
Pergamon 
Adv. Space Res. Vol. 30, No. 7, pp. 1645-1650,2OOZ 

0 2002 COSPAR. Published by Elsevier Science Ltd. Al1 rights reserved 
Printed in Great Britain 

www.elsevier.com/locate/asr 
PII: SO273-1177(02)00429-5 

0273-l 177/02 $22.00 + 0.00 

INFLUENCE OF EXTERNAL DENSITY FLUCTUATIONS ON 
PARAMETRIC S-WAVE INTERACTION 

B. Lefebvre’, V. Krasnoselskikh’, S.D. Bale2, and AS. Volokitin3 

LPCE/CNRS, 3A au. de la Recherche Scientijique, 45071 Orle’ans, France 
SSL, University of California, Berkeley, California 94720-7450, USA 
IZMIRAN, 142190 l+oitsk, Moscow, Russia 

ABSTRACT 

Recent satellite observations seem to invalidate the classical scenario of Langmuir turbulence. Among 
the possible candidates which may play an important role to be taken into account are external density 
fluctuations. Parametric three-wave interaction is studied in the presence of quasi-monochromatic 
large-scale and low-frequency density fluctuations. 0 2002 COSPAR. Published by Elsevier Science Ltd. All 
rights reserved. 

INTRODUCTION 

Langmuir turbulence plays an important role in the generation of type III radio bursts, in the relax- 
ation of energetic electron beams in the solar wind, plasma-laser interaction and several planetary and 
astrophysical systems (see Robinson, 1997, for a review). Recent observations onboard of satellites 
WIND, POLAR, Ulysses and others provided new insights into this classical topic. 

The traditional picture of Langmuir turbulence involves parametric instabilities, weakly turbulent ho- 
mogeneous cascades and strongly nonlinear localized phenomena such as wave collapse (Galeev et al., 
1977, Robinson, 1997). However, this scenario is hardly supported by observations, where no clear 
evidence of Langmuir wave collapse has been found yet (Cairns and Robinson, 1995). Instead, quasi- 
monochromatic weakly nonlinear wave packets or small amplitude bursty electric fields are frequently 
observed (e.g. Bale et al., 1996). 

Among the phenomena which are thought to prevent the developement of the classical scenario and 
generate different behavior, are electron phase space holes (e.g. Omura et al., 1996). It was also 
proposed that nonlinear phenomena play a neglectible role in the evolution beam-generated Langmuir 
waves in the solar wind, and that their fluctuations are just the effect of the random (Gaussian) 
fluctuations of the instability growth rate (Robinson, 1995). Another phenomenon which should not 
be overlooked is the presence of strong density fluctuations in the solar wind, which can reach a few 
percents of the average density (Neugebauer, 1975, Kellogg et al., 1999). Strong Langmuir turbulence 
generates intense density fluctuations, which are weakly damped in a strongly non-isothermal plasma. 
Furthermore, strong density fluctuations can be generated by phenomena independant of Langmuir 
turbulence, such ti compressible MHD turbulence. It can be expected that these fluctuations may 
achieve a level up to which they have a significant influence on parametric instabilities of Langmuir 
waves. Density fluctuations may also result in effects like Langmuir wave scattering, reflection or mode 
conversion, which we shall discard hereafter. Galeev et al. (1977) and Alterkop et al. (1976) have shown 
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that the plasmon scattering on short wavelength can stabilize the modulational instability and prevent 
the formation of solitary waves in 1D. It was also recently shown that large scale density fluctuations can 
prevent the formation of Langmuir collapses (Robinson and de Oliveira, 1999). Concerning parametric 
3-wave instability, Nicholson (1976) has shown that a sinusoidal density profile superposed to a linear 
gradient can transform the convective instability into an absolute one, and reduces the growth rate of 
the parametric instability. Hereafter we investigate the effects of external quasi-monochromatic low 

frequency density fluctuations on the dynamics of the classical parametric three-wave interaction. 

MODIFIED 3-WAVE INTERACTION 

Three wave interaction has not only its own interest from the theoretical side, but there exist some 
strong experimental indications that it is present in Langmuir turbulence in the solar wind (Bale et 
al., 1996). Some early work considered the parametric three-wave interaction (3WI) in a plasma with 
weak, large scale and stationary inhomogeneities, which induce fluctuations in the local wavenumbers 
and a mismatch in resonance conditions K(Z) = /co(z) - ICI(Z) - kz(z) (Rosenbluth, 1972). Various cases 
were considered, for instance the case where one wave has constant amplitude (pump wave) in the 
presence of linear density gradient with fluctuations (Nicholson and Kaufman, 1974, Nicholson, 1976), 
or cases with all three amplitudes change in time (Tamoikin and Fainshtein, 1972, Reiman, 1979). 
Thus previous considerations were restricted to quenched (stationary) inhomogeneities, and also to the 
conservative case. Other extensions of the classical three-wave interaction are for example the study 
of finite bandwidth effects (e.g. Martins and Mendonca, 1988) or the inclusion of a fourth wave (e.g. 

Lefebvre and Krasnoselskikh 2001). 

Figure 1: Assumed spectrum. Thick lines correspond to the original 3 waves {Ak}, and dashed lines 
are fluctuations {ok} induced by the forced low-frequency density fluctuations. 

Hereafter we shall consider the parametric 3WI in the presence of quasi-monochromatic large-scale 
forced density fluctuations, in a plasma otherwise homogeneous. Weak fluctuations in the k-spectrum 
are assumed, so that we can concentrate on the temporal evolution. The classical system of 3WI 
including linear growth and damping rates, is extended by taking into account the modes induced by 
density fluctuations (see fig. 1). It reads 

(at - I?0 + iSRo) AC, = iUAlAz + iVaous, (1) 

(& - Fl + ibfh) Al = iUAoA; + iValaz, (2) 

(8, - rz + i&b) AZ = iUAoA;, (3) 

(3, - ^lo + iSwo) a0 = iVAoaf, (4) 

(a, - 71 + i6w1) al = iVAla;, (5) 

(at-y,+ibw2)u2 = iV(Aoa;, + Ala;) + if(t), (6) 
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Table 1: Parameters common to all simulations in section 2 

r0 r1 r2 70 71 72 

1 -0.6 -2.5 0. -1.8 -5.1 

&lo 6% SR2 6wo f5wi 6wz 

1.7 0. 0. 0.8 1.4 3. 

F Wf u 

50 167r10-3 1 

where I’, 7 are linear growth and damping rates, SSlk, bwk are frequency shifts, U, V axe matrix elements 
of the interaction and f is the forcing term for the low-frequency density fluctuation a~. 

Taking V = 0, one recovers the usual 3WI whose non-linear dynamics was extensively studied (Vyshkind 
and Rabinovich 1976, Wersinger et aZ., 1980, Hugues and Proctor, 1994). They satisfy the resonance 
conditions 

Kc=Kr+Ks, Ql)=R2+fls-6Q2, 

with JR = Sslc - 6Qi - 602, while the forced fluctuations satisfy 

kn = K, + kg, w, = 02, + wp + 652, + 6~2, 

for n = 0,l. If V > 0, forced fluctuations provide a nonlinear frequency shift to the primary Langmuir 
waves. 

Eqs (l-6) can be normalized such that PO = +l and U = 1. Moreover, we shall consider the case were 
in the absence of forcing (f + 0) the forced modes disappear due to damping (ak + 0 for all k). 

TRANSITION FROM CHAOTIC 3WI 

In this section, the coupling coefficient V of the external fluctuations induced modes with the original 
ones is progressively increased. We start from a chaotic state of the pure 3WI (corresponding to V = 0), 
since these are the most structurally stable. 

The forcing term is simply taken in the form 

f = F exp(iwft) (7) 

with wf < fi2. And lixed parameters are shown in Table 1. 

The 3WI dynamics is sketched on Fig. 2, which shows a projection of the attractor onto the (IAl 1, IAzl) 
plane. The parameters are shown on Fig. . The attractor is organ&d around the homoclinic orbit of 
the fixed point, which reads using previous notation 

with B = arg(Al) + arg(A2) - a&do). 
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Figure 2: Projection of the attractor on the plane (lAoI, IAll), for V = 0 (pure 3W1, left) and V = 
4.5 . 10m2 (right). 

When the coupling coefficient V is increased, the attractor is slightly pertured in the vincinity of the 
fixed point (Fig. 3). Indeed, the pure 3WI lixed point is not a fixed point of the full system anymore. 
It is worth noting that increasing further V yields significant changes in attractor’s shape and time 
series appearance. The orbit for short times and at random intervals get further and further away 
from the region where the 3WI attractor lies, which provide quite intermittent time series. In such 
a case, the electric field becomes bursty, and some preliminary investigations show that large electric 
field fluctuations may follow a power-law. 

It was argued by Nicholson (1976) that external density fluctuations decrease the linear growth rate of 
the instability. Here we shall also investigate the non-linear instability, as given by Lyapunov exponents 
and entropy. 

Figure 3: Convergence of Lyapunov spectrum for V = 1. 10p3. 

Lyapunov exponents indicate the average linear stability of a given trajectory (the attractor) in phase 
space with respect to infinitesimal perturbations and in diierent directions. They can be defined for 
almost all initial conditions by (Eckmann and Ruelle, 1985) 
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where &r, is a suitably chosen perturbation, and Df is a linearization (Jacobi matrix) of Eqs. l-6. 
Lyapunov exponents provide furthermore an upper bound on the entropy 

For the parameters chosen, the entropy (or to the least its upper bound) is typically 

h M 1.8 

and does not strongly change with V. However, the change in the time series is significant, and further 
caracterization of this change is left for futur study. Anyhow, an example where the finite V induces 
drastic changes in the nonlinear dynamics of the instability is shown in the following section. 

STABILIZATION OF THE INSTABILITY BY FORCED DENSITY FLUCTUATIONS 

Figure 4: Projection of the attrator for a different set of parameters. 

For certain parameters, the instability can even be stabilized by the external density fluctuations. Such 
an example is presented on Fig. 5, which shows that the strange attractor of the pure 3WI can turn into 
a limit cycle (stable periodic orbit), and thus into a non-chaotic attractor. In such case, the entropy 
vanishes and all Lyapunov exponents are negative. 

CONCLUSION 

Density fluctuations are experimentally known to have a quite high level in the solar wind. Hence plasma 
inhomogeneity and external density fluctuations may be some of the key elements to be considered in 
the theory of Langmuir turbulence in order to provide better understanding of the observations. 

We have presented preliminary results on the study of the classical parametric interaction, which occurs 
in Langmuir turbulence as well as in many other contexts, in the presence of low-frequency quasi- 
monochromatic forced density fluctuations. It was shown how these fluctuations affect the dynamics. 
Although they do not always have spectacular effects on nonlinear instability indicators, such as entropy, 
it can lead to qualitative and quantitative changes in electric field time series. In particular, it makes 
time series more intermittent and bursty-like, in better agreement with quite typical observations in the 
solar wind. It was also shown that a rather small amount of forced fluctuations can turn the dynamics 
from chaotic (strictly positive entropy) to non-chaotic (null entropy). 
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Figure 5: Example of the instability stabilization by external density fluctuations. The chaotic attractor 
of the pure 3WI (upper panel) is turned into a limit cycle for small V (here 5 . 10m3), while other 
parameters are the same as in Fig. (4). 
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