomenology) is based on the as-
number Rm sumption that most of the energy transfer from scales

U L U L to scales is due to interactions between Alfvenic type
Re = -;-; Rm = T of fluctuations. Within the framework of this assump-

.". .tion, Kolmogorov's phenomenology has to be modified
whIch .measure the ratIo of the dIssIpatIve term~ to to account for the propagation of the " eddies" which

the nonh~ear .ones. .In what follows, we shall consIder limits the time during which they may interact (see
only the.mertial regIme where Re and .Rm -; 00. for example Dobrowolny et ai, 1980, Biskamp, 1993).

EquatIons (9) and (10) can be combIned together to Indeed at scale I there are now two basic time scales
for~.equations for the Elsasser amplitudes z:i: = u:i:b the turn over time TNL ,..., l/tSul and the Alfven tim~
(Els~er, 1950, 19?6) TA = l/cA characterizing the time of overlap of two

whIch can be Written as: Alfvenic interacting fluctuations propagating in oppo-
a :i: site directions. During a time of order tA the two eddies
T + z'F. Vz:i: = -Vp (11) will exchange only an amplitude of order tSul (TA/TNL);

t assuming that these interactions occur at random, the
V .z:i: = 0 number nc of interactions which is necessary to tranfer

In these equations the pressure p is not an indepen- an energy nctSu~ (TA/TNL)2 comparable to the initial
dant variable; it serves only to maintain the incom- energy of the eddies is of the order of nc ,..., (TN L / T A) 2

pressibilty constraint since, usually V. [z'F .Vz:i:] :f: 0; so that the effective interaction T.I becomes

it is indeed determined by the equation obtained by 2 /the divergence of equation (11): T.I ,..., ncTA ,..., TNL TA

A -~
[ 'F ~ :i: ] Once again assuming that the energy transfer rate i

up --v. Z .v Z 1/4is constant, one obtains tSUI ,..., (iCAI) , corresponding
If there is a uniform magnetic field bo of amplitude 1 to a power law spectrum in k-3/2.

in these units, and directed, say along the ex axis, it is It should be pointed out that this phenomenology is
convenient to separate out this component so that the expected to apply only if the external magnetic field
definition of the Elsasser amplitudes is slightly modi- is sufficiently strong so that T A < TN L, the latter time
fied, z:i: = u:i: (b -bo) and being fixed by the largest scales containing most nof

the energy.

z+ = 0, z- = tg(x + t), p = canst S~(l) '" < 6u;P > -l(p (13)

where f and 9 are arbitrary functions fixed by the with (p = 2p/3 for neutral fluids or (p = 2p/4 for
initial conditions, and t a constant polarisation vector MHD. This is not what is observed in experiments

3.3 Intermittency
In the phenomenological models described above, it is
assumed that the energy transfer rate t is a constant
quantity. If one further assumes that the velocity fluc-
tuation dUI is distributed with a gaussian probability
distribution function with a rms value '"'" (d)1!3 for

neutral fluid turbulence or (tcAl)1/4 for MHD then its
structure functions should behave as
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or numerical simulations, (see for example Sreenivasan about 0"0 ,..., (fl)I/3, so that the final pdf is the convo-
and Antonia, 1997, or Frisch, 1995) where the scaling lution of a gaussian with the pdf q(O") of 0". This last
(13) is indeed observed in the inertial range but with pdf is chosen to be log normal
an exponent (p which is not a linear function of p but
shows a significant curvature

( ) 1 1/ In2(0"/0"0) ,
q 0" = -exp -.

,'\ -!'iir 2,\2 ) d(ln!!:.-)
0"0

~

(p = 2p/3 -/.lp

leading to a pdf

6U2

20-2
~~~~) ~c .

where the "intermittency' exponents J1.P increase
with the order p (compare with the multi affine model
of section (2)). This curvature is due to the presence
of relatively unfrequent but large bursts of fluctuations
which contribute more and more to the structure func-
tions as its order increases. This can be seen in the
probability distribution functions of the velocity incre-
ment cSU/ = cSu(x + I) -cSu(x) (we are considering only
one component of the velocity and only space direc-
tion, in order to simplify the notations). These pdf are
gaussian for the largest scales, but as the scale dimin-
ishes they develop stronger and stronger tails behaving
exp [-i3It5u/IV] for large values of cSu/.

In the intermittent bursts, the velocity signal is even
less regular than in the main body of the turbulent fluid
and there are many reasons to think that there exists
many type of singularities -in the sense of localized
regions of very large gradients at the smallest scale of
the inertial domain- occupying less and less physical
volume as the strength of the singularity increases.

In the standard K41 phenomenology, only the mean
value of the energy transfer rate appears in the scaling
laws. However one expects that dissipation, especially
in a collisionless fluid like the solar wind, will occur in
highly localized regions having large gradients -for ex-
ample by collisionless tearing, etc i.e.in these "singu-
lar regions. Observations and numerical experiments
suggest indeed that the stongest " dissipative" events

occur in small scale coherent structures (displaying a
higher degree of spatial coherence that the surround-
ing flow, and having longer lifetime), where the transfer
rates may have different scaling properties.

Therefore, the deviations from K41 scaling laws seem
directly connected to the fact that the transfer rate (
is no longer a constant but is random. Many mod-
els have been proposed to incorporate this idea into a
phenomenological model, and it is outside the scope of
this paper to dicuss them (the interested reader is re-
ferred to the review by Sreenivasan and Antonia, 1997,
or the book by Frisch, 1995 ). Let us menti9n only the
empirical model proposed by Castaing et at. (1990) to
fit the observed pdf and the She and Leveque (1994)
model which has been rather successful to explain the
observed intermittency exponents.

The model developped by Castaing et at. (1990) is
based upon the idea that if one selects regions having
the same value of (, the velocity statistics is gaussian
with a variance 0'2 ((), but since ( is itself a random
variable, 0' ,..., (d)1/3, is also random and fluctuates

exp 2).,2
-

1 100Wo
"(ou) = .exp

for the velocity fluctuation (at scale 1) wich is the su-
perposition of a large number of gaussian distribution
with a large extent of width and a weight character-
ized by only one parameter >.. As we shall see later,
this pdf, which represents rather well the experimen-
tal results in fluid turbulence and in space plasmas like
the the Earth plasma sheet (Angelopoulos et al.,1999)
is also close to the observed pdf in the solar wind tur-
bulence.

The model by She and Leveque (1994) starts also
from the idea that the deviations from K41 scaling laws
seem directly connected to the fact that the transfer
rate ( is no longer a constant but is a random vari-
able, wich, when averaged over a ball of radius 1, has a
scaling

< (f >- 1'1" ; < ou;P >- 1("

The basic ideas of the model have some similarities
with the previous one, but instead of assuming that
the intermittent structures are distributed randomly,
the model assumes that there exists a whole hierarchy
of structures ranging from that of the "quietly turbu-
lent" flow ( labelled 0) with a mean transfer rate (0 in-
dependant of 1, to the most active structures (labelled
00) with a mean transfer rate (00 increasing when the
scale 1 decreases. The K41 scaling uses (0, while the
existence of the other structures account for the devi-
ations to the K41 scaling. Suppose now that the ratio
between < 4+1 > and < 4 > is due to the structures
of order p , characterized by a relative intensity

< (p+1 >xP -/
/- <4>

which would be = 1 in K41 -the idea being that as p
increases more singular structures contribute more and
more despite the fact that they occupy a smaller and
smaller volume.

Each of these structures results from the balance be-
tween the tendency to form highly singular structures
and the tendency of the surrounding disorganized flow
to disperse them. She and Leveque suggest that this
balance imply a dependance of the transfer rate xp+1
on XOO (tendency to form highly singular structures)
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and xP(tendency to diserse), which they assume to be
of universal form

Xf+l CX (XOO)fJ (Xp)l-fJ

with 13 < 1 so that xP -* XOO as P -* 00. All
structures are assumed to have the same lifetime t, =
(io/)2/3 /iO but the most active ones are assumed to be
able, during that time, to transfer to small scales an
energy of the order of that of the largest, energy con-
taining, eddies XOOiO = ov2(/0)/t, = iO (//10)-2/3, i.e
XOO cx: 1-2/3 .As a result there is a scaling relation of
the form

2Tlp+2 -(1 + {3)Tlp+l + {3Tlp + 3(1 -{3) = 0

which has the solution

leading to

(p = ~ + 2 ( 1 -(~) P)

for the scaling laws for the velocity structure func-
tions. An extension of this model to the MHD case
was proposed by Politano and Pouquet (1995), in the
framework of the IK phenomenology.

Coming back to the Haar wavelet transform this
discussion suggests to use some conditionning of the
wavelet spectra and structure functions to separate
the " quietly turbulent" flow, characterized by a mean

transfer rate (0 independant of I, from the other, more
active structures. Conditional sampling techniques
have been widely used to extract coherent events from
data records; wavelets are particularly well suited for
this purpose, because they allow This has been done
for example by Katul et at. (1994), in the analysis of
the atmospheric surface layer turbulence and by Veltri
and Mangeney (1999). The idea is to separate, at a
given scale m, the wavelet coefficients into two classes
according to their amplitude, those which are below a
certain threshold a~, lay(i, m)1 < a~, what happens at
time indices i belonging to some subset E = [il' i2, ...,.]
of the interval [1, N] which characterizes the" quietly
turbulent" flow and those with lay(i, m)1 > a~ which
characterizes the intermittent regions,

The conditionned structure functions are defined by
equations similar to (5), except that the sum represent-
ing the average value is calculated only points whose
index belong to E, To choose a meaningful threshold,
one may think to use the empirically determined pdf
of ay(i, m), but as we shall see later on, their shape
does not contain any feature which would justify a par-
ticular choice. Thus one is left \vith the lowest order
moment < lay(i, m)12 > the average being taken over
all points and the choice is (a~,)2 = F < lay(i, m)12 >,

Figure 5: Conditionned power spectra for the ISEE3
(triangles) and Wind (squares) xGSE component of the
magnetic field

the conditionning criteria being chosen so that not too
many points are excluded by the conditionning. Usu-
ally F '"'" 10, corresponding to the elimination of a few

percent of the points, and results practically indepen-
dant of the precise value of F.

4 The WIND observations

We have already given in the introduction some charac-
teristics of the data which we shall use here, the mag-
netic field from the MFI experiment and the plasma
data from the 3D-Palsma experiment, all sampled con-
tinuously with a 3 sec resolution. For most of the study
described below we have used N = 219 data points,
what allows to determine sufficiently accurately struc-
ture functions of order up to p = 9.

It should be noted that the low frequency spectrum
of the magnetic field shown in figure 1 are actually con-
ditionned wavelet spectra, with F = 10. This explains
its smoothness, which allow an easy and accurate de-
termination of the spectral slope. In particular, one
can specify the extent of the inertial domain, where
the spectrum has a clear power law shape.

This is illustrated in figure 5 which presents in its
upper panel a comparison between the Wind data -with
a resolution of 3 sec and the ISEE data with a resolu-
tion of Imin for the XGSE -component of the magnetic
field. Note that the two sets of data almost coincide-
a.ltough they were taken at distant times, of the order
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Figure 6: Scaling exponents (p, equation (13), for the
structure functions of BI:' By, B~, VI:,Vy, V~

Figure 7: Same as figure 6, but after conditionning

of a decade!
There appears to be a break in the spectral slope

around a frequency / -10-4 H z above which the spec-
trum becomes a K41 power law. This is confirmed
by the lower panel of Figure 5 which displays the two
spectra multiplied by /5/3. One sees immediately that
the compensated spectrum is almost flat in the do-
main 10-4 -10-1Hzi. Therefore the inertial range of
the Alfvenic turbulence in the solar wind appears to
extend from frequencies of order / -10-4 H z up to
the cyclotron frequency (Leamon et al., 1998).

The structure functions

<O~ >=< 11/J(t + r) -1/J(t)IP >

have been calculated up to order p = 8 for the quan-
tities \II = {B~,By,Bz,v~,vy,vz}. In figure 6, upper
panel, we have plotted the structure functions for B~
and v~ as a function of the time scales r m = 2m dt to
illustrate their general behavior. When nothing par-
ticular is done, their shape is consistent with a power
law behavior < o1/J~ >- r'" only for the lowest value
of p, especially for the radial velocity. One can still
determine the exponents C;p by fitting the structure
functions with power laws, although this determina-
tion becomes less and less accurate as p increases. The
result is shown in figure 6 which displays C;p versus p
together with the two linear laws expected with the
K41 or IK phenomenologies. As shown by Burlaga
(1991), Marsch and Liu (1993), Veltri and Mangeney
(1999) there is a strong deviation from gaussianity,
even stronger than in hydrdynamic turbulence.

On the other hand after conditioning with a moder-
ate threshold, F = 5, which eliminates less than 4% of
the data, the same structure functions exhibit a nice
power law behaviour, see equation (13) up to p = 8 al-
lowing a precise determination of c;p, which when plot-
ted against p (figure ??) exhibit a linear dependance

'p ::: "YP

("Y = 0.306) suggesting that one has effectively elim-
inated the most active, intermittent structures. It
should however be noted that the slopes are differ-
ent for different quantities. Surprinsingly the veloc-
ity components cluster around the K41 line, while the
magnetic field components cluster around the IK line.

Another possible description of the same information
is through the probability distribution functions of the
fluctuations, here the wavelet coefficients. Several au-
thors (Burlaga, 1993, Feynman and Ruzmaikin, 1994,
Marsch and Th, 1997) have shown that these pdf's are
essentially gaussian for time scales longer than a few
hours, but show strong deviations from gaussiannity at
smaller scales.

Figure 8 displays the six probability distribution
functions (normalized histograms) of the components
of W, for all accessible scales, but after a rescaling of
the abcissa

cS'.,j;m = 2-(m-l)('Y+!)cS't!;m

and the corresponding rescaling of the probability
distribution function. There is a very trong similarty to
what was observed in the multiaffine exemple of section
(2) and this figure demonstrates in particular that here
also, there is a self similar structure over the inertial
range.

What is the nature of the" intermittent events"? Let
us look at the "singular" points which have been left
when working on the conditioned structure functions.
The technique used here is to consider an interval of
data around the local maximum of the amplitude of
the wavelet coefficient at the smallest case, to perform
a minimum variance analysis of the magnetic field dur-
ing this interval: if the mimimum eigenvalue is suffi-
ci~nt\y small with r~spect to th~ wo oth~rs, th~n th~r~
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is good reasons to think that the "singularity" has at
least locally a sheetlike geometry.

We shall not present here an exhaustive description
of all structures which are detected in this way. Let us
briefly describe one of the most common, current sheet
type, an example from day 143 of 1995 being given in
figure 9.

The upper panel displays the three components of
the magnetic field in the principal axis of the mini-
mum variance analysis while the lower panel displays
the evolution of the ratio ov.oBj (ovrm6oBrm6) mea-
suring the degree of alignment of the perturbations in
the two fields (the average magnetic field and velocity
for the period analyzed have been substracted, while
the resulting perturbations ov and oB have been nor-
malized to their total rms value during the same in-
terval). In this case there are two small eigenvalues
and it is hard to determine wether it is a one or two
dimensional structure.

Besides this current layers, the "singularities" can
take the form of shock waves, magnetic holes, soliton
like Alfvenic perturbations, which will be described in
detail in future papers.
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Figure 8:
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