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[1] Spacecraft observations of beat-like Langmuir waveforms on two orthogonal antennas
in Earth’s foreshock and the solar wind have been interpreted as beating associated with
large-angle reflection of Langmuir waves from density inhomogeneities or nonlinear
decay processes. However, the waveforms are often irregular, with uncorrelated waveform
envelopes on orthogonal antennas. One interpretation is that irregular waveforms are a
manifestation of the electromagnetic nature of Langmuir waves scattered to low wave
numbers in the inhomogeneous solar wind. An alternative interpretation, investigated here,
is that the shape of the waveform envelopes on orthogonal antennas becomes substantially
different as Langmuir waves tunnel through evanescent regions, where the local plasma
frequency in the inhomogeneous plasma exceeds the Langmuir wave frequency. We
demonstrate that observations of uncorrelated waveform envelopes on orthogonal
antennas are consistent with theoretical predictions for Langmuir wave tunneling in
evanescent regions in the inhomogeneous solar wind. Incident Langmuir waves which are
nearly aligned with the density gradient are also partially converted to transverse
electromagnetic waves at the plasma frequency. The characteristic dual-antenna waveform
signature of mode conversion is difficult to detect for typical solar wind
parameters. INDEX TERMS: 2164 Interplanetary Physics: Solar wind plasma; 7534 Solar Physics,

Astrophysics, and Astronomy: Radio emissions; 2159 Interplanetary Physics: Plasma waves and turbulence;

2154 Interplanetary Physics: Planetary bow shocks; KEYWORDS: Langmuir waves, tunneling, density

inhomogeneities
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1. Introduction

[2] Langmuir waves in the solar wind and planetary
foreshocks are generated by fast electron beams via the
bump-in-tail instability. For typical beam speeds and
widths, Langmuir waves are predicted to be electrostatic
and quasi-monochromatic [e.g., Filbert and Kellogg, 1979;
Cairns, 1987; Robinson et al., 1993b]. However, Langmuir
wave events in the solar wind and Earth’s foreshock
measured by the Time Domain Sampler (TDS) instrument
on the Wind spacecraft, which simultaneously samples
electric field waveforms on two orthogonal antennas with
high time resolution, are not always consistent with quasi-
monochromatic Langmuir waves. Instead, the waveform
envelopes on the two antennas are often substantially differ-
ent, and the relative phase between the two carrier signals

often drifts substantially over the 17 ms sample time of each
TDS event [Bale et al., 1998; Kellogg et al., 1999]. In
contrast, quasi-monochromatic electrostatic Langmuir
waves are expected to produce similar signals on orthogonal
antennas, with zero (or p) relative phase shift. Various
effects proposed to interpret these observations include: (i)
electromagnetic properties of Langmuir waves shifted to
low wave numbers in an inhomogeneous, weakly magne-
tized plasma [Bale et al., 1998; Willes and Cairns, 2000],
(ii) beating between incident and reflected Langmuir waves
at density gradients [Kellogg et al., 1999], and (iii) beating
between primary and backscattered Langmuir waves from
nonlinear electrostatic decay [Cairns and Robinson, 1992b].
These interpretations are not necessarily contradictory.
[3] The aim of this paper is to investigate two alternative

interpretations: Langmuir wave tunneling in evanescent
regions where the local plasma frequency exceeds the
Langmuir wave frequency [Kellogg, 1986; Kellogg et al.,
1999], and mode conversion of Langmuir waves propagat-
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ing nearly parallel to the density gradient [Field, 1956;
Willes and Cairns, 2001]. Both of these effects are asso-
ciated with density inhomogeneities in the ambient plasma.
Additional evidence for density inhomogeneities being
important in this context is provided by the success of
stochastic growth theory in describing Langmuir electric
field statistics in type III sources and Earth’s foreshock
[Robinson et al., 1993a; Cairns and Robinson, 1999].
[4] Beat-like Langmuir waveforms have previously been

observed with high time resolution on one antenna by the
Voyager and Galileo spacecraft in type III-associated events
in the solar wind at 1 AU [Gurnett et al., 1993] and in the
foreshocks of Venus [Hospodarsky et al., 1994] and Jupiter
[Gurnett et al., 1981] and interpreted as evidence for
Langmuir wave decay, with beating between parent and
backscattered Langmuir waves [Cairns and Robinson,
1992b]. In accordance with the above mentioned Wind
observations, the Voyager and Galileo waveforms are often
irregular (i.e., not beat-like), often consisting of one or more
solitary Langmuir wave packets. Wave packet localization
due to strong turbulence processes can be ruled out because
of the low Langmuir wave fields present [Cairns and
Robinson, 1992a, 1995; Gurnett et al., 1993; Bale et al.,
1997]. An alternative interpretation is that the irregular
Langmuir waveforms are produced as a consequence of a
nonlinear interaction between beam electrons and growing
Langmuir waves [Muschietti et al., 1995, 1996].
[5] Willes and Cairns [2001] investigated Langmuir wave

reflection and mode conversion at density gradients, follow-
ing the approach of Forslund et al. [1975] and Means et al.
[1981], by numerically solving the wave equations in a
warm unmagnetized plasma for Langmuir waves approach-
ing a linear density gradient from a constant-density region.
The main advantage of the numerical approach is that it
yields exact solutions for the wave fields, in contrast to
more approximate analytic solutions based on perturbative
methods [e.g., Hinkel-Lipsker et al., 1992; Yin and Ashour-
Abdalla, 1999], where the wave field solutions are valid
only very close to the mode conversion point. Willes and
Cairns [2001] demonstrated that higher mode conversion
efficiencies are possible than previously calculated, but in a
more restricted region of parameter space. The same numer-
ical approach is used in this paper, with the important
modification that the linear density gradient is replaced with
a more physically realistic density profile generated from
measured solar wind density power spectra. This permits
Langmuir wave tunneling to be investigated in addition to
Langmuir wave reflection and mode conversion.
[6] This paper is organized as follows: the theoretical

formalism is introduced in section 2, with an outline of the
method for obtaining the model plasma density profile and
wave equations. In section 3, Langmuir waveforms are
generated in the total reflection regime, in which all of the
incident Langmuir wave energy is eventually reflected over
a number of spatially separated reflection points where the
local plasma frequency equals the Langmuir wave fre-
quency. At each reflection point, Langmuir waves tunnel
through (narrow) evanescent regions where the plasma
frequency exceeds the wave frequency. We demonstrate
that observed irregular Langmuir waveforms on orthogonal
antennas are consistent with Langmuir wave tunneling in
evanescent regions. In section 4, we consider the mode

conversion regime, where incident Langmuir waves are
nearly aligned with the density gradient, and a fraction of
incident Langmuir waves are converted to transverse waves,
in addition to reflected Langmuir waves. It is shown that the
characteristic dual-antenna signature of mode conversion
events is difficult to detect in practice.

2. Theoretical Model

2.1. Plasma Density Profile

[7] In order to study Langmuir wave tunneling, in addi-
tion to Langmuir wave reflection and mode conversion, we
generate a model plasma density profile, which is statisti-
cally similar to measured density inhomogeneities in the
solar wind. This is achieved by inverting measured solar
wind density power spectra, using the method described by
Kellogg et al. [1999]. The assumed power spectrum is
obtained from solar wind data [Unti et al., 1973], with
[Kellogg et al., 1999],

P ¼ 5� 10�3f �1:54: ð1Þ

Synthetic density time series are calculated by inverse
transforming the Fourier series, after assigning a random
phase to each Fourier component. We extrapolate the power
law from the upper frequency of 13 Hz measured by Unti et
al. [1973] up to 100 Hz. Despite the fact that this introduces
finer detail into the model density time profile, we stress
that variation of the upper-frequency cutoff of the power
spectrum will not significantly affect the conclusions
presented here. The upper portion of Figure 1 shows a
section (0.4 seconds) of one density time series (10 seconds)
generated by this method.
[8] Electron-beam-generated Langmuir waves in the solar

wind have frequencies just above the local plasma fre-
quency wp, and higher beam speeds yield lower Langmuir
wave frequencies (closer to wp). In a fluctuating density
profile propagating Langmuir waves frequently encounter
evanescent regions where the local plasma frequency
exceeds the Langmuir wave frequency. This is illustrated
in Figure 1, where incident Langmuir waves (at relative
frequency labeled wL in Figure 1) freely propagate in
regions marked by the dashed line. At the first reflection
point (where wL = wp, near t = 0.14), Langmuir waves are
reflected, converted into transverse electromagnetic waves
(depending on the incidence angle, as discussed in section
3), or tunnel through the evanescent region (dotted line) to
the next region where they can freely propagate. At the final
reflection point (t ^ 0.18), the Langmuir waves encounter a
density ramp, through which only an infinitesimal fraction
of incident Langmuir wave energy will penetrate. Thus, all
of the transmitted Langmuir wave energy is reflected at this
final reflection point.

2.2. Wave Equations

[9] The wave equation derivation closely follows similar
derivations in Forslund et al. [1975], Means et al. [1981],
and Willes and Cairns [2001], with the essential difference
that the simplifying assumption of a linear density gradient
is relaxed. Numerical solutions of these wave equations for
the model density profile in Figure 1 facilitate the following
discussion of Langmuir wave reflection, tunneling and
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mode conversion in sections 3 and 4. The following
assumptions are made to simplify the analysis:
1. The density gradient is one-dimensional. Without loss

of generality, we define the coordinate system in the rest
frame of the solar wind plasma such that the density gradient
rn is in the positive X direction, and the wave electric field
vector E lies in the X–Y plane, and can be expressed in the
form E(X, t) = [EX (X ), EY (X ), 0] exp[i (KYY � wt)], where
spatial variables are expressed in dimensionless form using
X = k0x, Y = k0y, K = k/k0, and k0 = w/c, where w is the wave
frequency and c is the speed of light. Here KY = kY/k0 is
constant by Snell’s law.We seek steady state solutions for the
wave fields, with constant w. The assumed density profile is
illustrated in Figure 2, where the dimensionless plasma
density N(X ) = wp

2 (X )/w2 / n, for plasma frequency wp and
(constant) incident Langmuir wave frequency w. The model
density profile in Figure 2 is taken from a smoothed section
of the density time series in Figure 1 (bold line), where the
time axis is converted to distance by assuming that the slowly
evolving density structure is convected past the spacecraft at
the solar wind speed (assuming vsw = 400 km s�1). Constant
plasma density is assumed for X� 0, with the constant value
N0 (= 0.996 in Figure 2) dependent on the plasma and beam
parameters. We assume that Langmuir waves approach from

the constant-density region (X < 0) toward the inhomoge-
neous region (X > 0).
2. The plasma is unmagnetized with no background

flows; i.e., u0 = 0 and B0 = 0, where u(X, t) is the electron
fluid velocity (the ions are static), E(X, t) and B(X, t) are the
wave electric and magnetic fields, and subscripts 0 and 1
refer to unperturbed and perturbed quantities, respectively.
3. The plasma obeys an adiabatic pressure law, with

pn�g = constant, where p(X, t) is the plasma pressure, n(X, t)
is the electron density, and g is the ratio of specific heats. For
small perturbations, p0 = n0T, and p1 = g n1p0/n0, where T is
the electron temperature.
4. Wave damping is negligible.
[10] The wave equation is obtained by linearizing Max-

well’s equations and the electron momentum equation [e.g.,
Willes and Cairns, 2001], with

r2E1 �r r 	 E1ð Þ þ 1� N Xð Þf gE1

�b �gr r 	 E1ð Þ þ r 	 E1ð ÞN
0 Xð Þ

N Xð Þ

� �
¼ 0; ð2Þ

where N(X ) = wp(X )2/w2, and b = Te/mec
2. The X and Y

components of this wave equation yield two coupled
second-order linear differential equations for EX (X ) and
EY (X ) (which are related to the total field by E1(X) =
[EX (X ), EY(X ), 0] exp[iKYY ]):

gbE00
X � iKY 1� gbð ÞE0

Y þ 1� N Xð Þ � K2
Y

� �
EX ¼ b

N 0 Xð Þ
N Xð Þ

	 E0
X þ iKYEY

� �
; ð3Þ

E00
Y � iKY 1� gbð ÞE0

X þ 1� N Xð Þ � gbK2
Y

� �
EY ¼ 0: ð4Þ

These equations reduce to the equations in Willes and
Cairns [2001] by replacing the term N 0(X )/N(X ) with 1/L
for a linear density gradient with scale length L.
[11] Reflection and/or mode conversion occurs at points

Xref where N(Xref) = 1. The boundary conditions are deter-
mined as follows. For X < 0, wp(X ) = wp0 is constant and
EY (X ) can be expressed as the sum of three plane waves:

EY Xð Þ ¼ exp iKLX Xð Þ þ RLexp �iKLX Xð Þ þ TTexp �iKTX Xð Þ;
ð5Þ

where the first term corresponds to an incoming Langmuir
wave, and KLX is the X component of the dimensionless

Figure 1. Plasma density time series generated from
measured solar wind density power spectra. Incoming
Langmuir waves (frequency wL) tunnel through two
evanescent regions before being totally reflected at the
third (density ramp).

Figure 2. Model plasma density profile, with N(X ) / wp
2/

wL
2, which is constant for X < 0, and variable for X > 0, with

functional dependence taken from the density time series in
Figure 1 (bold line). Evanescent regions (shaded) corre-
spond to where wL � wp.
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Langmuir wave vector, satisfying the Langmuir wave
dispersion relation

K2
LX ¼ 1� N0

gb
� K2

Y : ð6Þ

The second term in equation (5) corresponds to a reflected
Langmuir wave, where RL is the (complex) Langmuir wave
reflection coefficient. The third term corresponds to the
mode-converted transverse wave, which propagates away
from the mode-coupling region in the negative X-direction,
where KTX is the X-component of the dimensionless
transverse wave vector, satisfying the transverse wave
dispersion relation

K2
TX ¼ 1� N0 � K2

Y ; ð7Þ

and TT is the (complex) mode-conversion coefficient.
[12] The angle qL between the incoming Langmuir wave

and the density gradient, at the interface between the
constant and varying density regions (X = 0) is

sin2qL ¼ gbK2
Y

1� N0

: ð8Þ

The angle qT between the transverse wave and the density
gradient at X = 0 is

sin2qT ¼ K2
Y

1� N0

: ð9Þ

[13] An expression for EX (X ) analogous to equation (5)
is obtained using the relations r � Elong = 0 and r 	
Etrans = 0, where Elong is the longitudinal part of E (Lang-
muir waves) and Etrans is the transverse part of E (transverse
EM waves), with

EX Xð Þ ¼ KLX

KY

exp iKLX Xð Þ � RL exp �iKLXXð Þ½ �

þ KY

KTX

TT exp �iKTX Xð Þ:

From equations (5) and (10), the coefficients RL and TT can
be expressed in terms of the fields at X = 0�, yielding
[Means et al., 1981],

RL ¼ KTXKY

KLXKTX þ K2
Y

�EX 0�ð Þ þ KY

KTX

EY 0�ð Þ þ KLX

KY

� KY

KTX

� �
;

ð11Þ

TT ¼ KTXKY

KLXKTX þ K2
Y

EX 0�ð Þ þ KLX

KY

EY 0�ð Þ � 2
KLX

KY

� �
: ð12Þ

[14] Boundary conditions for the derivatives of EX and EY

are then obtained by differentiating the expressions (5) and
(10) and evaluating them at X = 0�:

dEX 0�ð Þ
dX

¼ i
K2
LX

KY

1þ RLð Þ � KYTT

� �
; ð13Þ

dEY 0�ð Þ
dX

¼ i KLX 1� RLð Þ � KTX TT½ �: ð14Þ

The other boundary conditions are that the wave fields
decay to zero beyond the final reflection point; i.e.,

EX X1ð Þ ¼ EY X1ð Þ ¼ 0; ð15Þ

where X1 � max{Xref}. The differential equations (3) and
(4) with boundary conditions (13), (14), and (15) are solved
numerically as a boundary value problem, using an adaptive
shooting method, with EX (0) and EY (0) as the undetermined
parameters.

3. Langmuir Wave Reflection and Tunneling

[15] Langmuir waves incident on an increasing density
gradient are totally reflected when they are not closely
aligned with the density gradient (i.e., no incident Langmuir
wave energy is converted to transverse electromagnetic
waves). Equations (8) and (9) impose a maximum angle
qLmax between the Langmuir wave and the density gradient
for mode conversion to occur; i.e., sin2 qT � 1 implies that
KY

2 /(1�N0) � 1, so that

qLmax ¼ sin�1
ffiffiffiffiffi
gb

p
: ð16Þ

For qL � qLmax, no transverse waves are generated and
incident Langmuir waves are totally reflected (either before,
or at the final reflection point). In this case, TT = 0 in
equations (5) and (10), and the boundary conditions (13)
and (14) are replaced with

dEX 0�ð Þ
dX

¼ i
K2
LX

KY

1þ RLð Þ; ð17Þ

dEY 0�ð Þ
dX

¼ iKLX 1� RLð Þ; ð18Þ

for the reflection coefficient RL = EY (0�) � 1.
[16] Kellogg et al. [1999] interpreted the modulation of

observed Langmuir waveform envelopes as beating between
incident and reflected Langmuir waves; the latter are a
product of density inhomogeneities in the solar wind. For
large reflection angles, the Doppler frequency shift between
incident and reflected waves in the spacecraft frame differs
when their wave vectors have different orientations relative
to the solar wind direction. Strong evidence for wave beating
due to the solar wind Doppler shift is presented in the TDS
event in Figure 8 of Kellogg et al. [1999], where the
frequency difference between the two distinct peaks in the
power spectrum corresponds to the modulation (beat) fre-
quency. Another property of beating between incident and
reflected waves is that local envelope maxima on one
antenna correlate with local envelope minima on an orthog-
onal antenna (irrespective of spacecraft orientation). This is
evident over several envelope oscillations in Figure 3 (the
same event as Figure 8 in Kellogg et al. [1999]). For
instance, at times A and B, there is a correspondence
between local envelope maxima and minima on the two
antennas. However, at later times this correspondence breaks
down; for example, at times C and D.
[17] We generate simulated waveforms for comparison

with the Wind TDS events, assuming that incident beam-

(10)
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generated Langmuir waves (parameters: b = 4 � 10�5, Ve =
1.9� 106 m s�1, wp0 = 1.5� 105 m s�1, g = 3, vbeam = 5.2�
107 m s�1, and incidence angle q = 0.186 rad) encounter the
model density profile shown in Figure 1. For these param-
eters, the Debye length on the dimensionless spatial scale is
6.3 � 10�3, and N0 = (1 + 3Ve

2/vb
2)�1 = 0.996 in the

constant density region (X < 0). The incidence angle well
exceeds the critical reflection angle, with qL � qL max =
0.011 rad. Hence there is no mode conversion, and the
Langmuir waves are totally reflected.
[18] Figure 4 displays the (steady state) solutions for the

electric field components EX and EY of the wave equations
(3) and (4), with boundary conditions (17) and (18), for the
model density profile in Figure 2. The waves are evanescent
(exponentially decaying) in regions where g(X ) > 1 in
Figure 2, and the wave electric field approaches zero in
the final evanescent region (at the density ramp, for X > 9).

In order to generate Langmuir waveforms for comparison
with Wind TDS observations, we assume a straight-line
spacecraft trajectory in the solar wind rest frame, with

X tð Þ ¼ X0 þ sin qsc cosfsc vswt ð19Þ

Y tð Þ ¼ Y0 þ sin qsc sinfsc vswt ð20Þ

where (X0, Y0) is the spacecraft position at t = 0, and the polar
angles qsc and fsc define the direction of spacecraft motion
(with speed vsw = 400 km s�1) relative to the density gradient.
We also assume that the X-antenna is aligned with the density
gradient. The ‘‘measured’’ electric field has the form

E tð Þ ¼ Re EX X tð Þ½ �;EY X tð Þ½ �; 0ð Þexp i KYY tð Þ � wtð Þ½ �f g: ð21Þ

[19] Figure 5 shows components of the electric field E(t)
on the X and Y antennas for E(X ) and E(Y ) from Figure 4,
X0 = �1, Y0 = 0, qsc = p/8, and fsc = p/16. We make an
arbitrary choice for the polar trajectory angles qsc and fsc to
exclude the special case where the spacecraft travels along
the density gradient. For qsc = p/8, the spacecraft travels
nearly perpendicular to the density gradient. One effect of
varying qsc toward p/2 (with fsc � 0, so that the spacecraft
travels along the density gradient) would be an increase in
the measured beat frequency (with more Langmuir wave
packets present over the time interval displayed in Figure 5).
[20] The vertical lines (A, B, C and D) highlight the

correlation between envelope maxima and minima on the X
and Y antennas. This correlation persists if the spacecraft is
rotated such that the X-antenna is no longer aligned with the
density gradient. Each of the waveform envelope minima on
the X-antenna (for example, A and C in Figure 5) corre-
spond to zero crossings of Re[EX] in Figure 4. Similarly, the
envelope minima on the Y antenna correspond to zero
crossings of Re[EY] in Figure 4. The zero crossings on the
X antenna in Figure 4 correlate with the extrema on the Y
antenna (and vice versa) within the constant density region
(X < 0). This appears to be a general property, even for

Figure 3. Measured electric fields on the (orthogonal) X
and Y antennas of the TDS instrument on the Wind
spacecraft. The modulated envelope maxima and minima
are correlated on the X and Y antennas at times A and B, but
not at times C and D.

Figure 4. Electric field components Re[EX (X )] and
Re[EY (X )], and the relative phase d(X ) = tan�1[Re(EY (X )/
EX (X )), Im(EY (X )/EX (X ))] for incident Langmuir wave
angle q = 0.186 rad (other parameters are given in text).

Figure 5. Predicted electric field E(t) on X and Y antennas,
for spacecraft trajectory defined by equations (19) and (20),
with X0 = �1, Y0 = 0, qsc = p/8, fsc = p/16, and assuming
that the X-antenna is aligned with the density gradient.
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spatially varying density profiles, based on numerical
results from numerous density profiles and a wide range
of parameters.
[21] This correlation breaks down in evanescent regions,

as is evident in Figure 4, for X > 0. Accordingly, the
alignment of envelope maxima and minima on orthogonal
antennas breaks down within, or in the vicinity of evan-
escent regions (where N(X ) > 1). An example is shown in
Figure 6, for a 20 ms ‘‘snapshot’’, corresponding to the
range X = 5.75 to X = 7.25 in Figure 4. This includes the
second evanescent region through which the Langmuir
waves tunnel. For the waveforms displayed in Figure 6,
the spacecraft is rotated by an arbitrary angle (p/16) about
the Z-axis, so that the X-axis is no longer aligned with the
density gradient. While the maxima/minima correlation is
evident at times A and D (distant from the evanescent
region), this correspondence clearly breaks down at times
B and C, corresponding to the period in which the Langmuir
waves tunnel through the evanescent region. Figure 6
exhibits all of the features displayed in Figure 5 of Bale
et al. [1998]; namely, the shape of the waveform envelopes
is different between the two antennas, and the relative phase
and hodogram ellipticity vary with time.
[22] Based on these results, one interpretation of the

transformation from regular waveforms (with similar enve-
lope shapes and correlated maxima/minima) in the TDS

event in Figure 3 (at times A and B) to more irregular
waveforms (times C and D), is that the spacecraft enters an
evanescent region between times B and C.

4. Mode Conversion

[23] A necessary condition for partial conversion of
Langmuir waves to transverse electromagnetic waves is that
the Langmuir wave incidence angle (relative to the density
gradient) is small. For the solar wind parameters assumed in
the previous section, this condition corresponds to qL <
qLmax = 0.011 rad = 0.63�. Figure 7 displays the electric
field component solutions to the wave equations, EX and EY,
for incident Langmuir wave angle qL = 9.5 � 10�3 rad. The
small incidence angle ensures that the magnitude of
the perpendicular field is very small, with |EY | � |EX |.
The perpendicular field EY is predominantly the field of the
electromagnetic wave, of which less than a quarter of a
wavelength is visible in Figure 7, together with a smaller
electrostatic component (periodic variation with electro-
static wavelength �1). In this example, approximately
20% of the incoming Langmuir wave energy is converted
into transverse electromagnetic waves.
[24] Figure 8 shows components of the electric field E(t)

measured on the X and Y antennas, for the E(X ) and E(Y )
fields in Figure 7, spacecraft trajectory angles qsc = p/8 and
fsc = p/16, and assuming that the X-antenna is aligned with
density gradient. As in the total reflection regime (section
3), the correlation of envelope maxima and minima on
orthogonal antennas is maintained away from evanescent
regions. A significant difference from the total reflection
case is that the relative phase slowly varies, with average
relative phase hdi 6¼ ±p/2. For example, in Figure 8 the
average phase hdi � �p/4, 3p/4, whereas for total reflec-
tion the relative phase between the two antennas satisfies
d = ±p/2. The average phase drifts over a timescale
corresponding to the transverse wavelength (see Figure 7),
and is approximately constant over the TDS ‘‘snapshot’’

Figure 6. Predicted electric field E(t) on X and Y antennas,
relative phase d, and hodograms (instantaneous trace of E
over several wave periods), for X0 = 5.75, Y0 = 0, qsc = p/8,
fsc = p/16. The X-antenna is rotated by p/16 away from the
density gradient.

Figure 7. Electric field components Re[EX (X )] and
Re[EY (X )], and relative phase d for incident Langmuir
wave angle qL = 9.5 � 10�3 rad.

SSH 17 - 6 WILLES ET AL.: LANGMUIR WAVE TUNNELING



timescale (17 ms). The combination of nearly constant
average relative phase, with values hdi 6¼ ±p/2, and low
fields on one antenna, with EY/EX ] qLmax, thus constitutes
a signature of mode conversion. However, for mode con-
version to be detected in this way in practice requires that
one antenna (say, the Y-antenna) is almost exactly aligned
perpendicular to the density gradient. Otherwise, even small
deviations from this configuration results in the Y-antenna
primarily detecting the high electric field parallel to the
density gradient (EX in Figure 7), and zero relative phase
shift between the two antennas. Our preliminary search of
the Wind TDS data set confirms that unambiguous mode
conversion events are extremely rare.

5. Discussion and Conclusions

[25] The main result in this paper is the demonstration
that Langmuir wave tunneling in evanescent regions, where
the local plasma frequency (which varies with density
inhomogeneities in the plasma) exceeds the Langmuir wave
frequency, produces different Langmuir waveform enve-
lopes on two orthogonal spacecraft antennas. Outside evan-
escent regions, beating between incident and reflected
Langmuir waves produce correlated waveform envelopes
on the two antennas. According to this interpretation, the
frequent detection of irregular Langmuir waveforms on two
antennas by the Wind spacecraft [Bale et al., 1998; Kellogg
et al., 1999] thus indicates that evanescent regions are
common in the solar wind and foreshock plasmas. In
contrast, Langmuir wave reflection at density gradients
[Kellogg et al., 1999] and nonlinear Langmuir wave decay
[Cairns and Robinson, 1992b] predict regular beating with
correlated waveforms on orthogonal antennas, which is also

often observed. Similarly, single-antenna Langmuir wave-
forms detected by Voyager and Galileo which are incon-
sistent with regular beating [Gurnett et al., 1981, 1993;
Hospodarsky et al., 1994] can also be explained in the
context of evanescent tunneling. For instance, solitary
Langmuir wave packets correspond to Langmuir waves
trapped between two closely spaced evanescent regions.
The prevalence of evanescent regions has important impli-
cations for the growth and scattering of Langmuir waves.
[26] This analysis assumes a preexisting and time-invar-

iant flux of incoming Langmuir waves, and does not treat
Langmuir wave interactions with beam electrons (i.e., wave
growth and localization effects). Kinetic localization of
Langmuir waves [Muschietti et al., 1995, 1996] and sto-
chastic growth [Robinson et al., 1993a, 1993b; Cairns and
Robinson, 1999] may occur in addition to tunneling and
contribute to the irregularity of the Langmuir waveforms.
[27] The process of partial mode conversion of Langmuir

waves to transverse electromagnetic waves occurs within a
narrow range of incidence angles to the density gradient.
This process has a unique dual-antenna signature, which can
only be detected by orthogonal antennas when one antenna
is aligned perpendicular to the density gradient, thus avoid-
ing the dominant longitudinal electric field signal parallel to
the density gradient. No unambiguous mode conversion
events have yet been detected by this method, though a
more complete search of the Wind data set is planned for
future research.
[28] An important limitation of this analysis is the

assumption that the plasma is unmagnetized. Even though
the solar wind plasma is very weakly magnetized at 1 AU
(with �e/wp ] 0.01), there is strong evidence to suggest that
the weak magnetization has important implications on the
properties of the Langmuir waves. Bale et al. [1998]
reported that the average phase shift between orthogonal
antennas varies with the angle between the antennas and the
interplanetary magnetic field direction. Explanation of this
phenomenon requires the extension of this analysis to
include the effects of a weak magnetic field.
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