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ABSTRACT

We present three-dimensional numerical simulations of the dynamic evolution of uniformly buoyant, twisted
horizontal magnetic flux tubes in a three-dimensional stratified convective velocity field. Our calculations are
relevant to understanding how stratified convection in the deep solar convection zone may affect the rise and
the structure of buoyant flux tubes that are responsible for the emergence of solar active regions. We find that in
order for the magnetic buoyancy force of the tube to dominate the hydrodynamic force due to the convective
downflows, the field strength B of the flux tube needs to be greater than (H,/a)"/* Beq ~ 3Beoq, where H, is the
pressure scale height, a is the tube radius, and B is the field strength in equipartition with the kinetic energy
density of the strong downdrafts. For tubes of equipartition field strength (B = B.q), the dynamic evolution
depends sensitively on the local condition of the convective flow. Sections of the tube in the paths of strong
downdrafts are pinned down to the bottom despite their buoyancy, while the rise speed of sections within
upflow regions is significantly boosted; £2-shaped emerging tubes can form between downdrafts. Although flux
tubes with B = B4 are found to be severely distorted by convection, the degree of distortion obtained from our
simulations is not severe enough to clearly rule out the 2-tubes that are able to emerge between downdrafts as
possible progenitors of solar active regions. As the initial field strength of the tube becomes higher than the
critical value of ~(H,/ a)l/ 2Beq given above, the dynamic evolution converges toward the results of previous
simulations of the buoyant rise of magnetic flux tubes in a static, adiabatically stratified model solar convection
zone. Tubes with 10 times the equipartition field strength are found to rise unimpeded by the downdrafts and

are not significantly distorted by the three-dimensional convective flow.
Subject headings: convection — methods: numerical — MHD — Sun: interior — Sun: magnetic fields

1. INTRODUCTION

If the magnetic field seen in sunspots and active regions
on the solar surface originates from a strong toroidal mag-
netic field generated by the dynamo mechanism at the base
of the solar convection zone, then the question of how mag-
netic flux is transported through the convection zone must
be addressed. Many existing models posit that magnetic flux
rises buoyantly through the convection zone in the form of
discrete flux tubes and that the tubes must maintain reason-
able cohesion in order for the emerging flux to be organized
as active regions, which display a well-defined order, as
described by Hale’s polarity rule and Joy’s law of active
region tilts (Hale et al. 1919; Howard 1991; Fisher, Fan, &
Howard 1995). Many dynamic calculations of the subsur-
face evolution of buoyant magnetic flux tubes in the solar
convection zone have been carried out. One method that
has been widely used is the “thin flux tube formulation”
(Spruit 1981), in which the flux tube is treated as a one-
dimensional curve moving in the space of a model solar con-
vective envelope, acted on by magnetic buoyancy, tension,
aerodynamic drag, and the Coriolis force. Calculations
based on the thin flux tube model find that the field strength
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of toroidal flux tubes at the base of the solar convection
zone needs to be substantially superequipartition compared
to the kinetic energy density of convection (with B ranging
from 3 x 10 to 10° G) in order for the emerging tubes to be
consistent with the observed properties of solar active
regions (see, e.g., the reviews by Moreno-Insertis 1997;
Fisher et al. 2000).

Recently, more sophisticated multidimensional MHD
simulations of the subsurface evolution of rising magnetic
flux tubes have been carried out that address important
issues of the dynamics that cannot be addressed within the
thin flux tube framework: issues such as the cohesion of the
rising flux tubes and the effects of field line twist. Two-
dimensional simulations of the buoyant rise of twisted, hori-
zontal flux tubes have shown that a minimum amount of
twist is needed for the flux tube to rise cohesively (e.g.,
Longcope, Fisher, & Arendt 1996; Dorch & Nordlund
1998; Emonet & Moreno-Insertis 1998; Fan, Zweibel, &
Lantz 1998). In two dimensions, an untwisted horizontal
tube splits into a pair of counterrotating vortex tubes that
move apart horizontally and cease to rise. Three-
dimensional simulations of arched, €Q-shaped flux tubes
show that the amount of twist needed for a cohesive rise of
the flux tube may be substantially reduced in comparison to
the two-dimensional case (Wissink et al. 2000; Abbett,
Fisher, & Fan 2000, 2001; Fan 2001).
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Most multidimensional simulations (e.g., all of the ones
cited above) have modeled the rise of the flux tubes in a
static, adiabatically stratified model solar convection
without explicitly including convective velocity fields. The
basic argument to justify such a treatment is that if the
magnetic field strength of the flux tube is sufficiently
superequipartition in comparison to the kinetic energy of
the convective flow, the distortion of the flux tube due to
convection would be small, and its dynamic influence on
the rising flux tube can be ignored. The above qualitative
argument is yet to be tested and quantified by explicit
calculations. Recently, Dorch et al. (2001) performed the
first three-dimensional MHD simulations of a buoyant
magnetic flux rope in a stratified convecting model con-
vection zone. They focused on one particular case in
which the tube is initially located in an upflow region
and its field strength is adequately superequipartition
such that the tube retains its initial shape during its
ascent. In this paper, we present a set of numerical simu-
lations of the dynamic evolution of buoyant magnetic
flux tubes in a three-dimensional stratified convective
velocity field, exploring an extensive range of parameter
space. We consider buoyant tubes with field strengths
that range from B., to 10B., where B is the field
strength in equipartition with the kinetic energy density
of the strong convective downdrafts. We also vary the
twist of the tube from 0 to an amount that is just above
the critical value required for tube cohesion as det-
ermined from previous two-dimensional calculations
(Emonet & Moreno-Insertis 1998; Fan et al. 1998). To
clearly isolate the effect of convection, we consider in this
paper only tubes with a uniform distribution of buoyancy
along the initial tube such that in the absence of convec-
tion, the tubes remain horizontal, corresponding to pre-
vious two-dimensional simulations of the rise of twisted
horizontal flux tubes (e.g., Emonet & Moreno-Insertis
1998; Fan et al. 1998). Any development of three-dimen-
sionality in the tube structure in the subsequent evolution
is caused by the three-dimensional convective flow. We
investigate under what conditions and to what extent
results from previous calculations of rising flux tubes in
the absence of convection remain valid.

The organization of this paper is as follows. In § 2 we
describe the anelastic numerical model and the setup of
the simulations. The simulation results are presented in
§ 3, and the conclusions are summarized and discussed
in § 4.

2. THE NUMERICAL MODEL

We use the anelastic approximation of the MHD equa-
tions to model the interaction between buoyant magnetic
flux tubes and convection deep in the solar convection
zone. The anelastic approximation is suitable for numeri-
cal simulations of subsonic, dynamic processes in the
high-3 plasma of the solar (or stellar) interior. The
detailed derivation of the anclastic MHD equations has
been described elsewhere (see, e.g., Gilman & Glatzmaier
1981; Glatzmaier 1984; Lantz & Fan 1999). Here we
directly list the anelastic equations, which we solve
numerically:
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In the above, py, po(z), To(z), and so(z) denote a time-
independent, plane-parallel reference atmosphere that is
assumed to be in hydrostatic equilibrium and rearly adia-
batically stratified, and the equations solve for the evolution
of the velocity v, magnetic field B, and the thermodynamic
fluctuations sy, py, p1, and 7', which represent perturbations
from the reference state. The quantity g denotes the gravita-
tional acceleration, which is assumed constant. The
quantity ITis the viscous stress tensor,
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and v, K, and 7 denote the kinematic viscosity, thermal dif-
fusivity, and magnetic diffusivity, respectively. We assume
that v, K, and 7 are constant throughout the simulation
domain.

We assume for the reference atmosphere a weakly super-
adiabatically stratified polytrope:
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where T,, p,, p;, and H, are respectively the values of Ty, po,
po, and H, (the pressure scale height) at z = 0, ¢, is the spe-
cific heat at constant pressure, and m is the polytropic index.
In the above, §(z) is the nondimensional superadiabaticity,
whose magnitude is assumed to be <1. The quantity 6,
denotes the value of 6 at z = 0. Since |6 < 1, the value m is
essentially unchanged from the adiabatic value:
m=1/(y—1), where ~ is the ratio of specific heats and
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where for an ideal gas v = 5/3. The reference state profile
so(z) given by equations (12) and (13) is a steady state solu-
tion of the thermal diffusion equation V « (KpyTyVsy) = 0,
assuming constant K. The equilibrium reference atmosphere
is convectively unstable because of the negative gradient
in .

We want to note that unlike the other thermodynamic
quantities with subscript “0” (e.g., T, po, and py), here s is
a first-order O(8) quantity (compared to the zero-order
quantity c¢,) in the anelastic scaling. Through equation (12),
a small first-order entropy gradient ds/dz with a magnitude
~6(c,/H,) < ¢,/ H, is introduced into the reference state to
make the reference atmosphere convectively unstable (see
also Glatzmaier 1984, p. 464). As convection develops, the
entropy field in the domain is subsequently adjusted by the
time-dependent sy, which is also an O(6) quantity. There-
fore, sy and sy are both O(8), and it is not assumed that s; is
small compared to sy. In fact, the final entropy gradient
ds(z)/dz = dso(z)/dz + d51(z) /dz, obtained when the con-
vection reaches a statistical equilibrium, may be signifi-
cantly different from the reference state dso(z)/dz. (In the
above, the overbar indicates horizontal average.) The
anelastic approximation remains valid as long as the total
entropy gradient d5(z)/dz remains small compared to
¢y/Hy, or in other words, if we assume that the entropy
value is 0 at the bottom of the domain, then the magnitude
of the entropy s = sy +s; in the domain should remain
small compared to ¢,. These requirements remain satisfied
throughout our simulations (see discussion about Fig. 2
below). We also note that there is a difference in the defini-
tion of the reference atmosphere used in the present paper
compared to that in Lantz & Fan (1999), which we describe
in the Appendix.

We solve the three-dimensional anelastic MHD equations
in a rectangular Cartesian domain with periodic boundary
conditions in the horizontal directions and nonpenetrating,
stress-free upper and lower boundaries. We also assume
that the bottom boundary is an infinitely conducting plate
for the magnetic field and that at the top boundary the mag-
netic field connects smoothly to a potential field. The verti-
cal (z) size of the domain is L = 2.18H,, which spans 3
density scale heights. The ratio of the density between the
top (z = L) and the bottom (z = 0) is 0.05. The two horizon-

tal dimensions (x and y) of the simulation domain are set to
the same size 4L = 8.72H,. Thus, the undulatory Parker
instability is not playing a role here, since the domain size is
below the minimum wavelength (about 11H,; see, e.g.,
Spruit & van Ballegooijen 1982) required for the onset of
the instability. At the top and bottom boundaries, the
entropy change sy is set to 0 so that the values of entropy at
the top and bottom [so(L) and s¢(0)] are held fixed. There-
fore, a total entropy drop of As = so(L) — 50(0) is main-
tained across the simulation domain. For a fluid with
nonzero viscosity and thermal diffusion, sufficient super-
adiabaticity is required to overcome the dissipative effect of
diffusion for convection to develop, i.e., the nondimensional
Rayleigh number, defined here as
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needs to exceed a critical value R,.. For our simulations,
R, = 1.3 x 10°. Since our reference equilibrium atmosphere
is significantly stratified, the critical Rayleigh number R,
cannot be derived analytically. If we use the critical
Rayleigh number of 657.5 derived under the Boussinesq
approximation (Rayleigh 1916; Chandrasekhar 1961) as an
estimate of R, for our equilibrium atmosphere, we have
R, ~ 200R,.. We also used direct anelastic simulations of
the growth of initial random perturbations under different
Rayleigh numbers to roughly estimate what the critical R,
is. From this estimate, we obtain R, ~ 300R,.. The above
estimates show that the fluid with R, = 1.3 x 10° is amply
supercritical for the onset of convection. The magnitude of
the diffusive parameters v, K, and 1 can be expressed in
terms of the following nondimensional numbers: the
Reynolds number Re =uv.H,/v, the Prandtl number
Pr=v/K, and the magnetic Reynolds number
Re,, = v.H,/n, where the velocity scale v, = (8(5,gH,)1/2.
Throughout the remainder of the paper, velocity is
expressed in units of v.. The values of the above nondimen-
sional numbers for our simulations are given in Table 1. The
details of the numerical algorithm used to solve the set of
anelastic equations is described in the Appendix of Fan et
al. (1999). Briefly, we use a mixed pseudospectral and finite-
difference formulation, where the governing equations are

TABLE 1
PARAMETERS FOR THE SIMULATIONS

Label® Grid® By/Beq qa a/H. Re=vH /v Re,=v.H/n Pr=v/K
Conv......... 384 x 384 x 96 0 N/A  N/A 260 N/A 1
CaseA ... 384 x 384 x 96 1 025  0.136 260 5000 1
CaseB....... 384 x 384 x 96 3 025  0.136 260 1667 1
CaseC....... 384 x 384 x 96 5 025  0.136 260 1000 1
CaseD...... 384 x 384 x 96 10 025  0.136 260 500 1
CaseE....... 384 x 384 x 96 1 0 0.136 260 5000 1
CaseF ... 384 x 384 x 96 10 0 0.136 260 500 1
RefA ........ 2 x 384 % 96 1 025  0.136 260 5000 1
RefD........ 2 x 384 % 96 10 025  0.136 260 500 1
RefE......... 2 x 384 x 96 1 0 0.136 260 5000 1
RefF......... 2 x 384 % 96 10 0 0.136 260 500 1

2 The run marked “Conv” is the initial field-free convection simulation that evolves the convective flow to a
statistical equilibrium for use in subsequent simulations of rising flux tubes. The runs marked with “Ref” are
reference simulations of rising flux tubes in a static, adiabatically stratified fluid.

b Values are (x, y, z).
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Fourier decomposed in the two horizontal directions and
the vertical derivatives are written in a centered, fourth-
order finite-difference form. The equations are then
time-advanced using a semi-implicit method for which a
second-order Adams-Bashforth scheme is used for the non-
linear advection terms and a second-order Crank-
Nicholson scheme is applied to the diffusion terms.

We initiate convection with a small, random s; field and
numerically solve the anelastic equations (with B = 0) until
the convective velocity field reaches a statistical steady state.
(This simulation is labeled as “Conv” in Table 1.) From
equations (2), (3), and (5), and the boundary conditions
described earlier, a global energy conservation law can be
derived (e.g., Glatzmaier 1984):
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In the absence of a magnetic field, equation (15) shows that
the change of the total perturbation energy in the domain,
which consists of the sum of the kinetic energy Ej; =
J V% pov?dV and the perturbation thermal energy
Ew = [, poTos1 dV, is determined by the diffusive heat flux
Fairr = [¢(KpoToVsi) +dS through the top and bottom
boundary surfaces. Figure 1 shows the variation of Ej, Ey,
Eio = Ei + Ew, and Fgyat the top and the bottom bounda-
ries and the maximum velocity vy in the simulation
domain, over a period of about 122H, /v, after the convec-
tion has relaxed to a statistical steady state. It can be seen
that the energies in the domain have reached steady values
with the diffusive heat fluxes through the top and bottom
being nearly equal, indicating that the global energy conser-
vation is well satisfied by our numerical code. (Note that the
code is not written in the energy-conservative form.) The
maximum velocity in the simulation domain is about 1.25v,..

The top panel of Figure 2 shows the steady state vertical
profile of the mean specific entropy 5(z) = so(z) + 51(z) in
the convecting box. The overbar indicates the horizontal
average. The dashed line shows the initial entropy profile
so(z) for comparison. As described earlier, the boundary
values of entropy at the top [S(L) = so(L)] and bottom
[5(0) = 50(0)] are held fixed, and hence the convection in our
calculation is driven by a fixed entropy drop across the sim-
ulation domain. The final steady state profile 5(z) is nearly
flat (isentropic) throughout most of the convecting domain,
with enhanced gradients near the top and the bottom boun-
daries compared to the initial so(z). Such a final 5(z) profile
can be ecasily understood. In the main bulk of the domain,
convection smooths out the entropy gradient and transports
energy mainly in the form of advection fluxes, while at the
top and bottom boundaries, the only means for carrying the
energy flux through is the diffusive heat flux, which requires
a gradient in entropy.

It can be seen from the top panel of Figure 2 that the mag-
nitude of 5(z) has a maximum of about 306,c,. Assuming
that 6, (the superadiabaticity at the bottom of the domain)
is no greater than 107°, a reasonable assumption for the
value of superadiabaticity near the base of the solar convec-
tion zone, then the peak magnitude of 5(z) in the domain is
no greater than about 3 x 10-3¢,, which is much smaller
than ¢, consistent with the anelastic approximation. Fur-
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FiG. 1.—Variation with time of the kinetic energy Ej, the perturbation
thermal energy Ey,, and the sum of the two E\, in the simulation domain
(top), the diffusive energy flux through the top and bottom boundaries
(middle), and the maximum velocity in the domain (bottom), over a period
of about 122H, /v, after the convection in the box has relaxed to a statistical
steady state (from run Conv in Table 1).

thermore, the middle and the bottom panels of Figure 2
show respectively p;(z)/po(z) and T;(z)/To(z) in the
domain, where p; and 77 are the deviations from the refer-
ence state po(z) and Ty(z) and the overbar again indicates
the horizontal average. It can be seen that the peak magni-
tudes of p,(z)/po(z) and Ti(z)/To(z) in the domain are
respectively about 706, and 406,, which are no greater than
7 x 10-3 and 4 x 10~3, given that 6, is no greater than 10~
Therefore, p,(z)/po(z) and Ti(z)/To(z) remain small
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Fig. 2.—Steady state vertical profile of the mean specific entropy
5(z) = s0(z) + 51(z) in the convecting box after the convection has relaxed
to a statistical steady state (top). Plots of p,(z)/po(z) (middle) and
T1(2)/To(z) (bottom) in the domain are shown after the convection has
relaxed to a statistical steady state, where p; and T are the deviations from
the reference state po(z) and 7Ty (z) and the overbar indicates the horizontal
average (from run Conv in Table 1).

compared to 1. The anelastic approximation assumed in our
calculation remains valid.

Figure 3 shows a snapshot of the vertical velocity field
of the convecting box. We find that the velocity field
shows the typical features of overturning convection in a
stratified fluid as have been found in many previous
investigations (e.g., Stein & Nordlund 1989, 2000). The
surface layer displays a cellular pattern with patches of
upflow region surrounded by narrow downflow lanes. In
the bulk of the convecting domain, the downflows are
concentrated into narrow filamentary plumes, some of
which extend all the way across the domain, while the
upflows are significantly broader and are of smaller

Vol. 582

velocity amplitude in comparison to the downdrafts. Fig-
ure 4 shows the maximum upflow, downflow, horizontal,
and total velocities (V4-max, U—zmax> Uxmax> Uymax> Umax) aS
a function of height (top panel) and the rms upflow,
downflow, horizontal, and total velocities (v-rms, U—zrms»
Uxrms» Uyrms» Urms) as a function of height (bottom panel).
The asymmetry between the upflow and downflow veloc-
ities can be seen. The strongest downdrafts have a
velocity comparable to v,.

For our study of the interaction between buoyant
magnetic flux tubes and stratified convection, we insert a
buoyant, twisted, horizontal flux tube into the statistically
steady convecting flow described above. The magnetic field
of the flux tube is given by

B = By(r)0 + Bi(r)l (16)

2

B = Boexp( )+ B = arB0), (17

where I denotes the tube axial direction, @ is the azimuthal
direction in the tube cross section, and r is the radial dis-
tance to the central axis. The flux tube is uniformly twisted,
and the constant ¢ denotes the angular rate of field line rota-
tion about the axis per unit length along the tube. The tube
axis is placed at a height z; = 0.45H,, which is about one-
fifth the total height of the domain. The radius of the tube is
settoa = 0.135H,. At the base of the solar convection zone,
flux tubes responsible for emerging active regions are
expected to have a radius that is on the order of or smaller
than 0.1 times the local pressure scale height. This is esti-
mated from the typical amount of flux observed in solar
active regions and assuming that the tube field strength is at
least in equipartition with convection. Thus, the tube size
that we consider in our simulations is at the upper limit of
the expected sizes of active region scale tubes at the base of
the solar convection zone. We cannot model tubes of
smaller sizes because of numerical constraints: our simula-
tion domain needs to be sufficiently wide so that the convec-
tive flow is not severely constrained, but in the meantime we
need to be able to adequately resolve the thin flux tube.

As we insert the flux tube into the flow, we do not alter the
velocity field. In this way, the magnetized plasma of the flux
tube will initially move with the original local velocity field
at the time of insertion (¢ = 0) but will subsequently react to
the flow via accelerations by the Lorentz force and the buoy-
ancy force. We adjust the thermodynamic condition of the
tube plasma to make it buoyant. We modify the entropy in
the volume occupied by the tube by adding a change of

2
o5, 3, 2) = [50(0) = 502) = (. . Nesp( ) (19

to the original field-free value of s(x, y, z) =
so(z) +s1(x, p, z). As a result, the flux tube has a constant
entropy along the tube axis that is equal to the value at the
base of the convection zone sy(0), and the entropy of the
tube merges smoothly with the external entropy field
(6s — 0) at the boundary of the tube. The flux tube is nearly
uniformly buoyant along the tube, with the buoyancy force
on the tube axis given by

2 —solz
Jouo & 87th400(2,) (1 - l(]2612) —&-Mpo(z,)g . (19)
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Fic. 3.—Snapshot of the vertical velocity field of the convecting box (from run Conv in Table 1)

We do a series of numerical simulations with varying
axial field strength B, and twist ¢. We consider values of By
that range from 1 to 10, in units of the equipartition field
Beq = (470p,)"?0,. Thus, for By = 1, B3 /87 = (1/2)p,02, i.e.,
the magnetic field is roughly in equipartition with the kinetic
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rms upflow, downflow, horizontal, and total velocities (v zrms» U—zrms» Uxrmss
Uyrms» Urms) a8 @ function of height (bottom) (from run Conv in Table 1).

energy density of the strongest downdrafts. On the other
hand, for By = 10, the magnetic flux tube is highly supere-
quipartitioned, with the magnetic energy density being
about 100 times the kinetic energy density of the strongest
downdrafts. A few two-dimensional reference simulations
of the rise of the above buoyant horizontal flux tubes placed
in a static, adiabatically stratified fluid are also done for
comparison in order to better understand the effects of
three-dimensional convection on the dynamic evolution of
the tubes. The background fluid stratification for the refer-
ence runs is given by equations (9)—(12), with equation (12)
replaced by dsy/dz = 0. The parameters of all the runs are
summarized in Table 1. Note that the magnetic diffusivity n
or the magnetic Reynolds number Re,, is different for runs
with different tube field strength B. This is because tubes
with higher field strength require a larger magnetic diffusiv-
ity (or smaller Re,,) for numerical stability. Furthermore,
the timescales for the rise differ for tubes of different field
strength. When convection is ignored, the rise time of the
tube scales inversely with By. The values of Re,, are chosen
such that the ratio of the diffusive timescale (a2 /n) over the
rise time is about 10 for all cases.

3. RESULTS
3.1. Overview

Simulation results from cases A, B, C, and D give us a
clear view of how the evolution of the buoyant tubes in
three-dimensional convection depends on the field strength
of the tube. For these runs, the initial flux tube is inserted in
the same location in the convecting box. The velocity field in
the vertical slice that contains the axis of the initial flux tube
at t = 0 is shown in Figure 5. It can be seen that there are a
couple of strong downdrafts at the flux tube location. The
largest velocity vector in the figure is about 0.9v,... The initial
axial field for cases A, B, C, and D is respectively By = 1, 3,
5, and 10 in units of Beg, and the twist is ¢ = 0.2547!, being
the same for all four cases (see Table 1). Previous two-
dimensional simulations of the buoyant rise of horizontal
flux tubes in a static convection zone found that with this
amount of twist, the flux tube rises coherently through the
stratified fluid (see, e.g., Emonet & Moreno-Insertis 1998;
Fan et al. 1998). The subsequent evolution of the buoyant
flux tube in the three-dimensional convective flow from the
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FiG. 5.—Velocity field and field B, in the vertical plane that contains the axis of the initial tube at ¢ = 0 (the same for cases A, B, C, D, E, and F in

Table 1).

four runs is shown in Figure 6. The images in Figure 6 show
the volume rendering of the absolute magnetic field strength
of the flux tube. It can be seen that in the case with a highly
superequipartition field (By = 10; Fig. 6d), the rising flux
tube essentially retains its initial straight horizontal configu-
ration, except that the tube cross section deforms into a cres-
cent shape with some small amount of weak flux being
pulled behind from the edge of the tube. The evolution of
the tube is essentially the same as that obtained from the
reference simulation (Ref D in Table 1) with the tube placed
in a static, adiabatically stratified fluid. For cases with
decreasing axial field strength (Figs. 6¢, 6b, and 6a), the
deviation of the shape of the tube in the subsequent evolu-
tion from its initial shape increases as a result of the defor-
mation by the three-dimensional convecting flow. In the
case of an equipartition field (By = 1; Fig. 6a), we find that
the sections of the tube in the paths of the strong downdrafts
are pushed downward and are “pinned down” to the
bottom of the domain, while the portions of the tube in the
broad upflow regions rise to the surface.

The different dynamic behavior of the tube shown in Fig-
ure 6 from the case with B = 10 to the case with B = 1 corre-
sponds to a transition from a magnetic-buoyancy—
dominated evolution to a convection-dominated evolution.
This transition can be understood by comparing the
magnitude of the magnetic buoyancy force with that of the
hydrodynamic force from convection, which can be esti-
mated from the acrodynamic drag exerted on the tube. For
magnetic buoyancy to dominate, we need

Bj pov?
8mhy > Ca Ta

(20)

When estimating the magnitude of the magnetic buoyancy,
we have considered only the first term on the right-hand side
of equation (19) and have ignored the modification due to
twist (the %qza2 term in the parentheses), since the dominant
contribution comes from the B3/8why term. Equation (20)
leads to

20, he\ /2 ho\ 12 A2
By > <—d—o) By ~ <_0> Beq ~ <_p> Beg - (21)
T a a a

Here we have used the approximation that 2C, /7 is of the
order of 1. The above equation states that the field strength
of the flux tube needs to be significantly superequipartition
[by a factor greater than about (H,/a)!/> ~ 3] in order for
the magnetic buoyancy to be able to counteract the hydro-
dynamic force from the convective downflows. This is in
agreement with the results shown in Figure 6, in which we

find that for the case with the critical field strength By = 3,
the portions of the tube in the strong downdrafts are just
barely able to rise under the buoyancy force.

3.2. Evolution of Tubes with an Equipartition Field

In the case of tubes with an equipartition field By =1
(Fig. 6a), the magnetic buoyancy is weaker than the hydro-
dynamic force resulting from the convective downdrafts;
hence, the evolution of the tube depends sensitively on the
local condition of the convective flow. Figure 7a shows
the buoyancy distribution in the vertical plane that contains
the axis of the initial flux tube with By = 1. It can be seen
that the flux tube is nearly uniformly buoyant. Figure 75
shows the buoyancy distribution in the same vertical slice at
a later time (1 = 1.01H,/v.), and we see that despite being
buoyant, the portions of the flux tube in the downdrafts are
pushed downward to the bottom. (Note that some segments
of the flux tube have moved out of the plane, resulting in the
discontinuous appearance in the buoyancy distribution.)
The pinned-down flux is then further distorted and trans-
ported laterally by the horizontal diverging flow at the bot-
tom. This is evident in the top two panels of Figure 8, which
show two snapshots of the y-z cross section (perpendicular
to the initial tube axis) at the location x = 2.61 H,, where the
tube is being pushed down by the downdraft. The middle
two panels of Figure 8 show two snapshots of the y-z cross
section of the tube at x = 6.82H,, where the tube is in an
upflow region. This portion of the tube is found to rise to
the surface at a significantly faster speed (by about 50%)
than the steady rise speed (=0.150v.) obtained from the refer-
ence two-dimensional simulation (Ref A in Table 1) of the
same buoyant tube ascending through the domain in the
absence of convection. Snapshots of another y-z cross sec-
tion of the tube at x = 6.13H, are shown in the bottom two
panels of Figure 8. At this location, the rise of the tube is
also boosted by a local upflow. However, as the tube cross
section approaches the surface, it encounters a downdraft
that severely distorts the tube cross section (see the bottom
panel of Fig. 8).

The last panel of Figure 6a shows that an (2-shaped
emerging tube has formed with its two ends pinned down by
the convective downdrafts. The development of this Q-tube
is a result of the three-dimensional convection rather than a
buoyancy instability or an artificial variation in the initial
buoyancy distribution. The length scale or footpoint separa-
tion of the Q-tube is determined by the separation of the
major downdrafts, which in the case shown in Figure 6a is
about SH,, a value significantly smaller than the minimum
wavelength (~10H,) necessary for the onset of the magnetic
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FiG. 7.—Distribution of buoyancy in the vertical plane that contains the axis of the initial flux tube at (¢) r = 0 and () a later time ¢ = 1.01 H, /v, for the case

with By = 1 (case A).

buoyancy instability for a toroidal field at the base of the
solar convection zone. The Q-tube is severely distorted by
convection, as can be seen in Figure 9a, which shows two
different views of the same tube shown in the bottom panel
of Figure 6a. We see that the top of the 2-tube meets
another downdraft, which produces a local ““indentation ”’
of the tube (Fig. 9a, top panel). We cannot, however, rule
out the above distorted rising {2-tube (shown in Figs. 6a and
9a) as a possible progenitor of a solar active region, since
the observed emerging magnetic regions often show com-
plex morphologies that are not inconsistent with such a dis-
torted emerging tube. Figure 10a shows the morphology of
the vertical magnetic field (contours) in a horizontal cross
section taken near the top of the (2-tube (at z = 1.86H,). It
suggests that the initial emergence may produce two adja-
cent bipolar regions on the surface, each of which shows an
apparent tilt of about 30° from the x-direction (east-west
direction). The apparent tilts are caused by distortion of the
tube by convection. To obtain a more statistically signifi-
cant measure of the tilting or north-south bending of the
flux tube caused by convection, we calculate an rms tilt of
the entire tube as follows: We evaluate the field weighted-
average y-position () of the tube as a function of x along
the tube and then calculate the rms of tan~!(dy/dx). This
rms tilt for the tube is about 27°. The observed solar active
region tilts have a large scatter about the mean tilt given by
Joy’s law, with the rms of the scatter ranging from about
10° to 30° depending on the size of the regions (Fisher et al.
1995). The scatter in active region tilts is most likely a result
of convection acting on rising flux tubes (Fisher et al. 1995;
Longcope & Fisher 1996). The tilting of the tube caused by
convection obtained from our simulation in the case with
By =1 is greater than the rms scatter of the tilts of large
active regions (10°) but is not beyond the rms scatter of
small active regions (30°).

Interestingly, we find that for buoyant tubes with By = 1,
the dynamic evolution is no longer sensitive to the initial
twist of the tube, in contrast to what was found from the

simulations in the absence of convection. Figure 95 shows
the configuration of the tube at t = 6H, /v, resulting from a
run (case E) that is the same as that shown in Figure 9a
except that the initial twist ¢ is set to 0 instead of
g = 0.25a"'. Figure 10b shows B. in the horizontal cross
section near the top of the Q-tube (at z = 1.86H,) for the
case with ¢ = 0, in comparison with the case of ¢ = 0.254!
shown in Figure 10a. We see that the morphology of the
tube in the case with no initial twist is nearly indistinguish-
able from that with ¢ = 0.254~!. In the present case of
convection-dominated evolution, the flux tube is being bent
by the flow in an incoherent manner along the tube, and -
shaped tubes form between strong downdrafts. The flux
tube is no longer able to develop vortex tubes coherent
along the tube axis, as would be the case in the absence of
convection. Because of the three-dimensional nature of the
flux tube, the restoring tension force that acts against distor-
tion by convection depends mainly on the fotal field strength
of the tube rather than just the azimuthal field component.
For ¢ = 0.25a~!, the peak azimuthal field strength in the ini-
tial tube cross section is only about 0.1B,, small compared
to the peak axial field strength Bj. Hence, the total field
strength for the twisted tube of ¢ = 0.254! is not signifi-
cantly different from the untwisted tube, which leads to the
very similar three-dimensional evolution of the tubes in the
convective flow.

3.3. Evolution of Tubes with a Highly
Superequipartition Field

For buoyant tubes with a highly superequipartition
field, magnetic buoyancy dominates the hydrodynamic
force from convection, and the evolution of the tubes
converges to the simulation result of the buoyant rise of
the same horizontal flux tubes in a static, adiabatically
stratified fluid. Figure 11 shows the rise velocity of the
tube (with By = 10, ¢ = 0.254~!) measured in two differ-
ent cross sections at x = 2.34H, and 6.63H,, which are
respectively located in a strong downdraft and an upflow
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F16. 9.—(a) Two different views of the same tube shown in the bottom panel of Fig. 6« resulting from the run of case A. (b) Same as (a), except for being from

a run without an initial twist (case E).

region. The rise velocity is evaluated at the position of
the peak field strength in the tube cross section. For com-
parison, the rise velocity obtained from the reference sim-
ulation (Ref D) of the same buoyant tube in the absence
of convection is also shown. We can see that the tube rise
velocities in the convecting flow (both in the downdraft
location and in the upflow region) are similar to that of
the reference simulation. Regardless of the different initial
vertical velocities at different positions along the tube
(e.g., —0.71v, in the downdraft location and 0.26v. in the
upflow location, as shown in Fig. 11), the tube acceler-
ates under its buoyancy to a steady velocity of approxi-
mately 1.50.. The bending of the tube resulting from
distortion by the three-dimensional convective flow is
small, and the tube essentially retains its initial straight
horizontal configuration. The final shape of the tube is
determined by the initial buoyancy distribution along the
tube.

8 t= 6.00 (a)
6,

= |

- 4
2,
O’ | PR | |
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Figures 12b and 12¢ show cross sections of the rising tube
at x = 2.34H, (in the path of a strong downdraft) and
6.63H, (in an upflow region), compared with the tube cross
section obtained from the reference run (Ref D) in the
absence of convection (Fig. 12a). It can be seen that the tube
cross sections are not significantly distorted by the presence
of the convective flow. In the present case of magnetic-
buoyancy—dominated evolution, we find that the cohesion
of the tube still depends sensitively on the initial twist. With-
out twist, the buoyant tube breaks up into two long vortex
tubes that move apart horizontally, as can be seen in
Figure 13, which shows the evolution obtained from the run
of case F (same as case D shown in Fig. 6d, except that the
initial twist ¢ is set to 0).

The earlier work of Dorch et al. (2001) also modeled the
rise of a horizontal flux tube with a highly superequiparti-
tion field strength (B = 10B.) in a stratified convecting
model convection zone. However, they used a significantly

8} t= ‘6“0‘0‘ - tb‘)
6 f
p4 7
o} f
ol ‘ ‘ ‘ ‘
0 2 4 6 8

Fi1G. 10.—(a) Morphology of the vertical magnetic field B. (contours) in a horizontal cross section taken near the top of the Q2-tube shown in Fig. 6a (from
the run of case A) at the height z = 1.86H,. Solid contours correspond to a positive vertical field, while dotted contours correspond to a negative vertical field.

(b) Same as (a), except for being from a run without a twist (case E).
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FiG. 11.—Rise velocity of the tube (with By = 10, ¢ = 0.25a"!, case D)
measured in two different tube cross sections at x = 2.34H, and 6.63H,,
which are respectively located in a strong downdraft and an upflow region.
Also shown for comparison is the rise velocity obtained from the reference
simulation (Ref D) of the same buoyant tube in the absence of convection.
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higher twist for the flux tube, with ¢ = a~!, which is at the
marginal stability for the kink instability and is 4 times the
highest twist we have considered here (¢ = 0.25a~!). Their
calculation is fully compressible with plasma [ ~ 100,
which may be more suitable for describing the dynamics of
rising flux tubes in the upper layers of the convection zone.
The results from our simulation with B = 10B,q (case D) are
in qualitative agreement with theirs in that the tube remains
straight and the rise speed, rise time, and the rise trajectory
are not significantly altered by the presence of convection.
In addition, Dorch et al. (2001) found significantly more
flux loss for the rising flux tube in the presence of convection
(about 20% of the initial flux is lost through the rise) in com-
parison to their reference two-dimensional run without con-
vection (in which case the flux loss is negligible). In our case,
we find that at a twist of ¢ = 0.25a~!, the flux tube already
suffers a flux loss of about 30% to the wake during its rise in
the absence of convection (see also Emonet & Moreno-
Insertis 1998). However, we do not see as large an increase
of flux loss due to the presence of convection as was found
in Dorch et al. (2001). As can be seen in the comparison of
tube cross section morphology shown in Figure 12, the dis-
tortion of the cross sections of the flux tube in the convective
flow (Figs. 1256 and 12c¢) is not substantially more severe in
comparison to the two-dimensional reference case (Fig.
12a) at this high field strength. For the tube cross section
shown in Figure 125 (in the path of a strong downdraft),
about 38% of the total flux of the tube is pulled into the
wake, while about 33% of the total flux is in the wake in the
reference case without convection (Fig. 12a). For the cross
section in the updraft region (Fig. 12¢), the amount of flux
in the wake is nearly the same as that for the reference case
(Fig. 12a). It is not clear what causes this difference between
our result and that of Dorch et al. (2001) with regard to the
increase of flux loss due to convection for highly super-
equipartition tubes. One possibility is the treatment of the
viscosity. Our simulations use an explicit viscous term with
constant v, while Dorch et al. (2001) use a more sophisti-
cated treatment in which fluid is much less diffusive in
smooth regions than in regions where a steep gradient exists.
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F1G. 12.—(a) Snapshot of the rising tube cross section from the two-
dimensional reference simulation Ref D. Cross sections of the rising tube
are shown at (b) x = 2.34H, (in the path of a strong downdraft) and (c)
6.63H, (in an upflow region) from the run of case D with By = 10 and
g = 0.25a~!. The marked time ¢ is in units of H, /v,.

In our case, the effective Reynolds number for the rising flux
tube is rather small: Reeyr = vyi5ea/v ~ 40. The sophisticated
treatment of viscosity described in Dorch et al. (2001) allows
for a more turbulent flow with more energy in the smaller
scales. This may result in additional distortion of magnetic
flux tubes not evident in our simulations.

4. DISCUSSION AND CONCLUSIONS

We have carried out direct numerical simulations of the
dynamic evolution of buoyant magnetic flux tubes in three-
dimensional stratified convection. To most clearly identify
the effect of convection on the tube, we focus on the simple
case in which the initial flux tubes are uniformly buoyant
along their axes so that the development of three-
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B, = 10, no twist

FiG. 13.—Evolution of the tube from the run of case F with By = 10 and
zero initial twist. The images show the volume rendering of the absolute
field strength. See Fig. 6 for the color table. The time ¢ is given in units of
H,/v,.

dimensionality in the subsequent evolution is due to convec-
tion. We consider twisted flux tubes with initial axial field
strengths By ranging from B to 10B.q and twist ¢ ranging
from 0 to 0.25a~!, where B is the field strength in equipar-
tition with the kinetic energy of the strongest downdrafts
and ¢ denotes the angle of field line rotation about the axis
over a unit length along the tube. Reference simulations of
the same tubes in the absence of convection are also carried
out for comparison.

We find that the evolution of the buoyant tubes changes
from being “convection dominated” to “ magnetic buoy-
ancy dominated ™ as the field strength increases from Bq to
10B,,. The field strength of the flux tube needs to be signifi-
cantly superequipartition, By > (H, /a)l/ 2Beq, in order for
the magnetic buoyancy of the tube to be able to overcome
the hydrodynamic force from the convective downflows.
Applying the appropriate values for H,, a, and B at the
base of the solar convection zone, H, ~ 5.6 x 10° cm,
a<5.6 x 108 cm, and Beq ~ 10* G, the above criterion cor-
responds to By > 3 x 10* G.

For a tube of equipartition field strength (By = Bg), the
evolution and morphology of the tube are largely controlled
by the local conditions of the convective flow. Sections of
the tube in the paths of strong downdrafts are pinned down
to the base of the domain, while the rise speeds of sections
within the upflow regions are significantly boosted; (-
shaped emerging tubes can form between downdrafts. The
footpoint separation of the Q-tube is given by the separation
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of downdrafts and does not reflect the initial buoyancy dis-
tribution along the tube. Furthermore, we find that the
three-dimensional evolution and structure of the flux tubes
with By = B,y no longer depend sensitively on the initial
twist (compare Figs. 9a and 9b), in contrast to the results
obtained in the absence of convection.

Although flux tubes with By = B,y are found to be
severely distorted by the convective flow, we cannot rule out
the distorted 2-tubes that emerge between downdrafts (see,
e.g., Figs. 9 and 10) as a possible source of solar active
regions, given the fact that the observed emerging magnetic
regions often show complex morphologies. In our simula-
tions with By = By, the random tilting of the flux tube
caused by convection is of the amplitude of about 30°. This
amplitude is greater than the rms scatter of the tilt angles of
large active regions (10°) but is not beyond the rms scatter
of the tilts of small active regions (30°). We note that the
convective distortion of flux tubes in our simulations is
likely an underestimate. The solar convection zone is signifi-
cantly more stratified and the convective flow is certainly
more turbulent than what we can model in our simulations.
Taking this into consideration, tubes of an equipartition
field may be too severely distorted by convective flows to be
consistent with the observational constraint on the disper-
sion of active region tilt angles.

As the tube field strength By increases above the critical
value of ~(H, /a)l/ 2Beq, the dynamic evolution converges
toward the results of previous simulations of the buoyant
rise of magnetic flux tubes in a static, adiabatically stratified
model solar convection zone (e.g., Emonet & Moreno-
Insertis 1998; Fan et al. 1998). In the case of By = 10B.q, we
find that the flux tube essentially retains its initial shape of a
straight horizontal tube during its ascent. This is because
the buoyancy distribution along the tube is uniform, and
the hydrodynamic force from the convective flow is too
weak to introduce any significant bending of the tube. The
rise speed is not significantly altered by the presence of con-
vection. The cohesion of the rising flux tube still depends
sensitively on the initial twist of the tube, as was found in
previous two-dimensional simulations in the absence of
convection (Longcope et al. 1996; Emonet & Moreno-
Insertis 1998; Fan et al. 1998).

In a subsequent paper, we will extend our investigation to
model tubes with nonuniform initial buoyancy distribution
along the axes and will study the buoyant rise of arched
tubes in a three-dimensional convective flow. The effect of
rotation will also be incorporated to study how the Coriolis
force in conjunction with convection determines the tilt of
the emerging Q-loops.
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APPENDIX

A NOTE ON THE DIFFERENT DEFINITIONS OF THE REFERENCE ATMOSPHERE USED IN THE
PRESENT PAPER AND LANTZ & FAN (1999)

In this appendix we clarify a difference in the definition of the reference atmosphere used in the present paper compared to
that in Lantz & Fan (1999). In Lantz & Fan (1999), the reference atmosphere (denoted by Ty, po, pg, and sy) was defined to
correspond strictly to the zero-order balance in the anelastic scaling, which is an adiabatically stratified equilibrium
atmosphere, since to zero order, dsy/dz = 0 or 5o = 0 (or any constant; see eq. [38] in Lantz & Fan 1999). A separate time-
independent, first-order O(6) entropy gradient ds,(z)/dz called the “ drive function ”” was then added (see eq. [55] and the text
that follows and also eq. [72] in Lantz & Fan 1999) to make the atmosphere convectively unstable and initiate convection. The
subsequent fluctuating part of the entropy due to the onset of convection is denoted by 51, and the sum of the time-independent
s4(z) and the fluctuating 5; is denoted by s; in that paper. Lantz & Fan (1999) used the above notations to emphasize that the
imposed s,(z) and the subsequent fluctuating §; are both first-order O(6) quantities. Here we have chosen to use the more
“conventional ” definitions (following Glatzmaier 1984), where the time-independent reference state (denoted by Ty, po, 0o,
and sp) is defined to be a weakly superadiabatically stratified equilibrium atmosphere with an O(6) entropy gradient dsy(z)/dz.
Therefore, the reference atmosphere (7, po, po, So) does not correspond strictly to the zero-order balance, and we have attrib-
uted the O(6) entropy gradient ds,;(z)/dz in Lantz & Fan (1999) to dsy(z)/dz. The reference atmosphere here is defined to cor-
respond to the equilibrium state before the onset of large-scale convective motions. The subsequent fluctuating part of the
entropy is denoted by s, and as we have noted in our paper, both sy(z) and s; are O(6) quantities. The difference described
above between our present paper and Lantz & Fan (1999) is merely in the notation. Introducing a separate ds;(z)/dz to the
zero-order isentropic atmosphere as is done in Lantz & Fan (1999) is effectively the same as using a reference atmosphere that
is weakly superadiabatically stratified, as we have done here. The basic assumption used in both papers is the same: under the
anelastic approximation, the entropy gradient is 0 to zero order, and its leading (lowest) order term is O(6), or in other words,
the entropy gradient remains much smaller than c,/H,,.
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