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ABSTRACT
We present three-dimensional MHD simulations of buoyant magnetic Ñux tubes that rise through a

stratiÐed model convection zone in the presence of solar rotation. The equations of MHD are solved in
the anelastic approximation, and the results are used to determine the e†ects of solar rotation on the
dynamic evolution of an )-loop. We Ðnd that the Coriolis force signiÐcantly suppresses the degree of
fragmentation at the apex of the loop during its ascent toward the photosphere. If the initial axial Ðeld
strength of the tube is reduced, then, in the absence of forces due to convective motions, the degree of
apex fragmentation is also reduced. Our simulations conÐrm the results of thin Ñux-tube calculations
that show the leading polarity of an emerging active region positioned closer to the equator than the
trailing polarity and the trailing leg of the loop oriented more vertically than the leading leg. We show
that the Coriolis force slows the rise of the tube and induces a retrograde Ñow in both the magnetized
and unmagnetized plasma of an emerging active region. Observationally, we predict that this Ñow will
appear to originate at the leading polarity and will terminate at the trailing polarity.
Subject headings : methods : numerical È MHD È Sun: interior È Sun: magnetic Ðelds

1. INTRODUCTION

Active regions represent the largest observable concen-
trations of magnetic Ñux on the Sun. The magnetic Ðeld
within active regions exhibits a bipolar structure, which
suggests that they are the tops of large )-shaped loops
which have risen through the convection zone and have
emerged through the photosphere. On average, active
region bipoles are oriented nearly parallel to the east-west
direction (HaleÏs polarity law). This suggests that the sub-
surface Ðeld geometry is approximately toroidal. Since
active regions appear to be the tops of large, rising )-loops,
and since HaleÏs law persists for years in a given solar cycle,
we can infer that the toroidal Ñux must exist well below the
solar surface and that the magnetic Ñux must reside in a
region where it is relatively free from disruption by buoyant
instabilities or convective motions (Spruit & van Ballegoo-
ijen 1982 ; van Ballegooijen 1982 ; Ferriz-Mas & Schu� ssler
1993, 1995). However, if the magnetic Ñux is embedded in
the radiative zone (well below the convective zone), it would
be so stable that it could not emerge through the surface on
the timescale of a solar cycle (Parker 1979 ; van Ballegooijen
1982). This implies that the toroidal Ðeld likely resides in the
““ convective overshoot region ÏÏÈa thin, slightly convec-
tively stable layer located at the interface of the radiative
and convective zones. This layer also appears to coincide
with the ““ tachocline ÏÏ (Kosovichev 1996 ; Corbard et al.
1999), where the solid-body rotational behavior of the radi-
ative interior transitions into the di†erential rotation
behavior observed in the convection zone. Thus, the toroi-
dal Ðeld seems to be generated and stored in the overshoot
layer (Gilman, Morrow, & DeLuca 1989 ; DeLuca &
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Gilman 1991 ; Parker 1993 ; MacGregor & Charbonneau
1997 ; Durney 1997 ; Dikpati & Charbonneau 1999).

We now have a basic picture of how active regions might
form: a portion of the toroidal Ñux layer eventually suc-
cumbs to one of several possible instabilities (e.g., Caligari,
Moreno-Insertis, & 1995 ; Fan & Fisher 1996 ;Schu� ssler
Fan 2000 ; Wissink et al. 2000b) and forms a magnetically
buoyant tube that begins to rise through the convection
zone toward the photosphere. The top of the emerging Ñux
loop is then observed at the photosphere as a bipolar mag-
netic region. The simplest way to model this picture is with
the ““ thin Ñux tube ÏÏ approximation (see Defauw 1976 ;
Roberts & Webb 1978 ; Spruit 1981). In this simple model, it
is assumed that magnetic Ñux tubes move through a Ðeld-
free plasma, that the cross section of the tube is much
smaller than all other relevant length scales of the problem,
and that pressure balance is always maintained across the
tube. Given these assumptions, one can derive an equation
of motion for a one-dimensional tube moving through a
three-dimensional medium. This model has had great
success in explaining many of the observed properties of
active regions, including (but not limited to) the variation
and scatter of active region tilt as a function of solar latitude
(DÏSilva & Howard 1993 ; DÏSilva & Choudhuri 1993 ; Fan,
Fisher, & Deluca 1993 ; Caligari et al. 1995 ; Fisher, Fan, &
Howard 1995 ; Longcope & Fisher 1996 ; Fan & Fisher
1996), the asymmetries in the orientation of active regions
just after emergence (van Driel-Gesztelyi & Petrovay 1990 ;
Moreno-Insertis, Caligari, & 1994), and the lati-Schu� ssler
tudinal variation and Ñuctuations of Ðeld-line twist from
active region to active region (Longcope, Fisher, & Pevtsov
1998).

However, from the start, the thin Ñux tube approx-
imation assumes that the magnetic Ðeld will retain its
““ tubelike ÏÏ identity, that is, it will not fragment or disperse
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as it evolves. This assumption is called into question by
recent two-dimensional MHD simulations which show that
unless Ñux tubes possess a critical amount of initial Ðeld-line
twist along the tubeÈand observations of emerging active
regions suggest that many do not (Pevtsov, CanÐeld, &
Metcalf 1995 ; Longcope et al. 1998, 1999)Èthe tubes will
fragment (break apart) before they are able to emerge
through the surface (Linton, Longcope, & Fisher 1996 ;
Moreno-Insertis & Emonet 1996 ; Emonet & Moreno-
Insertis 1998 ; Fan, Zweibel, & Lantz 1998). Recently,
Abbett, Fisher, & Fan (2000) used three-dimensional MHD
simulations to demonstrate that the degree of cohesion at
the apex of an emerging )-loop depends strongly on the
three-dimensional geometry of the loop. If the curvature of
the )-loop at its apex is relatively large (i.e., if the loop is tall
and narrow), then the apex will emerge through the photo-
sphere more cohesively than if the curvature is small (i.e., if
the )-loop is short and wide). Dorch & Nordlund (1998)
and Dorch, Archontis, & Nordlund (1999) also performed
detailed three-dimensional MHD simulations of buoyant
magnetic Ñux tubes. All of these three-dimensional studies
still require a signiÐcant amount of initial Ðeld-line twist in
order to suppress the eventual fragmentation of the tube
near the loop apex. Is there a way out this quandary which
Abbett et al. (2000) refer to as ““ LongcopeÏs paradox ÏÏ ?

In this paper, we investigate how solar rotation a†ects the
dynamic evolution of buoyant magnetic Ñux tubes. We Ðnd
that the Coriolis force plays a dynamically important role
during the tubeÏs ascent and acts to maintain the tubeÏs
cohesion even in the absence of initial Ðeld-line twist, possi-
bly resolving LongcopeÏs paradox. In ° 2 we brieÑy describe
our computational methodology, discuss how we include
the Coriolis force in our computational model, and deÐne
the relevant physical parameters of our problem. In ° 3 we
analyze the results of our simulations and develop a very
simple model that e†ectively characterizes the simulation
results pertaining to Ñux-tube cohesion. In this section we
also comment on possible observational consequences of
the simulations. Finally, we present our summary and con-
clusions in ° 4.

2. METHOD

We use the methods described in Abbett et al. (2000) and
Fan et al. (1999) to solve the three-dimensional equations of
MHD in the anelastic approximation (Ogura & Phillips
1962 ; Gough 1969 ; Lantz & Fan 1999). The anelastic equa-
tions result from an expansion of the equations of com-
pressible MHD about a zeroth-order reference state (which
we take to be a Ðeld-free, adiabatically stratiÐed polytrope
of index m\ 1.5). In this approximation, the higher order
time derivative of the perturbed density is neglected, e†ec-
tively Ðltering out fast-moving acoustic waves. This is com-
putationally advantageous, as it allows for much larger
timesteps than would be possible in a fully compressible
calculation. This approximation is valid in subsurface
regions where the acoustic Mach number is small (M 4

and where the local sound speed greatlyv/c
s
> 1) (c

s
)

exceeds the speed of the plasma (GlatzmeierAlfve� n (vA)
1984). A detailed theoretical discussion of the anelastic for-
mulation can be found in Lantz & Fan (1999, and references
therein).

The anelastic equations in a nonrotating reference frame
are given by equations (1)È(7) in Abbett et al. (2000, here-
after AFF). To consider the e†ects of solar rotation, we

adjust the anelastic momentum equation to include non-
inertial terms (we note here that, due to a typesetting error
in the Ðnal version of AFF, a cross-product symbol was
omitted in the Lorentz force term of eq. [2]). In this study,
we neglect centrifugal e†ects and concentrate only on the
e†ects of the Coriolis force due to solid-body rotation. In
this approximation, the anelastic momentum equation (in
the rotating reference frame) becomes
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Here refers to the density stratiÐcation of the zeroth-o0order reference state, while and B represent theo1, p1, ¿,
density, pressure, velocity, and magnetic Ðeld perturbations.
The viscous stress tensor is given by %
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cosity and is the Kronecker delta function. The term Xd
ijdenotes the angular velocity about the SunÏs axis of rota-

tion. Both the acceleration due to gravity, and theg \ [gzü ,
coefficient of viscosity are assumed constant in our calcu-
lations.

We solve the nondimensional form of the anelastic equa-
tions in the modiÐed, local f-plane approximation of Brum-
mell, Hurlburt, & Toomre (1996). This approach is similar
to the standard f-plane approximation of geophysical Ñuid
dynamics (Pedlosky 1987), except that the transverse com-
ponents of the Coriolis force within the rectangular domain
are retained. Since ) is assumed constant throughout the
Cartesian box (positioned at a given latitude), we can apply
simple, periodic boundary conditions in the horizontal
directions, and stress-free, nonpenetrating conditions at the
upper and lower boundaries. Further simpliÐcation is pos-
sible by noting that the momentum density (in the anelastic
approximation) and magnetic Ðeld vectors are both
divergence-free. This allows us to deÐne scalar potentials
such that andB 4 $ Â $ ÂBzü ] $ ÂJzü o0 ¿4 $ Â $

Along with the other dependent vari-ÂWzü ] $ ÂZzü .
ables of the system, these potentials are decomposed spec-
trally in the horizontal directions :
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ynumber of zones in the and directions. The Fourierxü yü
coefficients are then discretized with respect to the vertical
direction (deÐned to be parallel to g), and vertical deriv-
atives are approximated by fourth-order, centered Ðnite dif-
ferences. Using the semi-implicit method of operator
splitting, we apply the second-order Adams-Bashforth
scheme to the advection terms, and the second-order
Crank-Nicholson scheme to the di†usion terms (see Press et
al. 1986 for a description of these methods).

A detailed, in-depth description of the techniques we
employ to obtain a solution to the anelastic equations in a
nonrotating reference frame can be found in Appendix A of
Fan et al. (1999, hereafter FZLF). Only minor modiÐcations
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are necessary to extend that formalism to apply in the case
of a rotating reference frame in the modiÐed f-plane approx-
imation. The equation for the time evolution of theZ3

mn
,

Fourier coefficients of the spectral decomposition of Z, is
obtained by evaluating the of the curl of thezü -component
momentum equation. Thus, the addition of the Coriolis
term to equation (1) results in an additional noninertial
term to equation (A16) of FZLF:
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Here the terms represent the Cartesian components of)
ithe angular velocity vector, and denotes the FourierW3

mncoefficients of the scalar potential W. Equation (A18) of
FZLF results from taking the and components of thexü yü
curl of the momentum equation as it appears in
equation (A4). Thus, we must add another term to
equation (A18) to reÑect the addition of the Coriolis force
to equation (1) :
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In the above equation, t8
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mnequation (A18) of FZLF (we change notation so as to avoid
confusion with the components of the angular velocity
vector) ; and are the Fourier coefficients of theu8
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and components of the vorticity ; andyü h04[o0(Lo0/Lz)~1
is the density scale height. The last necessary modiÐcation is
to equations (A23) and (A24) of FZLF where we add the
contribution from the horizontal average of the Coriolis
term in the momentum equation : [L(o0 v
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zWe now turn our attention to the nondimensional formu-

lation of the anelastic equations as implemented in the code.
As was described in AFF, many of the dimensionless physi-
cal variables and fundamental physical parameters are
expressed in terms of the magnetic Ðeld strength along the
axis of the initial Ñux tube, With the addition ofB0.the Coriolis force to the momentum equation, we intro-

duce another fundamental dimensionless quantity, R
b
4

which we refer to as the ““ magneticvA/(2)H
r
) 4 1/(2)@),

Rossby number ÏÏ (a quantity also discussed by &Schu� ssler
Solanki 1992). Here )@ is deÐned as the nondimensional
rotation rate given in terms of the ratio of the characteristic
velocity scale to the characteristic length scale of our
problem, namely, the pressure scale height at the base of the
computational domain and the speed along the(H

r
) Alfve� n

axis of the initial tube where the charac-(vA 4B0/(2Jno
r
),

teristic density, is taken to be the density at the lowero
r
,

boundary). The magnetic Rossby number is a measure of
the relative importance of the Coriolis force on the dynamic
evolution of our buoyant magnetic Ñux tube. Rotational
e†ects become important when and are less signiÐ-R

b
\ 1

cant when We therefore wish to investigate threeR
b
[ 1.

representative cases : and Of course,R
b
\ 12, Rb

\ 1, R
b
\ 2.

the solar rotation rate is not a free parameterÈestimates of
) in di†erent parts of the convection zone can be obtained
from helioseismologic measurements. Thus, varying the
magnetic Rossby number to investigate the e†ect of solar
rotation on a buoyant magnetic Ñux tube amounts to
varying the initial axial Ðeld strength of the tube.

The speciÐcation of impacts the scaling of two of theB0nondimensional di†usive parameters : the Reynolds number
and the magnetic Reynolds number(R

e
4 [o][l][v]k~1)

Again, the characteristic length, velocity,(R
m

4 [l][v]g~1).
and density scales ([l], [v], and [o]) are given in terms ofH

r
,

and respectively. For this study, we hold the coeffi-vA, o
r
,

cients of viscosity and magnetic di†usion (k and g,
respectively) constant between runs (where possible), and
vary such that we obtain our three representative valuesB0of the magnetic Rossby number. In this manner, we focus
our attention on the e†ects of solar rotation on the dynamic
evolution of a rising )-loop. We note, however, that as B0becomes large, it is increasingly difficult to hold the coeffi-
cient of viscosity constant for a given grid resolution. This is
because as the Reynolds number increases, features develop
at the forefront of the rising tube and in the trailing eddies
that are on the order of a few grid zones in size. If this
occurs, the code becomes unstable, and the grid resolution
must be increased to alleviate the problem. Table 1 lists the
values of the relevant physical parameters for each of seven
simulations. For the cases where G, values of kB0D 105
and g were increased to avoid instabilities. We otherwise
would have to double the grid resolution in the tube cross
section to take full advantage of the FFT algorithms
employed in the code, and such a large increase is unneces-
sary for the purposes of this study.

TABLE 1

PHYSICAL PARAMETERS

B0 k, l
Label Resolutiona Latitudeb ())c (G) R

b
R

e
, R

m
(cgs)

LFHL . . . . . . 256 ] 128 ] 128 30 (13.5135) 2.5966] 104 0.5 1700.07 5.7805] 1010
LFLL . . . . . . . 256] 128 ] 128 15 (13.9104) 2.6728] 104 0.5 1750.00 5.7805] 1010
MFHL . . . . . . 256 ] 128 ] 128 30 (13.5135) 5.1932] 104 1.0 3400.15 5.7805] 1010
MFLL . . . . . . 256 ] 128 ] 128 15 (13.9104) 5.3457] 104 1.0 3500.00 5.7805] 1010
HFHL . . . . . . 256 ] 128 ] 128 30 (13.5135) 1.0386] 105 2.0 3400.15 1.1561] 1011
HFLL . . . . . . 256 ] 128 ] 128 15 (13.9104) 1.0691] 105 2.0 3500.00 1.1561] 1011

a x ] y ] z.
b Latitude, in degrees.
c Observed rotation rate, in degrees day~1 ; data from MDI 2dRLS inversion (P. H. Scherrer 1997, at

http ://soi.stanford.edu/press/ssu8-97/frame61.html).
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Our labeling convention (see col. [1] of Table 1) consists
of four letters which signify both the strength of and theB0latitude of the computational box. For example, LFHL
refers to the run which has an initial magnetic Ñux tube with
a relatively low axial Ðeld strength positioned at a high lati-
tude, while HFLL refers to the run with an initial tube of
relatively high axial Ðeld strength positioned at low
latitudeÈand so on. Run SS0 refers to the simulation where
solar rotation was neglected (this notation was chosen in
order to be consistent with the naming convention of AFF).
In each case, we begin with a static, horizontal, cylindrical
magnetic Ñux tube positioned near the bottom of a simula-
tion box that spans 5.147 pressure scale heights vertically.
The initial Ðeld conÐguration is given by whereB \ B

x
(r)xü ,

and r is the radial distance to the centralB
x
(r)4B0 e~r2@a2

axis in the tubeÏs cross section. The size of the initial tube, a,
is taken to be in each of the simulations. We choose0.1H

rnot to include any initial Ðeld-line twist about the central
axis of the tube, since we wish to determine what role the
Coriolis force alone plays in the overall fragmentation of the
tube as it rises toward the photosphere. As was done in
AFF, we apply an artiÐcial entropy perturbation to the
midsection of the tube at time t \ 0. This causes the tube to
rise as an )-loop without having to take the computa-
tionally expensive step of evolving each case self-
consistently from a state of initial force balance (as was
done in Caligari et al. 1995 ; Fan & Fisher 1996 ; Fan 2000).

3. RESULTS

Each simulation begins with an untwisted cylindrical
magnetic Ñux tube embedded near the base of our model
convection zone. An entropy perturbation is applied to the
Ñux tube such that in the absence of rotation, the tube will
rise as an )-loop, and the apex will approach the photo-
spheric boundary in a highly ““ fragmented ÏÏ state. That is, a
majority of the magnetic Ñux will be concentrated away
from the tubeÏs central axis along vortex pairs that are shed
during the tubeÏs ascent. Following AFF, we consider a
section of the )-loop to be fragmented if the ratio of the
magnetic Ðeld weighted second moments of position along
the Frenet binormal and normal directions of the tube
exceed 1.5 (see ° 3 of AFF for details on how tube fragmen-
tation is determined, and see Figs. 1 and 3 in AFF for visual
examples of a fragmented and nonfragmented )-loop). We
expect that solar rotation will play a dynamically important
role during the tubeÏs ascent, since the loopÏs rise time is on
the order of a rotation period for reasonable initial Ðeld
strengths (3 ] 104 G G; see Fisher et al.[ B0[ 1 ] 105
2000).

We Ðnd that the impact of the Coriolis force on a rising
Ñux tube is dramatic, as demonstrated in Figure 1. In this
Ðgure, we compare the magnetic Ðeld strength in the apex
cross section of two )-loops : one which rises at 15¡ latitude
in the presence of solar rotation day~1) with()D 13¡.9
an initial axial Ðeld strength of GB0\ 2.67] 104
(corresponding to and an identical loop whichR

b
\ 0.5)

rises in the absence of rotation. Two e†ects are immediately
apparent. First, the )-loop that rises through the rotating
atmosphere has yet to attain the height of the loop that rises
through the nonrotating atmosphere, and second, the loop
subjected to the e†ects of the Coriolis force retains its cohe-
sion, and does not fragment. Figure 2 is a volume rendering
of a rising magnetic Ñux tube in a run where andR

b
\ 2

G. The coordinate axes are chosen such thatB0\ 1.0] 105

points northward, and points radially outward. Again,yü zü
we see that the tube retains its cohesion during its ascent.
Figure 2 also demonstrates that in the presence of rotation,
the )-loop is somewhat asymmetric about the apex. That is,
the trailing portion of the loop forms a steeper angle with
respect to the direction than the leading side of the loop.xü

A qualitative understanding of these e†ects can be
obtained by examining Figure 3, which shows o B o , the
transverse components of the Coriolis force, and the Ñow
Ðeld in the apex cross section during the initial stages of run
LFLL (an earlier snapshot of the same run that is displayed
in the left frame of Fig. 1). In this plot (and all others, unless
otherwise stated) the physical quantities are displayed in
naturalized units : the magnetic Ðeld strength is given in
terms of the strength of the Ðeld along the axis of tube at
t \ 0 the velocities are given in terms of the(B0), Alfve� n
speed along the axis of the initial tube and the unit of(vA),
time is the ratio of the pressure scale height at the base of
the computational domain to the characteristic velocity,

For run LFLL, shown in Figure 3,H
r
/vA. B0\ 2.67] 104

G, cm s~1 (for g cm~3), andvA \ 1.68] 104 o
r
\ 0.2

t \ 1.5 corresponds to 6.18 days. The axes in the Ðgure are
given in terms of computational zones ; in this case, each
individual zone is or approximately 1 Mm.0.017H

rIn the right-hand frame of Figure 3 we see that a strong,
retrograde axial Ñow has developed as a result of the
Coriolis force acting on rising material within the buoyant
loop. This is in sharp contrast to the simulations in AFF,
where solar rotation is neglected and the initial Ñux tube
has little or no Ðeld-line twist. In these cases, the strong
axial Ñow is absent, and counterrotating vortex pairs can
quickly form on either side of the tubeÏs central axis (see
also Wissink et al. 2000a ; Dorch & Nordlund 1998). As was
shown in AFF and Longcope, Fisher, & Arendt (1996), the
nonvertical component of the hydrodynamic ““ lift ÏÏ force
per unit volume generated by Ñows in the vortex tubes acts
to push them apart, ultimately resulting in fragmentation
near the apex of the )-loop. However, in the presence of
rotation, we Ðnd that the circulation (and thus the degree of
fragmentation of the loop) is substantially reduced. Roughly
speaking, this follows from the fact that the Coriolis force
can do no work (it always acts in a direction perpendicular
to the Ñow) ; it simply redistributes kinetic energy between
transverse and axial Ñows. The initial increase in the axial
Ñow at the apex of the loop gives rise to a secondary e†ect :
a transverse component of the Coriolis force normal to the
angular velocity vector. At low latitudes, this component
acts primarily in the direction and opposes the buoyant[zü
rise of the loop ; however, it also forces the top of the loop to
drift northward over time.

In simulations where the e†ects of rotation are neglected,
we Ðnd that material Ñows along the rising tube away from
the apex. In the presence of rotation, this type of ““ draining ÏÏ
Ñow manifests itself as an asymmetry in the axial Ñow
induced by the Coriolis force ; the retrograde Ñow is strong-
er in the trailing side of the loop than it is in the leading side.
As the Coriolis force acts upon these asymmetric axial
Ñows, and as the buoyant, magnetized plasma attempts to
preserve its angular momentum, the morphological asym-
metry predicted by Moreno-Insertis et al. (1994) and appar-
ent in Figure 2 quickly develops.

Figure 4 shows the transverse components of the Coriolis
force and the Ñow Ðeld in the apex cross section of run
MFLL at t \ 5.5 (the same time, in naturalized units, as the



FIG. 1.ÈApex cross sections of o B o for a simulation with at 15¡ latitude (left frame, run LFLL), and a simulation neglecting solar rotation (rightR
b
\ 0.5

frame, labeled run SS0 to be consistent with the naming convention of AFF). o B o is given in terms of the Ðeld strength along the axis of the initial tube, and t
is given in units of the ratio of the pressure scale height at the base of the domain to the speed along the axis of the initial tube. The coordinate axes areAlfve� n
given in terms of computational zones, though only a portion of the domain is shown.

FIG. 2.ÈVolume rendering of o B o for the )-loop of run HFLL at t \ 8.53. The entire rectangular computational domain is shown.
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FIG. 3.ÈApex cross sections of o B o along with the transverse Coriolis force (left frame), and the corresponding velocity Ðeld (right frame) for run LFLL
at 15¡ latitude) at t \ 1.5. Quantities are given in naturalized units (see text for details). In the right frame, axial Ñows depicted in red indicate(R

b
\ 0.5

velocities receding from the viewer, while blue colors indicate Ñow moving toward the viewer. Here that is, the axial Ñows aremax o ¿
x
o /max o ¿

T
oB 1.5 ;

stronger than the transverse Ñows. The angular velocity vector is displayed in the lower left-hand corner of the left frame and applies to the entire Ðgure.

cross sections of Fig. 1). In this run, and the domainR
b
\ 1,

is again centered at 15¡ latitude. This implies that B0\ 5.35
] 104 G, cm s~1, and the unit of time isvA \ 3.37 ] 104
2.06 days (t \ 5.5 thus corresponds to 11.3 days). In an
earlier snapshot of run MFLL (t \ 1.5), the morphology
and Ñow patterns are very similar to those shown for run
LFLL in Figure 3. However, as the runs progress, di†er-
ences in secondary and tertiary Ñows become more pro-
nounced, and the loops begin to evolve in a dissimilar
manner. This is evident when comparing the Ðrst frame of
Figure 4 with the frames of Figure 1, which highlight the
striking di†erences in morphology that ultimately develop
between simulations with di†erent values of the magnetic
Rossby number. These Ðgures show that as the initial axial
magnetic Ðeld strength of the tube is increased, the tendency
for the tube to fragment as it rises toward the photosphere
is also increased.

3.1. An Approximate Model
To better understand the relationship between magnetic

Rossby number, latitude of Ñux emergence, and loop frag-
mentation, we approximate the forcing terms of the
momentum equation (eq. [1]) by constant, order-of-mag-
nitude estimates evaluated for our initial conditions and
valid for the initial stages of evolution. We then have a

simpliÐed expression for the velocity Ðeld that admits to an
analytic solution :

d¿
dt

\ [2(X Â ¿) ] Q . (5)

It is important to recognize that this simple approximation
will not capture the factor of 2 reduction in acceleration
that occurs in the nonrotating case because of ““ added
inertia ÏÏ e†ects (see Longcope et al. 1996). Nevertheless, it
does capture the essence of the dynamic e†ects introduced
by the Coriolis force. Let represent the Cartesian(q

x
, q

y
, q

z
)

components of the constant driving term Q, and let h rep-
resent solar latitude. Then the general solution to the above
equation is given by
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FIG. 4.ÈSame as Fig. 3 for run MFLL at 15¡ latitude) at t \ 5.5 (the same time as displayed in Fig. 1). Here(R
b
\ 1 max o ¿
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oB 1.1.

v
z
(t)\ [ q

x
2)

cos h cos 2)t [ v
x
(P) cos h sin 2)t

](q
z
] 2)v

x
(P) cos h)t ] q

x
2)

cos h , (8)
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The total circulation over a cross-sectional slice of the
Ñux tube is given by where C is!\ /

S
x Æ nü

S
dS \ {

C
¿ Æ dl,

the closed circuit bounding the cross-sectional surface S, nü
Sis the outward normal to S, and is the vorticityx\$ Â ¿

vector. As the tube begins to rise, oppositely directed circu-
lation patterns form on either side of a line deÐned by the
Frenet normal. The total circulation of these regions (at the
loop apex) is given by if!\ {

C
¿ Æ dl B /

la
dl

a
v
z
B aSv

z
T,

we assume that the primary contribution to ! stems from
across the diameter of the tube, a. Since is roughly¿ Æ dl v

zconstant across the interior of the tube, we can approximate
the circulation (and thus the forces acting to pull the tube
apart) with our analytic solution for the velocity. Initially,
the motion of the tube is determined by the buoyancy force,
which acts in the z direction. Thus, we assume that andq

xare zero, and express the circulation asq
y

!(t)\ avA2
2H

r

C
t sin2 h ] sin (2)t)

2)
cos2 h

D
. (10)

We plot our simple approximation of !(t) for four represen-
tative values of in Figure 5.R

bIn order to compare our approximation with the MHD
solution, we must Ðrst obtain !(t) directly from the simula-
tion data. To accomplish this, we follow the methodology
described in ° 3 of AFF, and Ðrst calculate the path of the
magnetic Ñux tube through the background plasma. The
position of the loop (and its fragments, if applicable) is
speciÐed by the magnetic Ðeld weighted Ðrst moments of
position along a series of two-dimensional slices that closely
correspond to the tubeÏs cross-sectional plane. Once the
path of the tube is determined (see ° 3 of AFF), we construct
the Frenet basis vectors and deÐne two regions on either
side of a line deÐned by the Frenet normal where the
oppositely directed circulation patterns will develop. From
the simulation results, we then compute the total circulation
across each of these regions. Figure 6 shows !(t) for each
simulation. One can compare these results with the simple
approximation shown in Figure 5. It is clear that the
general pattern of time dependence of the circulation is suc-
cessfully reproduced by our simple model, though there are
signiÐcant di†erences in the details.

The oscillations in !(t) are inertia waves (see Batchelor
1967) with a period of (here t is expressed in nor-t \ 2nR

bmalized units of Thus, the tendency for the loops toH
r
/vA).

fragment is signiÐcantly reduced after the circulation begins
to fall o† at The overall evolution of the loopt \nR

b
/2.

depends strongly on the dynamics during the initial portion
of its rise, since the early di†erences in secondary and ter-
tiary Ñows induced by the Coriolis force have a signiÐcant
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impact on the eventual evolution of the tube. We Ðnd that if
the tube is able to rise several of its diameters before t
reaches then the resulting )-loop will ascend towardnR

b
/2,

the photosphere in a fragmented stateÈotherwise, the tube
evolves cohesively.

We can infer from our approximate model that, on
average, the rise speed of the tube slowly increases over
time. This prediction is conÐrmed by the simulations, which
(for sufficiently high choices of and show the initialR

e
R

m
)

slow, linear increase in the rise speed of the tube, modulated
by inertial oscillations. This behavior persists in the simula-
tions until t becomes comparable to the di†usive timescale.
If this occurs, magnetic di†usion begins to (artiÐcially)
reduce the buoyancy of the tube, eventually preventing it
from approaching the upper boundary (this occurred in
runs LFLL and LFHL after t B 34.0). Of course, this
problem can be mitigated by reducing the coefficient of
magnetic di†usivity in the simulations, but this requires a
signiÐcant increase in grid resolution (to avoid numerical
instabilities) ; and since our analysis concentrates on the
early stages of loop evolution, such a computationally
expensive step is unwarranted.

FIG. 5.ÈAnalytic solution for the total circulation of a tube
““ fragment ÏÏ as a function of time for four representative values of the
magnetic Rossby number. The quantities are given in naturalized units.

FIG. 6.ÈThree-dimensional MHD solution for the total circulation of a
tube ““ fragment ÏÏ at latitudes of 15¡ and 30¡ as a function of time and
magnetic Rossby number. The quantities are given in naturalized units.

3.2. Comparison with Two-dimensional Models
To investigate the role that three-dimensional geometry

plays in the tubeÏs evolution, we compare our runs with
simulations of buoyant, axially symmetric magnetic Ñux
tubes moving in two dimensions. Figure 7 shows the tube
cross section of a two-dimensional run whose parameters
are that of the three-dimensional run MFLL shown in the
Ðrst frame of Figure 4. This two-dimensional case can be
thought of as an inÐnitely long, buoyant, axially symmetric
)-loop of zero apex curvature. A comparison of the apex
cross section shown in Figure 4 with the cross section of
Figure 7 reveals that a two-dimensional geometric con-
straint imposed on the solution (even in the early stages of
loop evolution) signiÐcantly alters the dynamic evolution of
the tube. This suggests that in the presence of solar rotation,
the geometry of the )-loop still plays an important role in
determining the morphology of the emerging magnetic
ÐeldÈa result consistent with the Ðndings of AFF for
similar runs where solar rotation was neglected.

In a two-dimensional case, the Coriolis force still acts to
suppress the fragmentation of the tube. However, the
hydrodynamic ““ lift ÏÏ force that acts to fragment the tube is
overestimated due to the tubeÏs e†ectively inÐnite axial
length scale. It is the binormal component of this force that
acts to pull the tube apart (see Longcope et al. 1996 ; Fan et
al. 1998 ; AFF), thus the overall tendency for the tube to
retain its cohesion during its ascent is reduced as compared
to the three-dimensional cases. In addition, the amount that
the tube is deÑected toward the pole is signiÐcantly overesti-
mated in a two-dimensional geometry. This is because in
three dimensions, the component of the Coriolis force that
acts to push the tube poleward acts only on the portion of
the )-loop where there are strong, mainly axial Ñows (e.g.,
near the apex). In general, our calculations support the con-
clusions of Wissink et al. (2000a), who used two-
dimensional simulations to demonstrate that in the
presence of the Coriolis force, Ñux tubes remained some-
what more cohesive during their ascent. We note, however,
that in three-dimensional cases, this e†ect is more dramatic.

3.3. Morphology of the Emerging Magnetic Field
There are several reasons why we must be cautious when

making predictions about the behavior of emerging mag-
netic Ñux based on data obtained from our simulations.
First, the anelastic approximation becomes marginal as the
Ñux tube approaches the photospheric boundary, where
densities are lower, and the acoustic Mach number of the
Ñow approaches unity. Second, we intended for these simu-
lations to investigate the e†ects of the Coriolis force alone
on the evolution of our )-loop. Thus, we did not include
any Ðeld-line twist along our initial tube, nor did we con-
sider the e†ects of a tube rising through a dynamically con-
vecting background state. Third, our models do not
account for radiative losses that occur at the surface.
However, given these caveats, we feel that we can still make
some general predictions regarding expected magnetic Ðeld
and velocity Ñow patterns if the magnetic Ñux emerges
through a relatively uncluttered region on the solar disk.

Figure 8 shows the radial component of the magnetic
Ðeld along horizontal slices taken underneath the apex of
the rising )-loops of runs HFLL and SS0. This Ðgure
emphasizes the di†erences in morphology of emerging mag-
netic Ðeld between a simulation that includes the e†ects of
solar rotation (run HFLL) and one that does not (run SS0).
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FIG. 7.ÈCross section of o B o at t \ 5.5 (in normalized units) for a two-dimensional run that begins with the initial magnetic Ñux tube of run MFLL

In the Ðgures, outwardly directed Ðeld is displayed in white,
and inwardly directed Ðeld is displayed in black. Superim-
posed over each gray-scale image is the transverse velocity
Ðeld. One of the most striking e†ects of the Coriolis force is

FIG. 8.ÈGray-scale image of the radial magnetic Ðeld for a horizontal
slice just below the apex of the )-loops of the Ðnal timesteps of runs HFLL
(top frame) and SS0 (bottom frame). The vector Ðeld represents the trans-
verse (x-y) Ñow Ðeld. The x and y scales are given in terms of computa-
tional zones. The grid is uniform; each zone is roughly 1 Mm in size. There
is a very slight tilt of approximately from horizontal between the center2¡.5
of the bipolar regions.

the strong Ñow that rapidly develops in both the magne-
tized and unmagnetized plasma directed from the leading
toward the trailing polarity (the leading polarity moves in
the direction of solar rotation as the loop continues to rise).
This Ñow is simply the result of the Coriolis force acting on
the rising Ñuid just below the apex of each loop. This
““ LTT ÏÏ (leading to trailing polarity) Ñow is evident in all of
our simulations except in cases where solar rotation is
neglected.

The Coriolis force manifests itself in several other inter-
esting ways. First, since the trailing edge of the loop emerges
at a steeper angle with respect to the surface than the
leading edge (an e†ect most pronounced in the runs where

is small), the leading polarity becomes ““ spread out ÏÏ inR
bthe east-west direction (along x). Second, in the cases where

is small, we observe that the leading polarity is posi-R
btioned slightly closer to the equator than the trailing

polarityÈbehavior that is roughly consistent with the
““ JoyÏs Law ÏÏ result from thin Ñux-tube models (see DÏSilva
& Choudhuri 1993 ; Fan, Fisher, & McClymont 1994 ;

et al. 1994 ; Caligari et al. 1995 ; Fan & FisherSchu� ssler
1996 ; Fisher et al. 2000). Third, the north-south dispersion
of the emerging Ñux is greatly reduced when solar rotation
is included in the simulations. This reÑects the increased
cohesion of the Ñux rope during its ascent through our
model convection zone.

4. SUMMARY AND CONCLUSIONS

AFF found that the degree of fragmentation of a rising
)-loop depends upon the three-dimensional geometry of
the loopÈthe greater the apex curvature, the lesser the
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degree of fragmentation for a Ðxed amount of initial Ðeld-
line twist. We are now able to extend this analysis to a
rotating model convection zone and investigate how the
degree of apex fragmentation depends on the axial Ðeld
strength of the initial magnetic Ñux tube. Assuming a given
rotation rate, we Ðnd the following :

1. A magnetic Ñux tube that rises buoyantly toward the
photosphere in a rotating convection zone rises more slowly
and is better able to retain its cohesion than an identical
Ñux tube that rises through a nonrotating convection
zoneÈeven in the absence of initial Ðeld-line twist. If the
tube is sufficiently buoyant so that it is able to rise a dis-
tance of several tube diameters before t \ n/4) (where ) is
an estimate of the relevant solar rotation rate at a given
latitude), then the tube will fragment during its rise toward
the photosphere.

2. In the absence of forces due to convective motions, the
stronger the initial axial Ðeld strength of the tube, the more
fragmentation occurs as the tube rises.

3. An approximate model is able to predict the initial
evolution of the circulation and, hence, can e†ectively char-
acterize the formation and subsequent interaction of the
oppositely directed vortex pairs of a fragmented )-loop.

4. One must be careful not to overinterpret results from
two-dimensional simulations of buoyant magnetic Ñux
tubes. In a two-dimensional geometry, hydrodynamic forces
due to vortex interaction are overestimated. The amount of
poleward deÑection due to the Coriolis force is also over-
estimated.

5. If magnetic Ñux emerges as an )-loop, the Coriolis
force will induce a relatively strong Ñow that is directed
from the region of leading polarity to the region of trailing
polarity. This Ñow is present in both the magnetized and
unmagnetized plasma.
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