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[1] FAST observations of Debye-length-scale potential
structures are ubiquitous in the auroral return current region
of the magnetosphere. We show that the 3D shape of
these fast-moving coherent structures can be correctly
reproduced with a nonlinear fluid model of a 3D electron-
acoustic beam soliton. This model describes the early
stage of the nonlinear beam-plasma instability which takes
place on the high-potential side of an electrostatic potential
ramp, where cold ionospheric electrons are accelerated
up the magnetic field lines by a localized DC parallel
electric field. At FAST altitudes (below 4000 km), our
model predicts spheroidal potential structures, while at
higher altitudes we expect the solitary waves to be
elongated across the magnetic field. This altitude-
dependent scaling is in agreement with observations of
solitary waves performed with POLAR over a wide range of
altitudes. INDEX TERMS: 2704 Magnetospheric Physics:

Auroral phenomena (2407); 2712 Magnetospheric Physics:

Electric fields (2411); 7815 Space Plasma Physics: Electrostatic

structures. Citation: Berthomier, M., R. Pottelette, L. Muschietti,

I. Roth, and C. W. Carlson, Scaling of 3D solitary waves observed

by FAST and POLAR, Geophys. Res. Lett., 30(22), 2148,

doi:10.1029/2003GL018491, 2003.

1. Introduction

[2] Observations by the Fast Auroral SnapshoT (FAST)
satellite [Carlson et al., 1998a] have shown that solitary
structures and energetic upgoing electrons are ubiquitous in
the return current region of the auroral magnetosphere
[Ergun et al., 1998]. These small-scale structures are
possibly responsible for the generation of electrostatic
whistler waves [Berthomier et al., 2002]. They carry an
energy up to �1% of the thermal energy, which is typical of
strong turbulence. They are associated with strong ion
heating and ion outflow and therefore they seem to play a
significant role in ionosphere-magnetosphere coupling.
[3] Figure 1 displays the typical electric field signature of

the solitary structures observed by FAST at 3100 km
altitude, 21 MLT, and 69� ILAT [Ergun et al., 1998]. The
parallel and perpendicular electric fields, Ek and E?, take
the form of bipolar and quasi-monopolar spikes, respec-
tively. They correspond to Debye-length-scale positive
potential structures moving upwards at a few thousand
km/s along the magnetic field B. These structures are
similar to the electrostatic potential spikes observed by
the POLAR spacecraft at higher altitude in the polar cap

and in the plasma sheet boundary layer [Mozer et al., 1997;
Cattell et al., 1999]. Using a statistical analysis of the ratio
E?/Ek for structures detected by POLAR over a wide range
of altitude, Franz et al. [2000] have shown that the ratio of
their perpendicular to parallel elongation relative to the

magnetic field, L?/Lk, varies as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w2

pe=�
2
ce

q
where wpe

and �ce are the electron plasma frequency and gyrofre-
quency, respectively.
[4] In this paper, we present the first model of a 3D

electrostatic structure which self-consistently accounts for
this scaling. At FAST altitudes, where wpe/�ce � 1, the
model, in agreement with the observations, predicts sphe-
roidal structures, while at higher altitudes it predicts the
solitary waves to be elongated across the magnetic field.

2. Theory

[5] In order to construct our model, we first need to
consider realistic electron distribution functions. Typical
electron distribution functions observed in association with
the solitary waves have little thermal spread across B and
form a plateaued distribution along B [Carlson et al.,
1998b]. These distributions have been strongly thermalized
and they probably result from the evolution of a two-stream
instability: in the current-carrying auroral plasma, a local-
ized density inhomogeneity may indeed induce the forma-
tion of an electrostatic potential ramp from which emerges
an electron beam that interacts with the non-drifting elec-
trons of higher temperature which stagnate upstream (i.e. on
the high-potential side of the ramp) [Newman et al., 2001].
Recently confirmed by high-time resolution FAST observa-
tions [Ergun et al., 2001], this scenario implies the existence
of a localized parallel electric field in the auroral plasma.
Solitary waves are formed upstream of this double-layer.
[6] In the following, we describe only the first stage of

the nonlinear evolution of this system, in the immediate
vicinity of the potential ramp: we want to answer the
question of whether solitary structures have a 3D preferen-
tial shape from the very beginning of their nonlinear
evolution. All physical quantities are considered as only
slightly different from their equilibrium values, and strong
nonlinear effects, like particle trapping, are neglected.
However, trapped electrons play an important role for
large-amplitude solitary waves which have been previously
modeled as 1D electron holes [e.g., Muschietti et al., 1999].
Here we adopt a fluid point of view and write the following
set of equations for the two electron populations:

@ni
@t

þr � nivið Þ ¼ 0 ð1Þ

@vi
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r2f ¼ e

e0
ns þ nb � n0ð Þ ð3Þ

where n is the density, v the velocity, f the electrostatic
potential, P the pressure tensor, and the subscript i = s, or b
refers to stationary, and beam electrons. The magnetic field
B is oriented along -z, and -e and me are the electron charge
and mass, respectively. We close the hierarchy of fluid
equations by assuming that the plasma behaves as an ideal
gas with an anisotropic equation of state for the pressure.
The pressure tensor splits into perpendicular and parallel
components, p?,k = nkBT?,k, and a polytropic law relates
temperature to density variations, T?,k = T?0,k0 (n/n0)

g?,k�1

where g?,k are perpendicular and parallel polytropic
indices which are a priori distinct for the two electron
populations. The subscript 0 refers to undisturbed quan-
tities. We will show in Section 3 how polytropic indices can
be determined. Due to the high speed of the solitary wave
compared to the ion-thermal and ion-acoustic velocities,
ions are assumed to form a homogeneous neutralizing
background in Poisson equation (3), with density n0.
[7] We first identify the linear wave modes of this system

by linearizing (1)–(3) with the ansatz f / exp (i�W) where
�W = k � r � wt is the wave phase. For illustrative purposes
we first consider the case with a cold beam (Tb = 0) and hot
isotropic stationary plasma, for which w/kk � vs where vs

2 =
gskBTs/me is the stationary electron isotropic thermal veloc-
ity. From the linearization of (1)–(3), we get

w� kkud
� �2¼ k2kv

2
ea

1þ k2l2
Ds

1þ k2?
k2k

w� kkud
� �2

w� kkud
� �2��2

ce

h i
8<
:

9=
; ð4Þ

where ud is the beam velocity and vea = lDswpb is the
electron-acoustic velocity, with lDs being the stationary
electron Debye length and wpb the beam plasma frequency.
In a strongly magnetized plasma with (w � kkud) � �ce,
(4) reduces to

w� kkud
� �2¼ k2kv

2
ea

1þ k2l2
Ds þ k2?r2

ð5Þ

where r = vea/�ce is the electron-acoustic gyroradius. For
obliquely propagating weakly dispersive waves, we have
klDs � 1 and k?r � 1 and the dispersion relation takes the

form w � kkud � kkvea (1 � k2lDs2 /2 � k?
2 r2/2). In a more

general case with non-zero beam temperature and arbitrary
wave phase velocity relative to vs, a similar expression can
be obtained:

w � kkud � kkVEA 1� k2l2
D=2� k2?r

2
L=2

� �
ð6Þ

where VEA, lD, and rL are an effective electron-acoustic
velocity, Debye length, and electron-acoustic gyroradius,
respectively. We further define V = ud � VEA as the long-
wavelength limit of the parallel wave phase velocity.
[8] We aim to expand all physical quantities around these

linear solutions in the reference frame of the linear wave. In
the weakly dispersive limit, we define a small parameter e
such that k2 = eK2 with K of the order of typical length
scales of the plasma like lD or rL. From (6), the wave phase
becomes

�W ¼ K? � e1=2r?
h i

þ Kk e1=2 rk � Vt
� �h i

� KkVEA K2l2
D þ K2

?r
2
L

� �
e3=2t
h i

=2 ð7Þ

and we conclude that we need to stretch space and time
variables according to

z; h; x; t½ � ¼ e1=2x; e1=2y; e1=2 z� Vtð Þ; e3=2t
h i

ð8Þ

in order to study the nonlinear waves in the reference frame
of the linear solutions of (1)–(3). This implies that
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@
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@

@x
þ e3=2

@

@t
ð10Þ

[9] Using the reductive perturbation method [Washimi
and Taniuti, 1966] adapted for obliquely propagating waves
by Laedke and Spatschek [1982], we expand all quantities
in power series of e

ns;b ¼ ns0;b0 þ en 1ð Þ
s;b þ e2n 2ð Þ

s;b þ . . . ð11Þ

vsx ¼ 0þ ev 1ð Þ
sx þ e2v 2ð Þ

sx þ . . . ð12Þ

vbx ¼ ud þ ev 1ð Þ
bx þ e2v 2ð Þ

bx þ . . . ð13Þ

f ¼ 0þ ef 1ð Þ þ e2f 2ð Þ þ . . . ð14Þ

vsz;bz ¼ 0þ e3=2v 1ð Þ
sz;bz þ e2v 2ð Þ

sz;bz þ . . . ð15Þ

vsh;bh ¼ 0þ e3=2v 1ð Þ
sh;bh þ e2v 2ð Þ

sh;bh þ . . . ð16Þ

where undisturbed densities, ns0,b0, have been introduced.
Note that the specific expansion for the perpendicular
velocity in (15) and (16) will be justified later on.

Figure 1. Parallel and perpendicular electric field signa-
ture of a series of solitary waves observed by FAST in the
downward current auroral region.
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[10] Solving (1) and (3) together with the parallel com-
ponent of (2) to order 1 and 3/2 in e in terms of the new
variables (z, h, x, t), it can be easily shown that V must be
equal to the parallel wave phase velocity of the linear mode.
Therefore V is a known function of the plasma parameters.
To order 3/2 in e, the perpendicular component of (2) gives

v 1ð Þ
sh

�v
1ð Þ
sz

" #
¼ �e

me�ce

r?f 1ð Þ þ g?skBT?s0

me�ce

n g?s�2ð Þ
s r?n

1ð Þ
s

n
g?s�1ð Þ
s0

ð17Þ

A similar equation is obtained for the electron beam. The
first term on the right hand side of (17) is the ‘‘E � B’’ drift
while the second one is the diamagnetic drift due to the
electron pressure gradient. This result makes sense as long
as the drift approximation is valid, i.e. at low frequency
compared to the electron gyrofrequency �ce. It is a direct
consequence of the specific choice we made for the first
term of the perpendicular velocity expansion in power series
of e, given by (15) and (16).
[11] To second order in e, (2) reduces to

v 2ð Þ
sh

v
2ð Þ
sz

" #
¼ V

�ce

@

@x
�v

1ð Þ
sz

þv 1ð Þ
sh

" #
ð18Þ

For the electron beam, a similar equation is derived with V
replaced by V � ud in (18). The right-hand term of (18)
comes from the convective part of the time derivative given
by (10) and, by looking at (17), we can interpret the second
order perpendicular velocity as the polarization drift. This
physically reasonable result justifies the specific power of e
considered in the second term of (15) and (16). Another
choice in these expansions would be required for the
description of a different ordering of the characteristic
frequencies of the plasma.
[12] Finally, to order 5/2 in e, we obtain from (1)–(3) a

system of equations which relates second and first-order
quantities and which constrains the dynamical evolution of
the system to first order in e. After lengthy but straightfor-
ward calculations, we have obtained the following evolution
equation for the potential perturbation f(1)

A
@f 1ð Þ

@t
þ Bf 1ð Þ @f

1ð Þ

@x
þ @

@x
C þ 1ð Þr2

?f
1ð Þ þ r2

kf
1ð Þ

h i
¼ 0 ð19Þ

where for convenience, space, time, and energy have been
normalized to lDs, wpb

�1, and kBTks0, respectively, and where

A ¼ 2V

a gks=a� V 2

� �2
þ 2 V � udð Þ

gkbq=a� V � udð Þ2
h i2

B ¼ 3
V 2 þ f gks;a

� �
a2 gks=a� V 2

� �3
þ

V � udð Þ2þf gkb;a
� �

q

a gkbq=a� V � udð Þ2
h i3

8><
>:

9>=
>;

C ¼
a V � udð Þ4 1þ ~g?b � gkb

� �
q=a V � udð Þ2

h i
�2 gkbq=a� V � udð Þ2

h i2

þ
V 4 1þ ~g?s � gks

� �
=aV 2

h i
�2 gks=a� V 2

� �2

ð20Þ

with (a, q) = (nb0/ns0, Tkb0/Tks0), � = �ce/wps, f (gk, a) = gk
(gk � 2)/(3a), and ~g? = g? (T?0/Tk0). Note that velocities V
and ud are hereafter normalized to vea. Our evolution
equation is of the form of the Zakharov-Kuznetsov equation
derived for ion-acoustic perturbations in a simple two
component plasma [Zakharov and Kuznetsov, 1974].
[13] For purely 1D perturbations, (19) reduces to the

well-known Korteweg-de Vries equation which admits
stationary localized solutions in the form of electron-acous-
tic solitons [Dubouloz et al., 1991] associated with either a
positive or a negative potential profile [Berthomier et al.,
2000]. In the 3D case, the form of (19) suggests a change in

coordinates such that (X, Y ) = (z, h)/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C Vð Þ þ 1

p
and Z = x.

This allows us to unify the last two terms of (19) into a
single term @ [r2f(1)]/@Z. Looking for stationary nonlinear
perturbations which move along B at a velocity slightly
different from the parallel phase velocity of the linear
modes, we perform a second galilean transformation (�x, �y,
�z, �t) = (X, Y, Z � ut, t) and we impose that @/@�t = 0. In this
new reference frame (19) can be integrated along the z axis,
with the boundary condition f(1) ! 0 when �z ! 0, and
leads to

�A Vð Þuf 1ð Þ þ 1

2
B Vð Þ f 1ð Þ

h i2
þr2 f 1ð Þ

h i
¼ 0 ð21Þ

where the Laplacian operator r2 acts on �x, �y, and �z. The
highly symmetric form of (21) suggests looking for spheri-
cally symmetric solutions of this equation. We define R as
the distance from the center of the coordinate system:

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A Vð Þu �x2 þ �y2 þ �z2ð Þ

q
ð22Þ

and we normalize the potential y = f(1)B(V )/[A(V )u]. The
solitary wave solutions of the problem satisfy

�yþ 1

2
y2 þ 1

R

d2

dR2
Ryð Þ ¼ 0 ð23Þ

There is a unique localized solution y to (23) and it is given
in Figure 2 as a function of the normalized radial distance R.
A gaussian potential profile y = y0 exp (�R2/2) is a
reasonably good fit to the 3D soliton solution, which is

Figure 2. Potential profile of a 3D solitary wave as a
function of R, the distance from its center in a stretched
coordinate system moving along B. The dashed line is a
gaussian fit to the 3D soliton model.
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consistent with FAST and POLAR observations of 3D
solitary waves. We stress the fact that the solution we found
is not spherically symmetric in the plasma reference frame,
i.e. in the original coordinate system (x, y, z). Instead, it is an
ellipsoid with a ratio between its perpendicular and parallel

axes given by L?/Lk =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C Vð Þ þ 1

p
.

3. Application to FAST Observations

[14] Typical plasma parameters have been used in order
to apply this model to FAST observations of 3D solitary
waves in the auroral return current region. Figure 3 displays
the electron distribution function observed upstream of the
electrostatic potential ramp in the simulation of Newman et
al. [2001]. The simulation uses normalized plasma param-
eters which are consistent with FAST observations. We
expect similar beam-plasma systems to exist at POLAR
altitudes. Velocity is normalized to (kBTks0/me)

1/2 in the
simulation. A good fit of these numerical data is obtained
from the superposition of two maxwellian distributions
which represents the beam and stationary populations
introduced in Section 2. The fit gives a = 7, q = 1/8, and
ud � 0.93. Recall that velocities are normalized to the
electron-acoustic velocity vea in our model. Perpendicular
polytropic indices, which cannot be determined from the 1D
simulation, are set to g?s,b = 2, corresponding to the
adiabatic isotropic 2D case.
[15] At this point we need a method to determine the

parallel polytropic indices relative to each electron popu-
lation. For this purpose we will now require that the
parallel phase velocity V of the fluid electron-acoustic beam
mode reproduces the phase velocity obtained from a
numerical analysis of the kinetic dispersion relation of this
mode. Soliton models, which do not include Landau damp-
ing, are relevant when the growth rate of the corresponding
kinetic linear modes is small. Therefore, our fluid model
must predict the correct phase velocity of the electron-
acoustic beam mode at small values of the growth rate. It
turns out that the growth rate is close to zero for V � 0.43
which corresponds to �1.13 (kBTks0/me)

1/2 in the normal-
ization of Figure 3. This is the fluid wave phase velocity

we get for gks = 1.5 and gkb = 3. This result makes sense
since beam electrons behave adiabatically at V � 0.43
while stationary electrons are neither adiabatic (gks = 3) nor
isothermal (gks = 1).
[16] With these parameters, we found that the coefficients

A(V ), B(V ), and C(V ) in (20) are positive. This means
that 3D electron-acoustic solitons can exist in this beam-
plasma system. They are Debye-length-scale positive
potential structures which propagate at velocity close to
the electron-acoustic velocity along B (a few thousand km/s
typically). This result does not depend strongly on the
perpendicular electron temperature. The 3D scaling of these
solitons is determined by the coefficient C(V ) given in (20).
In the cold beam, hot stationary plasma case for instance, it
turns out that C(V ) = r2/lDs

2 , where the electron-acoustic
gyroradius r, and the Debye length lDs have been intro-
duced in the dispersion relation of the linear mode described
in Section 2. In a simple electron-ion plasma without a
beam, we would have rL/lD = wps/�ce. In other words, in

the general case the ratio L?/Lk =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2L=l

2
D

q
is equivalent

to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w2

p=�
2
ce

q
where wp is the effective plasma frequency.

A parametric study of our model shows that the beam-to-
stationary density and parallel temperature ratios determine
the existence of well-behaved soliton solutions, while their
3D scaling essentially depends on the value of the absolute
electron density and magnetic field strength. With �ce/
wp > 10 at FAST altitudes (below 4000 km), C(V ) � 1
and the solitons are Debye-length-scale spheres of positive
potential. As it has been inferred from POLAR observations
of solitary structures [Franz et al., 2000], at higher altitudes,
the shape of the 3D solitons becomes more oblate across B
since plasma magnetization decreases with altitude. Note
that we have taken the strong magnetization limit in our
perturbative approach. Consequently our result only gives
the variation to first order in w/�ce of L?/Lk. As noted by
Franz et al. [2000], this condition is approximatively
equivalent to �ce/wp > 0.3. Using intuitive arguments based
on gyrokinetic theory, these authors came to the same
conclusion that the specific scaling of 3D solitary waves
is a direct consequence of the differential dispersion of high-
frequency electrostatic modes in parallel and perpendicular
directions, which is clearly established by (19).

4. Conclusion

[17] We have shown that small-amplitude Debye-length-
scale positive potential structures described as 3D electron-
acoustic beam solitons can form in the current-carrying
auroral plasma. The role of particle drifts across the mag-
netic field is essential to the soliton model. This result is in
agreement with the description of 3D electron holes recently
developed by [Muschietti et al., 2002]. In the later model,
trapped electrons are shown to perform an azimuthal and
quasi-periodic motion across B due to the ‘‘E � B’’ drift
associated with the potential structure. Our fluid model is
also consistent with the observed altitude distribution of the
ratio of the perpendicular to parallel scale of the solitary
waves. This study suggests that large amplitude solitary
structures observed by FAST and POLAR at different
altitudes evolve from small amplitude electron-acoustic
solitons and are essentially 3D from the very beginning of
their evolution.

Figure 3. Electron distribution function obtained by
Newman et al. [2001] upstream (i.e. on the high-potential
side) of the potential ramp seeded by a neutral density
inhomogeneity in a 1D current-carrying plasma. Our model
includes stationary (non-drifting) and beam maxwellian
populations.
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