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[1] This paper presents analytical solutions that we obtained in

extending the BGK electron solitary wave solutions in 1D to

include the 3D electrical interaction (E � 1/r2) of charged particles.

Our results indicate that for a single humped electric potential, the

parallel cut of the perpendicular component of the electric field (E?)

is unipolar and that of the parallel component (Ek) bipolar. The

multi-dimensional features of solitary waves have been observed by

the FAST satellite. The parallel width-amplitude relation is found to

be an inequality and it depends on the perpendicular scale size of the

solitary structure. This feature can be used in conjunction with

experimental data to obtain an estimate on the typical perpendicular

size of observed solitary waves. INDEX TERMS: 7815 Space

Plasma Physics: Electrostatic structures; 7839 Space Plasma

Physics: Nonlinear phenomena; 7867 Space Plasma Physics:

Wave/particle interactions; 2411 Ionosphere: Electric fields (2712)

1. Introduction

[2] The ubiquitous nature of electrostatic solitary waves in
the Earth’s magnetosphere has recently been revealed by satellite
observations from the plasma sheet boundary [Matsumoto et al.,
1994; Cattell et al., 1999; Franz et al., 1998], auroral iono-
sphere [Temerin et al., 1982; Boström, 1988; Mozer et al., 1997;
Ergun et al., 1998a, 1998b, 1999], bow shock [Bale et al.,
1998] and magnetosheath [Kojima et al., 1997]. Solitary waves
with either positive or negative potentials have been observed.
Negative potential pulses in the auroral upward current region
possess features that are unique to Bernstein-Greene-Kruskal
(BGK) ion mode solitary waves [Mälkki et al., 1989]. Based
on the characteristics of the propagation velocity of solitary
waves, the parallel width-amplitude relation, and the associated
particle distributions, positive potential pulses observed in the
auroral downward current region have been shown to behave
like BGK electron solitary waves [Muschietti et al., 1999], also
called phase space electron holes (EH). These positive potential
pulses detected by the FAST satellite are multi-dimensional with
bipolar Ek and unipolar E? [Ergun et al., 1999]. The nonzero
E? dictates that the perpendicular span of the solitary wave is
finite and a BGK solution based on the 3D Poisson equation is
needed.
[3] FAST spacecraft observations have shown that electrons

associated with solitary waves are highly field-aligned with a
gyroradius �1 m. This is much less than the typical scale sizes
of the solitary waves and the Debye length lD that are typically
�100 m. A reasonably good approximation in such a case is to
assume that electrons move only along the magnetic field (B)
direction.
[4] In this paper, we construct a set of analytical BGK solitary

wave solutions by solving the coupled 3D Poisson and 1D Vlasov

equations. We require the solutions to preserve features of 1D BGK
EH solutions in the parallel direction. Additional new information
about the nature of the 3D solitary waves will be deduced from the
analytical expressions. The structures of the constructed solitary
potentials will be examined and a qualitative comparison with
FAST observations will be made.

2. The Analytical Model

[5] Our formulation assumes azimuthal symmetry, and that
electron motion is along B and ions form the uniform background.
The first assumption is a natural starting point for a system with a
magnetic field. The second is justified since the electron gyroradius
(�1 m) is much less than all relevant scale lengths as discussed in
the Introduction. The third assumption is justified because the
velocity perturbation of ions due to the self-consistent interaction
with the solitary potential is much smaller than that of electrons
owing to the large mass ratio, and that the solitary waves move
with large velocities (�1000 km/s) in the ion frame [Ergun et al.,
1999]. Therefore, to a good approximation, the ion density can be
assumed uniform.
[6] We choose the cylindrical coordinate (r, q, z) to be the

coordinate system, the center of the solitary wave to be the origin,
and the unit vector ẑ to be along B. The dimensionless 3D Poisson
equation written in such coordinate system with an azimuthally
symmetric potential is
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þ @

r@r
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� r; zð Þ ¼ 	r r; zð Þ; ð1Þ

where � is the electrostatic potential normalized by Te/e (Te is the
parallel ambient electron thermal energy), r the normalized charge
density (lengths are normalized by the parallel Debye length lD).
We search for solutions which give a single humped potential. It is
required that the properties of 1D BGK EH solutions to be
preserved in the parallel direction. In a 1D BGK EH, the core
charge density is positive and the screening (the excess negative
charge at the flank) is achieved by electrons trapped and oscillating
inside the potential [Chen and Parks, 2001]. To sustain such a
solitary structure, the core charge density cannot change sign in the
perpendicular direction. Therefore, the potential must also have no
node in the radial direction. In general, the potential and the charge
density can be expanded using the eigenfunctions of the radial
differential operator as a complete set of basis. Since the potential
is single humped and has no node, the dominant term in the
expansion would be J0 up to its first root. The solitary potential
constructed according to the above considerations yields,

� r; zð Þ ¼ fk zð ÞJ0 l00
r

rs

� �
; ð2Þ

where l00 ’ 2.404 is the first root of Bessel function J0, rs is the
perpendicular scale size at which � falls to zero, and fk(z) = C

exp(	z2/2d2) as observations of the parallel profile of the solitary
potential fit reasonably a Gaussian [Ergun et al., 1998b].
[7] We use the potential given by Equation (2) and follow the

BGK approach [Bernstein et al., 1957] to obtain the trapped
electron distribution to demonstrate that the plasma can kinetically
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support such a potential. With the assumption that electrons only
move along B, the Vlasov equation in normalized units becomes

v
@F r; z; vð Þ

@z
þ 1

2

@f r; zð Þ
@z

@F r; z; vð Þ
@v

¼ 0; ð3Þ

where F is the electron distribution function, v is the velocity along
ẑ and is normalized by vte ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Te=me

p
. It is a direct consequence

of azimuthal symmetry that there is not only no q dependence in �
and F, but also no dependence on perpendicular velocities (Vr and
Vq) in F. The nonzero E? causes only the E � B drift in 	q̂, and no
radial velocity. Hence, there will not be any additional terms in
Equation (3) even if the E � B drift is included. At a constant
radial distance r from the center of the solitary wave, |E?| is
constant over the entire range of q, and therefore, the amplitude of
E � B velocity is constant. For simplicity, this degree of freedom
(Vq) in the velocity space will be omitted since it does not alter the
results of our calculations.
[8] Equation (3) stipulates that for any r � rs, there exists a 1D

Vlasov equation in the parallel direction, but these parallel Vlasov
equations for different r are not independent. Instead, their mutual
relation in the perpendicular direction is determined by the per-
pendicular profile of �. This is because � is a potential collectively
produced by the plasma particles. Once � is determined from the
boundary condition, it determines how the plasma distributes itself
to self-consistently support the potential. Therefore, we only need
to solve the equation for a particular r. Setting r = r, a constant,
define

f zð Þ ¼ � r; zð Þ;

f z; vð Þ ¼ F r; z; vð Þ:

Now substitute the potential constructed in Equation (2) into
Equation (1), replace r by r, and re-write r(r, z) in terms of the
rapped and passing electron distribution, ftr and fp, respectively. In
terms of these variables, Equation (1) becomes
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where k? ¼ l00
rs
’ 2:404

rs
, and w = v2 	 J0(k?r)fk(z) is the total

energy of an electron at r traveling along z. Electrons with w � 0
are untrapped, and electrons with w < 0 are trapped. Equation (4)
differs from its counterpart in the 1D model by the term k?

2f, which
couples the perpendicular information of the solitary wave into its
parallel equation. The larger the perpendicular size, rs, the closer
Equation (4) approaches its counterpart in the 1D model. In the
limiting case when rs approaches infinity, the solution reduces to
the 1D solution that describes infinitely large charge sheets
perpendicular to B and propagating along B. This is exactly the
equivalent 3D system of the 1D model. The perpendicular size of
the solitary wave determines whether a spacecraft would be able to
see the 3D structure or only the parallel feature. This offers a
plausible explanation as to why in the magnetosphere both multi
and one dimensional solitary waves are seen. (See Ergun et al.,
1998 for multi-dimensional cases and see Bale et al., 1998 and
Matsumoto et al., 1994 for 1D cases.)
[9] To obtain ftr, we follow the BGK approach with Maxwellian

ambient electrons,

Fp Wð Þ ¼ 2ffiffiffi
p

p e	W ; ð5Þ

where W = v2 	 �(r, z) is the total energy of an electron and is
related to w by the relation W(v, r, z) = w(v, z). For convenience,

define J0(k?r)C as y. The trapped electron distribution obtained
from Equation (4) then reduces to
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ftr (w) has to be non-negative for the solution to be physical and
since ftr (0 > w � 	y) � ftr (w = 	y), the condition ftr (w = 	y) �
0 suffices to satisfy the requirement. From this condition, we obtain
an inequality relation between d, y and rs,
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4 ln 2	 1ffiffiffi
p

p
ey 1	 erf

ffiffiffiffi
y

p
ð Þ

�
2

ffiffiffiffi
y

p
	 2:4042

�
r2s

�
s

: ð7Þ

We do not restrict to EHs with zero phase space density at the
center ( ftr (w = 	y) = 0) as did by Muschietti et al. [1999].
Therefore, for an allowed pair of (y, rs), any d that satisfies
inequality (7) is allowed. In other words, for a fixed amplitude and
perpendicular scale size, the parallel scale size has a lower bound
but no upper bound. The lower bound corresponds to EHs with no
trapped electrons at rest at the bottom of the potential energy
troughs. The denominator on the right-hand side of inequality (7)
has to be positive. This yields another inequality relation between
y and rs,

rs >
2:404ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
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2
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y
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Equation (8) means that for a given potential amplitude, the
perpendicular scale size of EHs is greater than a critical value given
by the right-hand side in order to have a physical solution for the
trapped electron distribution.

3. Illustration of Results

[10] Figures 1a–1c show plots of the allowed parameter range
with Figure 1a representing equation (8), Figures 1bequation (7),
and Figures 1crs cuts of equation (7). For a solitary potential �
with a peak amplitude C, the perpendicular size rs has to satisfy
equation (8) with the y on the right-hand side replaced by C.
For example, if C is 0.5 (in units of Te /e), the perpendicular size
is roughly greater than 3 (in units of lD). We indicate the
allowed region by O and the forbidden by X in Figures 1a and
1b. Any (d, C, rs) lying on or above the shaded surface is
allowed. For example, for C = 100 (corresponding to 10 kV for
Te = 100 eV) and rs = 100 (corresponding to 10 km for
lD = 100 m), the parallel scale size d can be as small as 20
(lD) and as large as several earth radii (RE) or even larger. The
inequality nature of the width-amplitude-perpendicular size rela-
tion implies that the plasma permits large scale BGK EHs with
reasonable amplitudes. Figure 1c shows the dependence of the
parallel width-amplitude (d-y) relation on the perpendicular size
rs. With a fixed rs, the empty-centered EHs (corresponding to the
equal sign in equation (7)) give the largest amplitudes for the
same d. For the same amplitude, EHs with larger rs have smaller
lower bounds for d.
[11] Figure 1d plots an example of the solitary potential C as a

function of r and z with rs = 5, C = 0.5, and d = 2, in the allowed
parameter range. The � with the above parameter set is used to
derive the structures of the electric field and charge density. As the
solitary waves travel fast along B with typical velocity �1000 km/s
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and pass the spacecraft, the measurement taken on the spacecraft is
analogous to taking parallel cuts of the involved quantities. We will
plot the parallel cuts for comparison with the observations. The
electric field of the solitary structure vanishes at the center and

points outward. The parallel component of the electric field,
Ez � Ek, is shown in Figure 2a as a function of r and z. On the
symmetry axis, r = 0, the maximum excursion of Ek is the largest
and as r increases, it falls off as J0(k?r). Two parallel cuts of Ek at
r = 0 and r = rs/1.5 are shown in Figure 2b. For any r < rz, Ek(r, z)
is symmetric and bipolar. The perpendicular component of the
electric field, Er � E?, is plotted in Figure 2c as a contour plot to
aid in the visualization for its parallel cuts. The perpendicular
profile of E? is J1(k?r). One example of the parallel cuts is shown
in Figure 2d and it is unipolar. Any parallel cut of E? is unipolar
except the one along the symmetry axis (r = 0) where E? is zero.
Note that E? is not zero at the perpendicular boundary, r = rs, so
perpendicular screening from the ambient electrons is needed to
facilitate the decrease of E? to zero. This additional screening is
not described by our solution.
[12] The charge distribution r as a function of r and z is

presented in Figure 3a, and two parallel cuts of r are depicted in
Figure 3b. Note as the radial distance from the symmetry axis
increases, the the measured charge density perturbation becomes
smaller. Along the symmetry axis, the charge density variation is
the largest with the positive excursion reaching �24%, and the
negative �4%. An off-centered cut along r = rs/1.5 with a positive
excursion �13% and �2% negative is also shown.

4. Summary and Conclusion

[13] In summary, analytical solutions for BGK electron solitary
waves have been constructed incorporating the 3D electrical
interaction of plasma. Pictorially, the solution is like a perpendic-
ularly confined bundle of BGK EHs (1D). This solution retains the
features of the 1D BGK model [Muschietti et al., 1999], and
qualitatively reproduces the observed bipolar Ek and unipolar E?.
If the perpendicular size rs ! 1, the solution reduces to the 1D
BGK solution.
[14] In addition to what one learns from the 1D BGK model

[Muschietti et al., 1999], our solutions provide several pieces of
new information: 1. The width-amplitude relation is an inequality
which permits the possibility of having large scale EHs with
reasonable potential amplitudes. Large scale EHs could be a
macroscopic feature of the magnetosphere and can play important
roles in particle energization processes. 2. The parallel width-
amplitude relation depends on the perpendicular size. This depend-
ence can be used in conjunction with the measured parallel width-
amplitude (unbinned) scatter plot to yield an estimate of the typical
perpendicular size of EHs. 3. The electric field of our constructed
EHs is radially outward and an ensemble of EHs can heat the ions
efficiently in the perpendicular direction [Ergun et al., 1999].

Figure 2. (a) and (c): The parallel and perpendicular components
of the electric field for the constructed BGK solitary wave. Ek is
symmetric bipolar along z and falls off to zero as J0 along r. E? is
unipolar along z and it rises and falls as J1 along r. (b): Two parallel
cuts of Ek along the symmetry axis (r = 0) and along r = 2rs/3
showing that they are bipolar pulses. (d): A parallel cut of E? along
r = 2rs/3. It is unipolar just as observed in space observations.

Figure 3. (a): The charge density for the constructed BGK
solitary wave. In the parallel direction (z), it is positive at the core
and negative at the flank. Along the perpendicular direction (r),
the positive and negative excursions decrease monotonically to
zero as r increases to rs. (b): Two parallel cuts of the charge
density along the symmetry axis (r = 0) of the solitary wave and
along r = 2rs/3 showing the excursions in fractions of the ambient
plasma density.

Figure 1. The inequality relation between the perpendicular size
(rs) and the potential amplitude (y) in (a); the inequality relation
between the perpendicular size, parallel size (d) and the amplitude
in (b); three rs cuts showing the dependence of the parallel width
(d)-amplitude (y) relation on the perpendicular size in (c); a sample
solitary potential as a function of z and r in (d). Solitary potentials
can take (rs, d, y) values in regions marked Allowed (O). Regions
marked Forbidden (X) give unphysical trapped electron distribu-
tions and are thus not allowed.
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