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[1] The stability of the electrostatic, fast, solitary structures that are observed frequently
on auroral field lines is analyzed as a three-dimensional dynamic system and investigated
numerically with the help of test-particle and particle-in-cell simulations. The recently
observed large-amplitude, localized potential structures with a flat-top shape and separated
electric field spikes parallel to the external magnetic field are shown to be supported by a
particular self-consistent charge distribution function that differs qualitatively from the
distribution that supports the previously investigated Gaussian potentials. The evolution of
the solitary structures is related to changes in the trajectories of the supporting, trapped
electrons. It is shown that ignoring the interaction with the ions, the planar, isolated spikes
propagating into a plasma with realistic, open boundary conditions, are stable in three
dimensions. The addition of a perturbation to the large-amplitude primary structure due to
a smaller, faster secondary propagating spike results in destruction of the perturbing spike
by modifying electron orbits of its trapped population, while the main spike gains an
average momentum without any noticeable deformation. The analysis indicates robustness
of the solitary spikes on the auroral field lines over significantly long times and their
ability to propagate over long distances. INDEX TERMS: 2704 Magnetospheric Physics: Auroral

phenomena (2407); 2753 Magnetospheric Physics: Numerical modeling; 2772 Magnetospheric Physics:
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1. Introduction

[2] The observations of solitary structures that move
along auroral magnetic field lines constitute one of the
recent most interesting magnetospheric discoveries. With
the high sampling rate on FAST and Polar satellites it
became possible to simultaneously obtain detailed profiles
of the spikes as well as a reasonably good distribution
functions of the auroral electrons [Mozer et al., 1997;
Franz et al., 1998, 2000; Ergun et al., 1998; Carlson et
al., 1998; Bounds et al., 1999; Cattell et al., 1999]. The
observed spikes move generally in the anti-Earth direction
with a velocity the order of the electron thermal velocity
spread (1000–5000 km/s), much higher than the ion
thermal or drift velocities. These localized, large-amplitude
structures are supported by inhomogeneous, nonthermal,
trapped electron populations while they modulate the

trajectories of the passing electrons; since the total phase
space density is diminished in this region, the solitary
structures are inherently related to electron holes. The
passing electrons are important indicators of the spikes
since they respond instantaneously to any localized electric
field and the changes in both the upgoing and downgoing
electron fluxes characterize the electromagnetic properties
of the spikes. The recent observations at low altitudes
(FAST) of solitary structures that move along the auroral
magnetic field lines indicate the existence of two different
parallel potential profiles for the nonlinear spikes. Gener-
ally, the most intense spikes are observed as flat-top
potential structures, in contrast to the standard Gaussian-
like forms. The perpendicular dimension of both potential
forms seem to fill a localized channel across the magnetic
field of several kilometers, and the observations indicate a
train of solitary pulses with a variety of amplitudes,
shapes, and velocities. Similar spikes, although weaker,
may have been observed previously in the geomagnetic
tail by Geotail [Matsumoto et al., 1994] and in the solar
wind by the Wind satellite [Bale et al., 1998]. The
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emergence of electron holes from two-stream instability
was observed more than 30 years ago [Morse and Nielson,
1969] and with the recent observations was simulated for
magnetospheric applications [e.g., Matsumoto et al., 1994;
Omura et al., 1996; Miyake et al., 1998, 2000; Goldman
et al., 1999; Oppenheim et al., 1999, 2001; Singh et al.,
2000, 2001]. Different aspects of their existence and
interaction were described by Dupree [1982], Schamel
[1982], Turikov [1984], Krasovsky et al. [1997], and
others. An important numerical analysis of hole excitation
in a linearly stable regime was performed by Berman et al.
[1983]; they distinguished between a small ‘‘packing
fraction’’ (fractional phase space area occupied by the
holes), which describes the system as infrequently inter-
acting solitary structures (similarly to auroral observa-
tions), and large packing area, which renders the plasma
system as frequently colliding holes with resulting phase
space granulations (clumps). Singh and Schunk [1983,
1984] have shown in numerical simulations that some of
the electron holes properties may be related to electron
shocks. Analytical description of an interaction between
electromagnetic waves and charged particles is based on
the conservation of phase space density in the absence of
external sinks/sources and Coulomb losses. Small devia-
tions from homogeneous equilibrium for particles and
external fields are consistent with a neglect of the non-
linear interaction terms, and may be well described by a
Fourier spectrum of the excited waves. This description
implies periodic modulations of a homogeneous medium
due to the propagating waves. The neglected nonlinearity
in the interaction terms may result in a development of
instability, i.e., fast modification of the wave amplitudes
which, eventually, significantly affect the particle distribu-
tion functions to make them highly inhomogeneous.
Therefore a sufficiently intense perturbation of the homo-
geneous system requires consideration of the nonlinearity
in the lowest-order description, which may result in for-
mation of propagating, inhomogeneous, localized struc-
tures. These quasi-stable structures are supported by
spatially strongly modified distribution functions, and they
are qualitatively different from the linear perturbations. It
was shown in the past that a hole describes a most
probable self-binding state of maximum entropy [Dupree,
1982; Berman et al., 1985]. Therefore, in many instances
the turbulent fluctuations in plasma can be described as a
collection of infrequently interacting solitary structures. In
contrast to the wavelength-frequency characterization of
linear waves, the solitary waves are characterized by their
amplitude-shape-velocity relation. Experimental detection
of the fast solitary waves requires very high sampling
rates, which in the magnetospheric environment were
made possible on the latest generation of spacecraft. In
this paper we discuss the stability of the nonlinear pulses
in three-dimensional environment. The evolution of a
specific spike depends on the adjustment of the trapped
population to perturbations and to externally modified
parameters. The strongest perturbations that affect a soli-
tary spike may be due to its interaction with other spikes
moving relatively to it; when two spikes approach each
other, the supporting electron distributions intermingle and
their mixture may cause a destruction or deformation of
the spike(s). Therefore evolution and interaction of solitary

structure(s) may be described well with the help of motion
of particles whose strongly perturbed trajectories support
the structure. Section 2 presents the characterization of the
propagating auroral potential structures, section 3 analyzes
the test particle phase space dynamics in the given
potential structures, and section 4 describes the results of
self-consistent particle-in-cell (PIC) simulations with open
boundaries of isolated and interacting spikes.

2. Parametrization of the Potential Structures

[3] In several cases of the previously published fast
propagating auroral potential structures, a Gaussian or bi-
exponential function gave a reasonably good fit to the
measured potential forms. In this potential form the (meas-
ured) parallel electric field is seen as adjacent reversed
spikes [Mozer et al., 1997; Ergun et al., 1998] and the
self-consistent electron density has a deficiency of electrons
in the central part of the electron hole with a surplus at its
edges [e.g., Muschietti et al., 1999]. However, in numerous
cases, as shown in Figure 1, a more appropriate description
would depict the potential along the parallel coordinate
(ambient magnetic field) as a quasi-symmetric function with
a flat-top and a sharp decline at the edges. One may observe
a series of pulses where generally the perpendicular field is
unipolar while the parallel field exhibits two bipolar spikes,
frequently separated by a region of a constant potential (null
electric field). The structure of each spike, as it encounters
the satellite, is reflected by the measured electron fluxes.
The passage of the solitary structure affects the upgoing (top
panels) and downgoing (bottom panels) electrons by shift-
ing their distribution function, as can be seen by the
changing colors of the most intense energy fluxes. The
electrons carry all the field information integrated over their
trajectories; therefore the changing colors of increased
fluxes towards higher energies apply to both the upgoing
and downgoing electrons that are accelerated by the sepa-
rate electric field regions of the flat-top or Gaussian poten-
tial. To prepare for future analyses of the interaction
between two spikes, we model their combined potential in
a separable form as

� x; rð Þ ¼ f0Go xð ÞRo rð Þ þ f1G1 xð ÞR1 rð Þ; ð1Þ

where x denotes the axial, parallel coordinate, r2 = ( y2 + z2)
is the perpendicular radial coordinate, and the indices o and
1 denote the primary and the secondary spikes, respec-
tively. The parallel dependence of the recently observed
potential structures is described by the symmetric flat-top
function

Go xð Þ ¼ 1þ exp �d=�xð Þcosh x=�xð Þ½ ��1

¼ f1þ 0:5 exp x� dð Þ=�xð Þ½ð

þ exp �x� dð Þ=�xð Þ�Þg�1;

while the previously analyzed Gaussian potential is de-
scribed by

Go xð Þ ¼ exp �x2=�2
x

� �
:
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Owing to insufficient details in the single spacecraft
measurements, the perpendicular form factor is taken as a
Gaussian

Ro rð Þ ¼ exp �r 2=�2
r

� �

The parameters d and �x = �|| denote, respectively, the
‘‘width’’ of the flat-top structure and the width of the bipolar
electric field region along the external field, while �r = �?
describes the scale length perpendicular to the external field.
By increasing the relative ratio between d and �x one can
shift from a form resembling a bi-exponential (d � �x),
which differs only slightly from the Gaussian-like structure,
to a proper flat-top shape (d � �x). Figure 2 shows the
deformation of the potential structure for an arbitrary
amplitude of �0 = 10, as d takes the values 1, 2, and 4,
while �x = 1.3. Experimentally, the extended flat-top
potential is deduced from the observed parallel electric

fields. The existence of this form requires a particular charge
density that supports the potential structures. Since the
solitary structure exhibits a positive potential, the supporting
trapped distribution has deficiency of electrons at its center;
i.e., it contains an ‘‘electron hole.’’ Figure 3 shows again a cut
for R = const of the flat-top potential, together with the
resulting well-separated, parallel bipolar electric field
components, as well as the (unnormalized) self-consistent
modification to the electron charge density. The electric field
in Figure 3b resembles some of the experimentally measured
parallel field forms in Figure 1, while the potential structure
of Figure 3a is supported by a self-consistent, phase space
distribution function that produces the distorted charge
density of Figure 3c. This excess charge density is
qualitatively different in the central part of the hole from a
charge density which is consistent with the Gaussian
potential [e.g., Muschietti et al., 1999]. The Gaussian
potential does not require the ‘‘bulge’’ for the charge density
in its center. The net charge density of the inhomogeneous

Figure 1. Energy fluxes at several energy channels for (top) upgoing and (bottom) downgoing
electrons. (middle, top) Perpendicular and (middle, bottom) parallel electric field components with flat-
top and Gaussian solitary structures. See color version of this figure at back of this issue.
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spike is produced by the trapped particles that support the
structure and the passing particles that are deflected by the
potential structure. A qualitative difference in the distribution
functions that support the flat-top and the bi-exponential/
Gaussian potentials, respectively, stems from the fact that the
passing particles are accelerated by the electric force of the
spike, so their density decreases [Muschietti et al., 2002]. In
the central region of the flat-top (constant) potential this
decreased charge must be compensated by additional trapped
electrons; thus this deficit results in the central bump in the
trapped population. In the Gaussian case this region of
constant potential is of measure zero, hence no increased
density of trapped electrons (bulge) in the center of the
hole is required. Figure 4 shows the two-dimensional
contours of a potential �(x, r) as described by the first
term of equation (1), together with the contours of a self-
consistent density. One observes the electron hole in the
central part of the spike, a surplus of electrons at the
edges, and decreasing contour levels with increasing radial
distance. The cut along the line r = 0 is equivalent to
Figure 3c. Since the potential decreases with increasing
radial distance r, both the absolute value of the charge
density and the relative bulge in the center of the spike
diminish with r. The second term in equation (1) describes
the nonnegligible potential perturbation of the main

solitary structure, which is due to a secondary spike
approaching the main structure. We simplify it as

G1 xð Þ ¼ exp � x� x1ð Þ2=d2x
h i

R1 rð Þ ¼ exp � y2 þ z2
� �

=d2r
� �

;

where x1(t) denotes the relative distance between the
approaching spikes. As the spikes approach each other, the
amplitudes f0 and f1 and the form factors Gi(x), Ri(r), for
i = o,1, determine the deformation of the electron phase
space densities. These deformations determine the stability
and evolution of the spikes. Generally, we assume f0 > f1.

3. Dynamics of the Trapped Electrons

[4] Since the stability of the potential structure is inher-
ently related to the phase space motion of the trapped
particles, any possible coupling between the different con-
stants of motion or their violation in a presence of external
perturbation is of major importance. In order to analyze the
stability of the spikes and the effect of external perturbations
on the trajectories of the trapped, magnetized electrons,
support the three-dimensional potential structures, we

Figure 2. The unnormalized potential structure as a function of the parallel coordinate effect of
varying the flat-top region d: (a) d = 1, (b) d = 2, and (c) d = 4; the other parameters are �x = 1.3 and
�0 = 10.
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impose given external fields, as derived from equation (1),
and follow representative electrons in phase space to discern
the changes in their orbits under different external condi-
tions. For each particle we propagate in time a six-dimen-

sional vector that describes its phase space: X = (x, y, z, vx,
vy, vz). The set of the coupled equations

_X ¼ H Xð Þ; ð2Þ

where the vector H describes the changes in the phase space
dynamics via the prescribed electromagnetic fields (external
constant magnetic field and electric field derived from
equation (1), is solved with an adaptive time step. The
normalization describes the time in units of inverse
gyrofrequency and distances in Debye lengths. The results
are displayed as a time series of a specific phase space variable
(coordinate or velocity component) or two-dimensional
projection of the phase diagram. Due to the structure of the
electromagnetic forces, equation (2) describes an autono-
mous (no explicit time dependence on the right-hand side of
the equation) and conservative (volume preserving, i.e.,
rH = 0) system. In Figure 5 we show the time series
oscillations of the perpendicular y and z positions, parallel
position and velocity, for a low-energy electron (kinetic
energy � maximum potential energy of the spike) in the
presence of a three-dimensional flat-top potential with �r =
d � �x. For this low kinetic energy the bounce motion of
the electron is similar to a modified linear harmonic
oscillator, as can be observed in the bounce oscillatory
structure of the parallel motion (two bottom figures), in the

Figure 3. Model of (a) potential structure, (b) parallel electric field, and (c) self-consistent
modifications to charge density as a function of the parallel coordinate: d = 4 and �x = 1.3. The
amplitude is chosen arbitrarily as �0 = 10, which scales accordingly all other quantities.

Figure 4. Two-dimensional contours of the potential
�(x, r) and the self-consistent charge density r(x, r). �x =
0.7, �r = 4, and d = 4. The solid and dashed lines represent
negative and positive contour levels, respectively.
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fast gyration around the magnetic field and an average slow
drift across the magnetic field in the perpendicular
coordinates (two top figures). Figure 6 shows, for the same
parameters, the phase space evolution of (1) the perpendi-
cular coordinate with time, (2) the perpendicular coordinates
projection of the phase space, (3) the deformed oscillation in
the parallel velocity, and (4) the parallel phase space
projection for an electron close to the separatrix with the
initial values: v? = 0.07, v|| = 1.38. One observes a slight
modification of the gyration-drift motion (two top figures),
and deformation of the parallel trajectories in the flat-top
potential region with increasing electron energies (bottom
figures). Owing to the strong magnetization on the auroral
field lines and the small perpendicular thermal spread, the
gyroradius is much smaller than any perpendicular gradient
of the spike’s potential, and only weak coupling between
parallel and perpendicular oscillations occurs. The self-

consistent evolution and stability of a spike will be shown
with the help of PIC simulations in the next section; it can be
approximately analyzed with the help of the trajectories of
the trapped electrons in the presence of a spike having a
substantial perturbation. Since the observations indicate a
stream of spikes filling a channel along specific field lines,
the most natural perturbation to the self-consistent spike may
be described by another solitary structure which is slowly
approaching the main spike. When the two spikes are
sufficiently close, such that the distance between their
centers is of the order of the sum of the parallel gradient
scales of the respective potential structures, the more
energetic trapped electrons, close to the separatrix, may
tunnel out between the two structures. In this event a simple
analytical description for the potential may be given by
equation (1) with the inclusion of the second term. Figure 7
shows the projection on the parallel axis of the potential and
the resulting density. Figures 7a and 7c refer to the amplitude
ratio f1/f0 = 0.04 while Figures 7b and 7d show it for the
ratio of 0.4. One may conclude that the trapped particles in
the main spike close to the separatrix and below it may easily
penetrate into the other spike. Since the existence of a spike
depends sensitively on the structure of the trapped particles,
and the phase space density of the primary spike particles
near the separatrix is much larger than in the smaller
perturbing spike, the net injection of electrons into the
secondary spike adds the ‘‘missing’’ charge of the electron
hole leading to a possible disappearance of the smaller,
secondary hole and its potential spike. Figure 8 shows the
phase space cuts from test particle phase space trajectories,
similarly to Figure 6, in the presence of the two spikes with
amplitude ratio f1/f0 = 0.4. One observes significant
perpendicular deviations (in velocities and positions) for
the electron at the separatrix, with a major perturbation in the
parallel phase space as the electron penetrates from the main
solitary structure to the secondary spike. The electrons are
still tied to the field lines, as can be observed from the
perpendicular projections of the phase space trajectory
(Figure 8c), the drift and gyration can be clearly identified
and the perpendicular velocity which fills a ring for low

Figure 5. Temporal phase space variables for a low-
energy trapped electrons in the presence of a single spike:
perpendicular y position, perpendicular z position, parallel
position, and parallel velocity. �x = 1.3, �r = 4, d = 1.3,
f0 = 0.56, and v|| = 0.1.

Figure 6. Cuts in phase space variables in the presence of a
single spike for an electron close to the separatrix: perpendi-
cular ( y) coordinate versus time, perpendicular coordinates
phase space, parallel velocity versus time and parallel phase
space. �x = 1.3, �r = 4.0, d = 4.0, and f0 = 1.0. Initial
conditions: x = 0.0, vx = 1.38, and vy = vz = 0.05.

Figure 7. One-dimensional projection of the potential and
the density along the parallel axis in the presence of a main
solitary structure and a secondary spike. The unnormalized
amplitude of the spikes are f0 = 10.0 in all panels, f1 = 0.4
in Figures 7a and 7c, and f1 = 4.0 in Figures 7b and 7d.
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energy electron gets smeared; in contrast, the parallel
oscillation is greatly modified for the electrons near the
separatrix. This modification is responsible for the short
lifetime of the secondary spike, as will be shown in the next
section.

4. Self-Consistent Interaction Between
Two Spikes

[5] The emergence of turbulence in a plasma from a
quiescent, linearly stable state was investigated in one-
dimensional simulations by Berman et al. [1983, 1985]. It

was shown that an isolated hole can grow for any finite drift
between electrons and ions. The interaction between two
holes was described by Dupree [1982] with the help of
entropy considerations; coalescence of holes diminishes the
electric field energy by accelerating the plasma particles that
support the emerging solitary structure. Here we detail the
processes of the emerging structure as seen by the trapped
population of electrons and their dynamics in a presence of
a significant perturbation as described by a secondary
solitary structure. Previous particle-in-cell simulations for
auroral applications indicated that an isolated one- or two-
dimensional spike is very robust over many plasma periods

Figure 8. Phase space cuts in the presence of a primary (o) and secondary (1) potential spike for f0 = 1.0
and f1 = 0.4. Parameters of the principal spike are d = 4,�x = 1.3, and�r = 4. Parameters of the secondary
spike are dx = 1.0 and dr = 1.0. The distance between the spikes x1 = 8.0 The plots show (left to right, top to
bottom) the following: (a) two perpendicular velocities, (b) perpendicular velocity versus perpendicular
position, (c) two perpendicular positions, (d) parallel velocity versus parallel position for several electrons.
Initial conditions in Figure 8a–8c: x = 0.2, y = 0.2, z = 0.0, v|| = 1.36, vy = 0.05, and vz = 0.05. In Figure 8d,
v|| are spread linearly from v|| = 0.36 to 1.36.
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in the presence of a strong magnetic field [e.g.,Muschietti et
al., 2000]. In order to validate the stability of the solitary
structures in more realistic conditions, we extended our
code to allow simulation of the nonlinear structures in three-
dimensional environment. All the particle and field/poten-
tial quantities are functions of x, y, z, where x denotes the
coordinate along the external field line. It is assumed that a
potential profile made out of one or more spikes with
specific characteristics has been formed and coexists with
the populations of trapped and passing electrons. We follow
the evolution of the potential as determined by the full
dynamics of the particles in an open-boundary, self-consis-
tent, electrostatic PIC code. The solitary structures are
created from the constants of motion for the particles that
move in phase space under the influence of the structure
[Muschietti et al., 1999, 2002]. The trajectories of the
particles depend on the amplitude and the shape of the
solitary structure. The resulting distribution function is
spatially inhomogeneous with trapped and passing particles,
depending on their energies. In these simulations the boun-
dary conditions along the external field line allow any given
external flux of particles to enter with an arbitrary distribu-
tion function, while those particles that leave the system are
lost and ignored. The resulting total number of particles
fluctuates in time, causing a (realistic) small fluctuation of
the potential on the right boundary (the left boundary is kept
at zero value). In the present simulations we choose for the
impinging particles at the boundary either a one-sided
Maxwellian, with or without a tail (similarly to a k func-
tion). The time-varying potential at the right boundary is
obtained from integration of the parallel current over all the
field lines on the numerical grid. This self-consistent, time-
varying boundary condition is close to realistic, although
the small size of our system may suppress eigenmodes that
may be responsible for long time evolution of the spikes; it
differs from many of the other boundary conditions imple-
mented in auroral simulations [Omura et al., 1996; Miyake
et al., 1998, 2000; Goldman et al., 1999; Singh et al., 2000,
2001; Crumley et al., 2001; Oppenheim et al., 1999, 2001].
Generally, the timescales for the evolution of the solitary
structures are hundreds or thousands of times longer than
the crossing time of an electron through a solitary structure.
Large systems, with open or periodic boundary conditions,
allow for an excitation of additional eigenmodes that may
be important in the long-term evolution of the structures;
however, for an investigation of an isolated structure or a
pair of solitary structures a repeated circulation of the same
electrons in periodic simulations may inject artificial effects.
Additionally, open system does not necessarily conserve the
total momentum of a spike, which can be exchanged with
the external environment by the nonthermal electrons that
are emitted through the open boundaries. This allows
deformation and acceleration of the solitary structures that
may be of importance in the evolution of interacting spikes.
The simulation is carried out in the frame of one of the
potential spikes so as to follow the evolution over long
times without the spike moving out of the simulation box.
Because we concentrate on the evolution of an isolated
spike, or interaction between two spikes at a close range, we
do not require long systems. Therefore, with a few million
of particles on a grid of 32 � 32 � 32 we obtain an
excellent spatial particle resolution of >100/lD

3 . Since

comparison runs with mobile and stationary ions showed
no effects over the simulation timescales, in the present set
of simulations the ions are taken as immobile, i.e., homo-
geneous and constant to neutralize the electrons in a time
average sense. Over longer simulation times it was shown
that the system of solitary structures may decay via emission
of electrostatic whistler waves [Oppenheim et al., 1999;
Singh et al., 2000, 2001]. For the perpendicular dimension
we apply periodic boundary conditions, which are well
justified for the strongly magnetized plasma with small
gyroradii. In the runs presented, the cyclotron frequency is
varied with respect to the plasma frequency in the range�e =
1 � 5 we. Since we are not interested in the effect of the
solitary perpendicular field on the ions, we start with a
primary planar Gaussian or flat-top solitary structure and a
smaller but finite amplitude perturbation in the form of
a secondary spike. We display interchangeably representa-
tive results from both Gaussian and flat-top simulations with
similar conclusions relating to stability and evolution of
the spike(s). The initial distributions are constructed by the
method described byMuschietti et al. [1999, 2002]. Figure 9
shows the evolved single potential structure which was
initiated similarly to that in Figure 3, after 200 time steps,
each of 0.2 wp

�1. The bottom of Figure 9 displays the two-
dimensional projection contours, f(x, y), of the three-dimen-
sional potential f(x, y, z) at a given value z. The top of the
Figure makes cuts of f(x) for three values of y as noted. The
stability of the potential form is preserved for thousands of
time steps (hundreds of electron and about tens of ion plasma
periods, respectively). Figure 10 depicts similar contour
plots for the charge density, which is noisier than the
potential of Figure 9 because charge density is obtained
from single particles while the potential results from an
integration that smooths its features. Nevertheless, Figure 10
(top) resembles the charge density of Figure 3c. In the next
set of runs we test the behavior of the primary spike when it
is perturbed by a second, less intense, approaching spike. We
create a primary, self-consistent Gaussian (in the parallel
direction) spike and adiabatically add an additional spike
that moves very slowly towards the main investigated
solitary structure (i.e., it approaches it while both of them
are moving along the auroral field lines), while its amplitude
is increased slowly to allow the trapped particles in phase
space to adjust themselves to the total potential. Specifically,
we ramp up slowly the amplitude of the secondary spike
while changing its central location; inspection of the phase
space indicates a small hole dug out by the secondary
potential. When the second spike reaches a sufficiently large
amplitude (f1/f0 = 0.4) and approaches the main structure
within the parallel scale lengths (Figure 11) at the time
40wp

�1, self-consistently. We observe that after a short time
(less than 25 plasma periods) the smaller, perturbing spike
disappears almost entirely, while the main spike gets a small
boost in the direction of the motion of the perturbing spike.
This destruction (cannibalism) of the secondary spike is due
to the phase space modifications in the trapped electrons.
The electrons that support the main solitary structure, with a
much higher density around its separatrix than those that
support the (smaller) secondary spike, gain access to the
secondary spike and, in a very short time, cause a major
disruption of the delicate phase space configuration which
supports the spike. As they enter the secondary spike, they
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‘‘fill’’ its electron hole. Because the electrostatic potential
structure responds rapidly to the changes in phase space, the
new electrons decrease the electron hole, the spike dimin-
ishes and the injected electrons become untrapped (passing
electrons for the diminished secondary spike). This descrip-
tion complements the test particle analysis of Figure 8,
which did not consider the feedback of the electrons on
the potential structures. As a result of this strong phase
space deformation of the supporting and passing electrons,
the secondary spike cannot sustain its shape. Additionally,
those electrons which were trapped originally in the

primary spike close to the separatrix and that became
passing electrons with the demise of the secondary spike,
carry with them significant momentum. Since this momen-
tum was originally part of the primary spike, and there is
no such loss of momentum of trapped particles moving in
the other direction, the main solitary structure starts mov-
ing in the opposite direction. Figures 12 and 13 depict the
potential structure, in a format similar to that of Figures 9
and 11, at later simulation times. One observes almost a
complete disappearance of the secondary spike and an
average drift of the main spike opposite to the original

Figure 9. Two-dimensional projection of the flat-top potential f(x, y) for z = Lz/2 and cuts f(x) for three
y values after 200 time steps. All the dimensions are given in Debye lengths. �e = 2 we. The right
boundary fluctuates due to the external influx of particles causing the small flapping of the potential at
this boundary. The structure indicates robustness.

ROTH ET AL.: FAST AURORAL SOLITARY STRUCTURES SMP 13 - 9



location of the secondary spike. Therefore the interaction
between spikes may be a source of the destruction of the
less-intense spike; additionally, the interaction may accel-
erate or decelerate some of the fast, more intense solitary
structures. This may be an additional source of variety of
speeds in the observed spikes.

5. Discussion and Summary

[6] The fast, intense, magnetized solitary structures which
propagate along the auroral field lines display a long time
stability. Most of the spike profiles can fit parallel Gaussians,
but some of the more intense spikes exhibit flat-top parallel

potential structures with strong perpendicular fields. These
two solitary structures with different profiles are supported
by different self-consistent charge densities. The flat-top
potential requires an enhanced, trapped electron population
that compensates for the decreased population of passing
electrons along the flat-top domain. For a Gaussian potential
this domain shrinks to a point resulting in disappearance of
the enhanced densities in the center of the spike. Test-particle
simulations of the electrons in the given potential indicate
that the motion of the very low energy electrons can be well
described by three harmonic oscillators with distinct frequen-
cies for the parallel bounce and perpendicular gyration and
drift. For higher energies the motion becomes deformed

Figure 10. Two-dimensional projection of the self-consistent charge density r(x, y) for z = Lz/2 and cuts
r(x) for three y values. Note the reverse scale at the top.
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owing to nonlinearity. However, owing to the relatively
strong magnetization on the auroral field lines and the
small perpendicular thermal spread, the gyroradius is much
smaller than the perpendicular gradient scale length of the
spike’s potential. Thus the three eigenmodes of the electron
dynamics are preserved, and only weak coupling between
parallel and perpendicular oscillations occurs. The stability
of a solitary structure depends on the adjustment of the
trapped population to perturbations and to externally modi-
fied parameters. It is affected by the interaction with the
impinging particles, by the changes in external conditions
along the trajectory of the solitary structure, and by the
resonant interaction between the trapped, supporting elec-

trons and additional wave eigenmodes. However, the stron-
gest perturbations that affect the solitary structures are due
to interaction with other spikes which move relative to the
analyzed spike. When two spikes approach each other, the
supporting electron distributions intermingle and their mix-
ture may cause destruction or deformation of the spike(s).
In particular, electrons around the separatrix exhibit signifi-
cantly deformed trajectories. In the presence of a second
spike approaching the primary solitary structure to a dis-
tance of the order of the scale length of the spike’s electric
field, some electrons from the primary structure diffuse into
the secondary, smaller one. This net influx of electrons into
the smaller spike dislocates the balance of the trapped, self-

Figure 11. Potential projection f(x, y) and cuts f(x) at z = L/2 at the latest time of imposed approach of
the secondary pulse. After that time a self-consistent interaction is allowed to take place.
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consistent population which causes the perturbing spike to
collapse. Since the secondary spike is much less intense
than the primary solitary structure, its effect on the primary
spike is small. Self-consistent particle simulations with
open boundary conditions confirm the ‘‘cannibalizing’’ of
the secondary spike, while the primary spike acquires
momentum due to the loss of its separatrix electrons. These
electrons penetrate the other spike and, with its disappear-
ance, eventually become untrapped. Since they carry a
nonnegligible amount of momentum, the primary spike
receives a boost in the opposite direction. Similar conclu-
sions have been drawn previously from entropy arguments.
Therefore the interactions between spikes of different ampli-
tudes is a source of redistribution of momentum between the

auroral solitary structures. The robustness of the nonlinear
solitary structure in three dimensions explains their frequent
observation by field crossing satellites. Although spikes
undergo deformations and collisions because of a spread
of their speeds along the field lines, these results from the
test particle and the self-consistent simulations indicate that
they are stable and long-living. However, emission of
whistler-like waves may play an important role in their
long-term evolution. Several outstanding questions relevant
to the evolution of the auroral solitary structures include (1)
the effect of the perpendicular field on the interaction of the
spikes, particularly when the perpendicular drifts of the
supporting electrons in both spikes are significantly different
and their merging can affect additionally the collapse of the

Figure 12. Two-dimensional projection of the potential f(x, z) for y = L/2 and cuts f(x) for three z
values after the two spikes interact. One observes the disappearance of the smaller spike and average
motion of the main structure in the original direction of the secondary spike.
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secondary spike, (2) the effect of the solitary structure on the
ions due to the perpendicular field with the flat-top potential,
which allows longer residence time of the ion in the spike
and resulting enhanced heating, and (3) formation of the flat-
top potential structures due to self-consistent interactions.
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Figure 1. Energy fluxes at several energy channels for (top) upgoing and (bottom) downgoing
electrons. (middle, top) Perpendicular and (middle, bottom) parallel electric field components with flat-
top and Gaussian solitary structures.
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