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Abstract. The stability of the fast solitary structures which 
were observed onboard several auroral crossing satellites is 
analyzed as a dynamical system and investigated numeri- 
cally. These large-amplitude potential spikes are supported 
by trapped electron populations. For parameters of low and 
mid-altitude auroral passes with gyro-to-bounce frequency 
ratios significantly larger than unity, the potential spikes are 
very resilient, while for lower magnetic fields, at ratios below 
unity, they develop unstable undulations in the transverse di- 
rection. The evolution of the solitary structures is related 
to changes in the trajectories of the trapped electrons. It is 
shown here that the coupling of the parallel and perpendicu- 
lar dynamics is stronger when the above ratio decreases, re- 
suiting in a bifurcation of trajectories. The addition of a small 
perturbation to the large amplitude structure leads to a very 
different response of the trapped electrons in the two con- 
figurations. The electron behavior reflects the lack of spike 
stability at small gyro-to-bounce frequency ratios. © 2001 
Elsevier Science Ltd. All rights reserved 

1 Introduction 

One of the recent most interesting magnetospheric discov- 
eries is the observation of solitary structures which move 
rapidly along auroral magnetic field lines. Specifically, with 
the improved (burst mode) time resolution in measuring elec- 
tromagnetic fields afforded by the Polar satellite (8 × 103 
samples/see) and the Fast satellite (2 × 106 samples/see), it 
became possible to simultaneously get detailed profiles of 
the potential spikes (Ergun et al., 1998; Mozer et al., 1997; 
Cattell et al., 1998; Bounds et al., 1999) as well as reason- 
ably good distribution functions of the electrons (Carlson et 
al., 1998). The most interesting of the newly observed spikes 
generally move in the anti-Earth direction with a velocity on 
the order of the electron velocity spread, much higher than 
ion velocities. They differ from the ion acoustic or Alfvenic 
solitary waves which are also observed frequently. These lo- 
calized, large-amplitude structures are supported by inhomo- 
geneous, non-thermal, trapped electron populations, while 

165 

they modulate the trajectories of the passing electrons. The 
evolution and stability of the spikes depends on the adjust- 
ment of the trapped population to perturbations and to exter- 
nally changing parameters. 

Generally, the description of an electromagnetic interac- 
tion in plasma physics is based on the conservation of phase- 
space density in the absence of external sinks/sources and 
Coulomb losses. In this (Vlasov) description the particles 
are moving along their characteristics, i.e. trajectories in 
phase space influenced by electromagnetic fields, while self- 
consistently modifying these fields. In the standard theoreti- 
cal development, to deal with the inherent nonlinearity of the 
interaction, one linearizes the equations and finds the eigen- 
modes for small wave perturbations. The approximation of 
small-amplitude deviations from a homogeneous equilibrium 
neglects higher-order terms in the perturbed expansion and 
this neglect is partly compensated by the lack of stationar- 
ity in the solutions, i.e. instability. Experimentally, this de- 
scription is equivalent to a presentation of the slowly chang- 
ing wave features by power spectra obtained from a Fourier 
transform of the electric fields. On the other hand, instead 
of linearizing the basic equations, one might, from the very 
beginning, look for a nonlinear description of the interaction 
by invoking self-consistent, propagating, localized structures 
of finite amplitude that are supported by a particular distribu- 
tion function. The self-consistency is assured by constructing 
the distribution function with the help of constants of motion 
that are solutions of the characteristic equations. The very 
fact that the improved observations record numerous local- 
ized spikes which propagate over long distances along the 
geomagnetic field lines indicates that the nonlinear localized 
pulses can often describe the results of a self-consistent inter- 
action in magnetized plasmas via the (nonlinear) mathemat- 
ical functional dependence of waveforms. Although Fourier 
spectra of a collection of spikes can be similar to the linear 
description, their interaction and the subsequent evolution of 
the system may be very different. 

In this paper we discuss the stability of the nonlinear pulses 
from the viewpoint of the dynamics of the electrons that sup- 
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port them. We show how variations in plasma parameters 
affect the dynamics of the trapped electrons and cause the 
localized spikes to undulate in the transverse direction and 
destabilise in changing external circumstances. 

2 The structure of  the trapped electrons 

The observations of spikes moving along field lines with vary- 
ing amplitudes, widths and speeds indicate that they are sta- 
ble and resilient to perturbations over a broad range of pa- 
rameters. The spikes are electrostatic (in their frame) and 
are observed over broad ranges of altitudes, plasma densities 
and magnetic fields (Ergun et al., 1998; Cattell et al., 1999). 
Since they pass the satellite with high speed and the time 
needed to accumulate data for the electron population is gen- 
erally longer than the transit time of the pulse, we are limited 
to only partial information regarding the distribution func- 
tion. Using the available distribution functions and the best 
fit for the measured spikes, a self-consistent analysis of the 
trapped distribution which supports a Gaussian pulse with 
a flat-top population of passing electrons was constructed 
(Muschietti et al., 1999). The stability boundary for that dis- 
tribution showed that amplitude and width grow together, in- 
dicating that the nonlinear structure is different from a stan- 
dard soliton or ion hole, and may be considered as an electron 
hole. The experimental values of the amplitude vs width re- 
lation for a large number of spikes was shown to satisfy well 
this stability boundary (Muschietti et al., 1999). In the self- 
consistent particle-in-cell simulations, an electron performs 
gyration around the constant magnetic field with frequency 
[2 and bounce motion in the potential field with frequency 
wb. The simulations showed that the spikes are very robust 
and resilient (as they move with high velocity with respect to 
the ions) when the gyro-to-bounce frequency ratio satisfies 
Ft/wb > 1, and are destabilized at lower ratios. 

3 The dynamics of  the trapped electrons 

In this section we discuss the trajectories of the trapped, mag- 
netized electrons in the presence of one or two-dimensional 
potential forms. The self-consistent simulations employ mil- 
lions of particles making it difficult to analyze their phase 
space dynamics directly; hence, we impose given fields as 
observed in the full particle simulations, and follow repre- 
sentative electrons in phase space to discern the changes in 
their orbits under different external conditions. 

We move to the frame of the spike and calculate the tra- 
jectories of the electrons and observe the changes in the dy- 
namics of the particles. Following the configuration of the 
simulations, the electrostatic potential is chosen as 

q~(z, ~) = % ,7(z, ~)  ( l )  

rl(z, ~) = e=p (-z2/2d~l~) exp ( - ~ 2 / 2 ~ _ )  (2) 

where z (x) is the parallel (perpendicular) coordinate with 
respect to the external magnetic field, ~11,± denote the appro- 
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Fig. 1. Time series and phase space of a low-energy electron in an effectively 
one-dimensional Gaussian potential structure. (a) position, (b) velocity, (c) 
total energy vs time; (d) vz vs z. The position is normalized to the initial 
gyroradius p, the velocity to the thermal spread, the potential to the tem- 
perature and the time to the inverse gyrofrequency f'1-1 . Gyro-to-bounce 
frequency ratio is n / w b  = 3.0, parallel scale length is 6[[/P = 2, aspect ra- 
tio is 6±/511 = 100 and the ratio of kinetic to potential energy is 6 × 10 - 3  

priate scale lengths, ~bo is the amplitude and r/(z, ~) denotes 
the Gaussian potential form factor. 

In this given potential (to be completed later with addi- 
tional terms) and external magnetic field we propagate in 
time (for each particle) a six-dimensional phase space vec- 
t o r X  = (~, Y, z, v~, vu, vz). The set of coupled equations 

± = c ( x ) ,  (3) 

where G propagates the particle via the prescribed electro- 
magnetic fields (external constant magnetic field and elec- 
tric field derived from Eq. (1-2)), is solved with an adaptive 
time step. The results are displayed as time series or two- 
dimensional projections of the phase diagram. Due to the 
structure of the electromagnetic forces, Eq. (3) describes an 
autonomous (no time dependence on the RHS) and conser- 
vative (volume preserving, i.e. V • G = 0) system. 

In Figure 1 we show the time series oscillations of the 
parallel (a) position, (b) velocity, and (c) energy of a low- 
energy electron in the presence of a one-dimensional Gaus- 
sian potential (~± > >  ~Jl )' Since effectively the potential 
has only parallel dependence, the phase space dynamics is 
two-dimensional (one degree of freedom) and, for this low 
kinetic energy, the motion of the electron is equivalent to a 
linear harmonic oscillator. Figure ld shows the phase space 
(z, v~) of this electron. Similarly to a standard linear pen- 
dulum, the low-energy electron performs sinusoidal motion 
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Fig. 2. Time series similarly to Figure la-c, for an electron close to the 
separatrix (ratio of kinetic to potential energy is 0.95) and (d) phase space 
for 10 electrons with equidistant parallel velocities in a one-dimensional 
potential structure. 
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Fig. 3. Truncated phase space cuts (a-c) for a single electron and parallel 
phase space (d) for 10 electrons with equidistant parallel velocities in a two- 
dimensional potential structure. Parameters: N l_/81l = 2,811/0 = 2, and 
f l /wb = 0.6. Initial and final values are denoted by 'in'  and ' f ' ,  respec- 
tively. 

in the time series plots and a circular motion in phase space. 
The normalized oscillation, or bounce frequency is given by 

~'b = [~o/~]  1/~. 
Figures 2a-c show similar time series oscillations for a 

more energetic electron in the vicinity of the separatrix, while 
Figure 2d depicts the trajectories in the truncated phase space 
for ten different electrons, equally spaced in their initial par- 
allel velocity. One observes the big increase in the period as 
the particles approach the separatrix, the deformation from 
the sinusoidal behavior of Figure 1 and from a circle in phase 
space, typical of a nonlinear pendulum. 

We now turn to the phase space trajectories for a two- 
dimensional potential with a finite perpendicular electric field 
(~J-/~ll = 2). The magnetic field is weak, such that f~/wb < 
1. Figures 3a-c show cuts in the contracted phase space for 
a single particle, while the projected phase space for ten par- 
ticles with increasing parallel velocity is shown in Figure 
3d. One observes that the coupling between parallel and 
perpendicular dynamics emphasizes a small irregularity in 
phase space dynamics and that, with kinetic energy increas- 
ing, the electron phase space gets smeared with respect to the 
previously regular harmonic motion. An electron performs 
bounce motion and gyration simultaneously and as it crosses 
magnetic field lines, the electric field changes along its tra- 
jectory. Particles which encounter the largest changes of this 
field are affected mostly, so that the distribution function of 
the electrons which support the spike is modified. We also 
note that the gyroradius is changing along the trajectory (Fig 
3a). The dynamics will be now enriched by the addition of a 

small perturbation to the potential of Eq. 1-2. 

4 Modification in the dynamics due to imposed pertur- 
bation 

Particle-in-cell simulations indicate that the one or two di- 
mensional spikes are very robust for strong magnetic field 
(Muschietti et al., 1999); however, while lowering the mag- 
netic field (gyro-to-bounce frequency < 1), one observes 
a growing, transverse undulation in the potential contours, 
which eventually results in a collapse of the spike. 

Accordingly, we add the following potential term to Eq. 
1-2 

=,) = V.,, ,:4) 

where ~1 < <  ~bo, and k denotes the perpendicular wavenum 
ber of the perturbation with kp < 1. Eq. 4 introduces a small 
amplitude perturbation with long wavelength as observed in 
the self-consistent simulations. 

In the same format as Figure 3, Figure 4 shows results 
with the additional potential of Eq. 4. The amplitude of the 
perturbation is ~)l /~b0 = 0.08 and its wavenumber satisfies 
kp = 0.4. One observes large deviations in the perpendicu- 
lar phase space cuts and merging of trajectories in the parallel 
phase space. This strong irregularity in the phase space indi- 
cates a lack of sustainability of the distribution that supports 
the nonlinear spike, since the existence of a self-consistent 
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Fig. 4. Truncated phase space cuts (a-c) for a single electron and parallel 
phase space (d) for 10 electrons with equidistant parallel velocities. The 
potential structure is the two-dimensional structure of Fig 3 modified with 
the perturbation 8~bt (see Eq. 4). Parameters: ~bl/~bo = 0.08, kp = 0.4, 
and fl/Wb : 0.6. 

lites, are supported by inhomogeneous electron distribution 
functions that depend on the constants of motion. We have 
described the changes which occur in particle trajectories 
when the electrons are subjected to externally changing con- 
ditions. We showed that the regular motion in a one di- 

mensional Gaussian potential exhibits typical pendulum dy- 
namics; the low-energy particles follow linear oscillations, 

while the electrons close to the separatrix follow the nonlin- 
ear oscillatory pattern. For gyro-to-bounce frequency ratios 
smaller than unity and in the presence of a two-dimensional 
Gaussian potential, which creates an inhomogeneous perpen- 
dicular field, we observe a start of bifurcation with a smear- 
ing of phase space. This allows small close encounters be- 
tween trajectories that belong to different initial energies. No 
such effect is observed at larger gyro-to-bounce ratios. The 
addition of a small perturbation enhances the effect signifi- 
cantly. Since large distortions in phase space modify the dis- 
tribution function that supports the spike, we expect the spike 
to lose its stability whenever the gyro-to-bounce frequency 
ratio becomes small (f~/wb < 1). Therefore we expect that 

a spike which moves into a region with a sufficiently small 
~/Wb ratio will not be observed. 
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potential form is very sensitive to modification of the elec- 
tron phase space. If we now increase the gyro-to-bounce ra- 
tio, we do not observe these large phase space deformations 
(corresponding figure not shown). 

5 S u m m a r y  

Localized potential spikes, as observed onboard auroral satel- 
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