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ABSTRACT

We present a set of three-dimensional MHD simulations using the anelastic approximation of active region–
scale flux ropes embedded in a turbulent, stratified model convection zone. We simulate the evolution of �-loops
and other magnetic structures of varying field strengths, helicities, and morphologies in both rotating and
nonrotating background states. We show that if the magnetic energy of a flux tube is weak relative to the kinetic
energy density of strong downdrafts, convective flows dominate the evolution, flux tubes of any shape rapidly
lose cohesion, and the magnetic field redistributes itself throughout the domain over timescales characteristic of
convective turnover. We determine the conditions under which magnetic tension resulting from field line twist
can provide the force necessary to prevent a relatively weak flux tube from losing cohesion during its ascent
through the turbulent convection zone. Our simulations show that there is no initial tendency for a horizontal
magnetic flux tube or layer to be preferentially transported in one vertical direction over the other solely as a
result of the presence of an asymmetric vertical flow field. However, as the simulations progress, there is a
transient net transport of magnetic flux into the lower half of the computational domain as the distribution of the
magnetic field changes and flux is expelled from cell centers into converging downflows and intergranular lanes.
This pumping mechanism is weak and uncorrelated with the degree of vertical flow asymmetry. We find that the
strong turbulent pumping evident in simulations of penetrative convection—the efficient transport of magnetic
flux to the base of the convection zone over several local turnover times—does not manifest itself in a closed
domain in the absence of a convective overshoot layer. Thus, we suggest that this rapid redistribution of flux is
primarily due to the penetration of magnetic flux into the stable layer where it remains over a timescale that far
exceeds that of convective turnover. We also find that different treatments of the viscosity of a Newtonian fluid—
in which the coefficient of either kinematic or dynamic viscosity is held constant throughout the domain—do not
affect the global average evolution of embedded magnetic structures, although the details of the evolution may
differ between models.

Subject headinggs: methods: numerical — MHD — Sun: interior — Sun: magnetic fields

1. INTRODUCTION

The strong magnetic field observed in and around sunspots
is widely believed to originate via a dynamo mechanism at or
near the base of the solar convection zone. If so, magnetic flux
must be transported through the convection zone in such a
way as to exhibit the familiar structures and characteristics of
active regions observed at the solar surface and described by
such empirical relations as Hale’s polarity law (Hale et al.
1919) and Joy’s law (see Zirin 1988, p. 307; Fisher et al.
1995). One way to characterize the observations is to assume
that magnetic flux rises buoyantly through the interior in the
form of discrete tubes and that these tubes do not fragment
during their ascent through the convection zone (assumptions
implicit in the ‘‘thin flux tube’’ formulation of Spruit 1981;
Caligari et al. 1995; Fan & Fisher 1996; Longcope et al.
1998). Recent three-dimensional numerical simulations of the
dynamic subsurface evolution of magnetic flux ropes (Abbett
et al. 2000, 2001) test this assumption and show that in con-
trast to two-dimensional axisymmetric models (see Longcope

et al. 1996), weakly twisted flux tubes that form near the base
of a nonturbulent model convection zone can indeed rise
through the entirety of the stratified interior without breaking
apart into counterrotating fragments.

However, with the exception of Dorch et al. (2001) and Fan
et al. (2003, hereafter Paper I), multidimensional models ig-
nore the effects of turbulent flow by modeling the rise of flux
tubes in static, adiabatically stratified model convection zones.
This approach implicitly assumes that the magnetic field
strength of a tube is sufficient to overcome the dynamic in-
fluence of convective flows. Although this is likely the case
for �-loops that are the progenitors of strong active regions,
there are many regions of interest where emerging or sub-
merging magnetic fields can be weak relative to the kinetic
energy density of surrounding flows—ephemeral regions, the
small-scale ‘‘salt and pepper’’ magnetic elements present in
quiescent regions, and the magnetic features in and around
decaying active regions, to name a few. In such cases, the
influence of convection on the evolution of magnetic struc-
tures cannot be ignored.

In this paper, we perform a large number of three-
dimensional MHD simulations (in the anelastic approxima-
tion) of magnetic flux ropes embedded in a turbulent stratified
model convection zone to characterize the effect of convective
flows on the subsurface evolution of active region–scale
magnetic structures. We extend the recent results of Paper I to
�-loops of varying magnetic field strengths, helicities, and
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morphologies in both rotating and nonrotating convective
background states and determine how different treatments of
viscosity affect our results. The remainder of the paper is or-
ganized as follows: In x 2 we introduce the anelastic approx-
imation and describe how each model convection zone is
generated; in x 3.1 we characterize the decay of a relatively
weak flux rope as it interacts with convective flows; in x 3.2 we
offer an interpretation of weak turbulent pumping—the net
transport of magnetic flux into or out of the lower half of the
model convection zone; in x 3.3 we characterize the effects of
field line twist on the cohesion of a buoyant �-loop embedded
in a turbulent model convection zone; and in x 4 we discuss the
implications of our results. Finally, in x 5 we summarize our
findings.

2. METHOD

The anelastic approximation (Ogura & Phillips 1962;
Gough 1969) results from a scaled variable expansion of
the three-dimensional compressible MHD equations about a
nearly adiabatically stratified plane-parallel reference atmo-
sphere (which we take to be a polytrope). The time-derivative
term in the continuity equation is of sufficiently high order in
the expansion that it can be neglected, thereby filtering out
fast-moving acoustic waves from the calculation. This ap-
proximation is well suited for simulations of subsonic pro-
cesses in the high-� plasma deep in the solar convection zone,
and the inherent computational savings allow for a large ex-
ploration of parameter space. We numerically solve a non-
dimensional form of the following anelastic equations in a
rotating Cartesian reference frame:
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Here �1, p1, T1, s1, v, and B refer to the density, gas pressure,
temperature, entropy, velocity, and magnetic field perturba-
tions, and �0, p0, T0, and s0 denote the corresponding values
of the reference state, taken to be a field-free, nearly adia-
batically stratified polytrope of index m ¼ 1:5 [related to � by
m ¼ 1=(� � 1)]. The gravitational acceleration, gg ¼ �gẑ, is
assumed uniform, and cp, �, and K refer to the specific heat at
constant pressure and the coefficients of magnetic and thermal
diffusion, respectively. The viscous stress tensor is given by
�ij � � @vi=@xj þ @vj=@xi � 2=3(:= v)�ij

� �
, where � is the

coefficient of dynamic viscosity and �ij is the Kronecker delta
function.
This system of equations is identical to the system solved in

Paper I, except for the addition of the Coriolis term to the
momentum equation (eq. [2]). The angular velocity about the
Sun’s axis, 6, is assumed constant throughout the domain,
and rotation is treated using the modified f-plane approxima-
tion of Brummell et al. (1996). Boundaries are assumed pe-
riodic in the horizontal directions and nonpenetrating and
stress-free at the top and bottom of the box. A detailed deri-
vation of the above system of equations can be found in Lantz
& Fan (1999 and references therein), and the numerical
techniques used to solve equations (1)–(7) are briefly sum-
marized in Paper I and described in full in Fan et al. (1999)
and Abbett et al. (2001). We note that unlike, e.g., Tobias et al.
(2001), Dorch & Nordlund (2001), Brummell et al. (2002),
and Ossendrijver et al. (2002), our models do not include a
convectively stable overshoot layer below the model con-
vection zone.
We generate a number of distinct field-free convective

states. In each case, convection is initiated by a small random
entropy perturbation within the computational domain, and
the simulations progress until the model convection zone is
thermally relaxed. We relax states in both the presence and
absence of rotation and with two standard treatments of the
viscosity of a Newtonian fluid: the first assumes a constant
coefficient of kinematic viscosity as a function of depth (�),
and the second, a constant dynamic viscosity (� ¼ �0�). For
the runs for which � is held constant, the coefficient of thermal
diffusion is also assumed constant; for the runs for which � is
held constant, �0K is assumed constant.
Buoyant magnetic flux tubes with varying amounts of initial

twist are inserted near the base of the field-free turbulent do-
main; as in Paper I, their initial field is given by

B ¼ Bx(r)x̂þ B	(r)â; ð8Þ

where

Bx(r) � B0e
�r 2=a2

; ð9Þ

B	(r) ¼
q

a
rBx(r): ð10Þ

Here r refers to the radial distance to the tube’s central axis,
	 denotes the azimuthal direction, and q represents a dimen-
sionless measure of the amount of field line twist. Tables 1–4
list each simulation and their associated parameters. The
nondimensional parameters Re, Rem, Pr, and Ro denote
the Reynolds number, magnetic Reynolds number, Prandtl
number, and Rossby number, respectively, and are given
by Re � vcHr=�, Rem � vcHr=�, Pr � �=K, and Ro �
vc=(2�Hr). The velocity scale vc is given by vc � 
�rgHrð Þ1=2,
where Hr and �r denote the pressure scale height and the
nondimensional superadiabaticity (assumed small) at the base
of the domain. The coefficient 
 is a parameter in the code
used to control the value of s0 at the top boundary (
 ¼ 1
when � is held constant, and 
 ¼ 8 when � is held constant, to
ensure that the total entropy drop is identical for the two
convective states). The parameters that define the initial state
of the tube are B0=Beq, a=Hr, and q: the magnitude of the
tube’s axial field relative to the equipartition field strength
[taken with respect to the kinetic energy density of strong
downdrafts, Beq ¼ 4��rð Þ1=2vc], the radius of the tube (in units
of a pressure scale height at the base of the computational
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TABLE 1

Initial States and Reference Simulations

Label

Grid

(x, y, z)

B0

Beq
q

a

Hr

Re � vcHr

�
Rem � vcHr

�
Pr � �

K
Ro � vc

2�Hr
Viscosity a

I1 ............ 288 ; 288 ; 72 . . . . . . . . . 300.0 . . . 0.5 1 �0
I2 ............ 288 ; 288 ; 72 . . . . . . . . . 750.0 . . . 1.0 1 �0
I3 ............ 288 ; 288 ; 72 . . . . . . . . . 300.0 . . . 0.5 1 �0
R1b ......... 288 ; 288 ; 72 1.0 0.0 0.21 3500.0 3500.0 1.0 1 �0
R2c.......... 288 ; 288 ; 72 1.0 0.0 0.21 3500.0 3500.0 1.0 1 �0

a Whether the coefficient of kinematic or dynamic viscosity is held constant.
b Neutrally buoyant tube in a nonturbulent, adiabatically stratified model convection zone.
c Buoyant tube in a nonturbulent, adiabatically stratified model convection zone.

TABLE 2

Simulations of Neutrally Buoyant Flux Tubes/ Layers in a Convecting Background

Label

Grid

(x, y, z)

B0

Beq
q

a

Hr

Re � vcHr

�
Rem � vcHr

�
Pr � �

K
Ro � vc

2�Hr
Viscosity a

H1........... 288 ; 288 ; 72 1.0 0.0 0.21 750.0 3500.0 1.0 1 �0
H2........... 288 ; 288 ; 72 2.0 0.0 0.21 750.0 3500.0 1.0 1 �0
H3........... 288 ; 288 ; 72 2.0 0.0 0.21 300.0 3500.0 0.5 1 �0
H4........... 288 ; 288 ; 72 0.1 0.0 0.21 750.0 750.0 1.0 1 �0
H5........... 288 ; 288 ; 72 0.1 0.0 0.21 300.0 300.0 0.5 1 �0
H6b ......... 288 ; 288 ; 72 0.1 . . . . . . 750.0 750.0 1.0 1 �0
H7b ......... 288 ; 288 ; 72 0.1 . . . . . . 300.0 300.0 0.5 1 �0
H8b ......... 288 ; 288 ; 72 0.1 . . . . . . 300.0 200.0 0.5 1 �0
H9b ......... 288 ; 288 ; 72 0.01 . . . . . . 750.0 750.0 1.0 1 �0
H10b ....... 288 ; 288 ; 72 0.01 . . . . . . 300.0 300.0 0.5 1 �0

a Whether the coefficient of kinematic or dynamic viscosity is held constant.
b Runs initialized with a thin horizontal slab of magnetic field placed at the center of the box.

TABLE 3

Simulations over Long Time Intervals

Label

Grid

(x, y, z)

B0

Beq
q

a

Hr

Re � vcHr

�
Rem � vcHr

�
Pr � �

K
Ro � vc

2�Hr
Viscosity a

LT1 ......... 288 ; 288 ; 72 1.0 0.0 0.21 750.0 1500.0 1.0 1 �0
LT2b ....... 288 ; 288 ; 72 5 ; 10�2 . . . . . . 750.0 1500.0 1.0 1 �0
LT3c........ 288 ; 288 ; 72 10�2 . . . . . . 750.0 1500.0 1.0 1 �0
LT4c........ 288 ; 288 ; 72 10�4 . . . . . . 750.0 1500.0 1.0 1 �0

a Whether the coefficient of kinematic or dynamic viscosity is held constant.
b Runs initialized with a thin horizontal slab of magnetic field placed at the center of the box.
c Runs initialized with a horizontal magnetic field permeating the entirety of the box.



box), and the amount of field line twist along the tube. The
additional parameter ‘‘loop’’ (Table 4, col. [6]) indicates
whether or not an additional entropy perturbation was applied
along the axis of the initial tube such that only the ends of
the tube are neutrally buoyant. This perturbation facilitates the
formation of an �-shaped structure without performing the
computationally expensive step of evolving each flux tube
from a state of force balance (e.g., Caligari et al. 1995; Fan &
Fisher 1996; Fan 2001).

3. RESULTS

Figure 1 shows two of the initial field-free, nonrotating
convective states (runs I1 and I2 of Table 1). We generate
these distinct, thermally relaxed initial states so that we can
determine how our different treatments of viscosity affect the
results of a given calculation. The images in Figure 1 (left) are
horizontal slices taken from the simulation in which the co-
efficient of dynamic viscosity � is held constant, and the
images in Figure 1 (right) are from the simulation in which the
coefficient of kinematic viscosity � is held constant. Figure 1
(top) shows slices from each simulation near the top of the
domain; Figure 1 (bottom) shows slices closer to the lower
boundary. In each run, the coefficients are set to the lowest
value possible without introducing excessive numerical noise
into the calculation.

The resolution of the Cartesian domain is 288 ; 288 ; 72,
which gives a 4:4:1 aspect ratio for the box. The density
dependence of the dimensionless Reynolds number (Re �

vcHr=�) is evident in Figure 1 (left), where � ¼ �0� is held
constant. Here the effective Reynolds number increases with
depth, and the base of the domain is more turbulent than the
surface layers. Conversely, when � is held constant (Fig. 1,
right), increased structure is evident at the top of the domain,
and the structure of the deeper layers is dominated by the
strong low-entropy downdrafts that originate from the surface
layers. In practice, the maximum effective Reynolds number
we can achieve in simulations with a constant coefficient of
kinematic viscosity is less than that of simulations that hold
the coefficient of dynamic viscosity constant. This limitation is
due to numerical noise that develops when the size of evolving
magnetic features becomes of order the grid spacing.
We note that although our calculations are not strictly com-

pressible (the time-derivative term in the continuity equation is
of sufficiently high order to be neglected in the anelastic ap-
proximation), neither are they incompressible. Density is not
assumed constant; our computational domain spans over
5.25 pressure scale heights, and there is a density difference of
�20 between the upper and lower boundaries. We define a
measure of vertical flow asymmetry as � � V�=Vþ; here
V � �

R
A
v� dA=

R
A
g� dA, with the definitions v� ¼ v and

g� ¼ 1 if v � 0 (v� ¼ 0 otherwise), and vþ ¼ v and gþ ¼ 1 if
v > 0 (vþ ¼ 0 otherwise). We plot Vþ and V� in Figure 2 along
each horizontal slice as a function of height for our initial states
(the constant-� and constant-� nonrotating-model convection
zones). Figure 2 shows that we successfully reproduce the
asymmetric flow patterns characteristic of fully compressible

TABLE 4

Simulations of Buoyant Flux Tubes in a Convecting Background

Label

(1)

Grid

(x, y, z)

(2)

B0

Beq

(3)

q

(4)

a

Hr

(5)

Loopa

(6)

Re � vcHr

�
(7)

Rem � vcHr

�
(8)

Pr � �

K
(9)

Ro � vc
2�Hr

(10)

Viscosity b

(11)

A1............ 288 ; 288 ; 72 1.0 0.0 0.21 No 750.0 3500.0 1.0 1 �0
A2............ 288 ; 288 ; 72 3.0 0.0 0.21 No 750.0 3500.0 1.0 1 �0
A3............ 288 ; 288 ; 72 5.0 0.0 0.21 No 750.0 3500.0 1.0 1 �0
A4............ 288 ; 288 ; 72 1.0 0.0 0.21 No 750.0 5000.0 1.0 1 �0
A5............ 288 ; 288 ; 72 3.0 0.0 0.21 No 750.0 5000.0 1.0 1 �0
B1............ 288 ; 288 ; 72 1.0 0.0 0.21 No 300.0 3500.0 0.5 1 �0
B2............ 288 ; 288 ; 72 3.0 0.0 0.21 No 300.0 3500.0 0.5 1 �0
B3............ 256 ; 256 ; 60 5.0 0.0 0.25 No 260.0 5000.0 1.0 1 �0
B4c........... 288 ; 288 ; 72 2.0 0.0 0.21 No 300.0 3500.0 0.5 1 �0
C1............ 256 ; 256 ; 60 3.0 0.0 0.25 Yes 750.0 5000.0 1.0 1 �0
C2............ 256 ; 256 ; 60 5.0 0.0 0.25 Yes 750.0 5000.0 1.0 1 �0
C3............ 256 ; 256 ; 60 10.0 0.0 0.25 Yes 750.0 3500.0 1.0 1 �0
D1............ 256 ; 256 ; 60 1.0 0.0 0.25 Yes 260.0 3500.0 1.0 1 �0
D2............ 256 ; 256 ; 60 3.0 0.0 0.25 Yes 260.0 5000.0 1.0 1 �0
D3............ 256 ; 256 ; 60 5.0 0.0 0.25 Yes 260.0 5000.0 1.0 1 �0
E1 ............ 288 ; 288 ; 72 1.5 0.125 0.21 Yes 750.0 1500.0 1.0 1 �0
E2 ............ 288 ; 288 ; 72 3.0 0.125 0.21 Yes 750.0 1500.0 1.0 1 �0
E3 ............ 288 ; 288 ; 72 1.5 0.250 0.21 Yes 750.0 3500.0 1.0 1 �0
E4 ............ 288 ; 288 ; 72 3.0 0.250 0.21 Yes 750.0 1500.0 1.0 1 �0
F1 ............ 256 ; 256 ; 60 2.0 0.0 0.25 Yes 275.0 3500.0 1.0 1.0 �0
F2 ............ 256 ; 256 ; 60 3.0 0.0 0.25 Yes 275.0 5000.0 1.0 1.0 �0
F3 ............ 256 ; 256 ; 60 5.0 0.0 0.25 Yes 275.0 5000.0 1.0 1.0 �0
F4 ............ 256 ; 256 ; 60 10.0 0.0 0.25 Yes 275.0 5000.0 1.0 1.0 �0
G1d .......... 288 ; 288 ; 72 2.0 . . . . . . . . . 750.0 1500.0 1.0 1.0 �0
G2d .......... 288 ; 288 ; 72 2.0 . . . . . . . . . 750.0 1500.0 1.0 1.0 �0

a Whether an initial entropy perturbation was applied to the flux tube so that the ends of the tube are neutrally buoyant, allowing the tube to rise as a classical
�-loop.

b Whether the coefficient of kinematic or dynamic viscosity is held constant.
c Initial horizontal flux tube positioned off-center at ( y; z) ¼ (72; 13).
d Runs G1 and G2 are initialized with a thin slab of magnetic field placed near the base of the box and oriented parallel to the east-west direction. The box of run

G1 is positioned at 15� latitude (as are runs F1–F4), while the box of run G2 is positioned at 60� latitude for comparison.
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three-dimensional simulations of stratified convection (cf.
Fig. 5 in Stein & Nordlund 1998).

3.1. The Decay of Weak Flux Ropes

We begin by analyzing a set of simulations in which a
‘‘neutrally buoyant,’’ untwisted magnetic flux tube is inserted
at the center of each of the nonrotating-model convection
zones. This is achieved by adding an initial entropy perturba-
tion along the entirety of the tube sufficient to inhibit its natural
tendency to rise. Admittedly, this is an unphysical configura-
tion; however, it allows us to isolate the effect of convective
turbulence from that of magnetic buoyancy. Figure 3 shows
how convection can affect the initial evolution of a neutrally
buoyant, untwisted horizontal flux rope. The image is a volume

rendering of |B| for run H1 at t ¼ 4 (in units of Hr=vc). In this
simulation, the initial axial field strength of the tube is set to
B0 ¼ Beq. This value is a factor of �3 below the critical value
Bc ¼ Hp=a

� �
1=2Beq of Paper I (here Hp denotes the local

pressure scale height), above which the magnetic buoyancy
force of the tube overcomes the hydrodynamic force of con-
vective flows, and the tube retains its cohesion. Figure 3 dem-
onstrates how a flux rope can be rapidly distorted by convective
turbulence and can evolve into a relatively complex magnetic
configuration.

To gain a quantitative understanding of the tube’s cross-
sectional structure, we define the average height of the flux
rope at each time step to be the horizontal average of the two-
dimensional magnetic field-weighted first moments of position

Fig. 1.—Entropy perturbations of two of the thermally relaxed field-free convective states (runs I1 and I2) along horizontal slices toward the top of the
computational domain (top) and near the base of the box (bottom). Left, Model convection zone where � is held constant; right, model convection zone where � is
held constant. Darker colors indicate cooler plasma.
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along each vertical slice through the Cartesian domain (of size
Lx ; Ly ; Lz),

hzi ¼ 1

Lx

Z Lx

0

zx dx; ð11Þ

where

zx ¼
1

�x

Z Lz

0

Z Ly

0

zjB(x; y; z)jdy dz; ð12Þ

�x ¼
Z Lz

0

Z Ly

0

jB(x; y; z)jdy dz: ð13Þ

We further define a field-weighted second moment to describe
the horizontally averaged spread of the flux rope,

h2i ¼ 1

Lx

Z Lx

0

2
x dx; ð14Þ

where

2
x ¼

1

�x

Z Lz

0

Z Ly

0

( y� yx)
2 þ (z� zx)

2
� �

jB(x; y; z)jdy dz;

ð15Þ

yx ¼
1

�x

Z Lz

0

Z Ly

0

y jB(x; y; z)j dy dz: ð16Þ

Although the temporal evolution of the tube’s magnetic
field along any given vertical slice can differ greatly from one
region of the model convection zone to another, we find that
the spatially averaged quantities h2i and hzi evolve in a much
simpler manner. The large-scale convective flows on average
advect flux away from the central axis of the tube. Although
the interaction of these flows with the magnetic flux tube is not

(strictly speaking) a diffusive process, we can successfully
describe the evolution of the spatially averaged quantities
of run H1 using a simple two-dimensional eddy-diffusivity
treatment, even though the spatial scale of the convective ed-
dies exceeds the cross-sectional diameter of the tube. To dem-
onstrate, we consider the diffusion equation

@f

@t
�: = D:ð Þ f ¼ 0: ð17Þ

Here f is a scalar quantity, and D is the coefficient of eddy
diffusivity, which we take to be roughly proportional to the
product of the volume-averaged rms fluid velocity and con-
vective cell size.
If we assume that the magnetic field acts as a passive scalar

with a horizontally averaged evolution that can be described
by a two-dimensional diffusion equation where f � hBix and
we further assume that near the center of the domain the co-
efficient of eddy-diffusivity is constant, then we can analyti-
cally solve equation (17) given the initial axisymmetric
Gaussian distribution of equation (9) along a vertical slice:

f (r; t) ¼ B0a
2

2(t)
e�r 2= 2(t); ð18Þ

where r 2 ¼ y2 þ z2 and

2(t) ¼ a2 þ 4Dt: ð19Þ

Given an estimate for D, we can compare the average spread
of the simulated flux rope at each time step (eq. [14]) with
the result obtained via the diffusion equation (eq. [19]). Of
course, our model convection zone exhibits the asymmetric
flow patterns and depth-dependent characteristic-length scales
expected in a stratified medium; thus, any eddy-diffusion co-
efficient derived from a detailed analysis of the convective
flow patterns will almost certainly be nonisotropic and depth
dependent. Even so, we proceed on the assumption that D is
isotropic and spatially constant along the length of the flux
rope and obtain a rough estimate for D by using the simulated
data to calculate the correlation length L of the vertical flows
and the rms velocities V at the tube’s initial position.
For run H1, we find that L ¼ 0:814Hr and V ¼ 0:363vc,

which yield the estimate D ¼ (�=3)VL ¼ 0:057 (in normalized
units) for a dimensionless scale factor � of 0.58. With D
specified, we compare the time evolution of h2i measured
directly from the MHD simulation with that obtained via
the solution of the eddy-diffusion equation and plot the result
in Figure 4. It is important to note that the magnetic diffu-
sion time in our simulations (set by the choice of magnetic
Reynolds number, Rm) greatly exceeds the characteristic time-
scale of the simulations tc ¼ Hr=vc; thus, we are simulating the
effects of large-scale eddies at convective turnover timescales
rather than the effects of magnetic diffusion at long diffusive
timescales. To demonstrate that the effects of magnetic and
thermal diffusion are not dominant players in the redistribution
of flux by the convective eddies of the simulation, Figure 4 also
shows the time evolution of the spread of the same, initially
neutrally buoyant flux rope placed in a nonconvecting envelope.
Although the magnetic field of run H1 quickly evolves into

the complex structure shown in Figure 3, we find that a rela-
tively simple model can successfully characterize the average
global properties of this particular flux rope. For runs for which
B0 > Beq, this description breaks down since the magnetic field

Fig. 2.—Asymmetric flow pattern of three-dimensional convection for both
the constant-� (dashed line) and constant-� (solid line) nonrotating initial
states (runs I1 and I2, respectively). Shown are the horizontally averaged
magnitudes of upflows and downflows V + and V� (as described in the text) as
a function of depth. Note that each model convection zone has impenetrable
upper and lower boundaries. Velocities are expressed in dimensionless units
(see text for details), and z is given in terms of grid zones.
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strength of the structures is sufficient to disrupt the convective
flow pattern. Of course, this treatment cannot describe the
details of the magnetic structure—for example, the stretching
and amplification of the field along the cool narrow downdrafts
or the local asymmetries between fields entrained in horizontal
and vertical flows—nor can it predict the evolution or equi-
librium distribution of the horizontally averaged field when D
is strongly depth dependent, since the characteristic size of the
large-scale convective eddies exceeds the size of a typical
magnetic structure.

3.2. Turbulent Pumpingg

There are several distinct timescales relevant to our study
of the net transport and distribution of magnetic flux in a tur-
bulent model convection zone. The first is the interval
0< t P5tc (recall that tc ¼ Hr=vc is the convective timescale),
the characteristic interval over which convective flows redis-
tribute the magnetic field of a weak flux tube or layer verti-
cally through the computational domain. The second is the
time interval between �5tc and �50tc , a transitional period
during which the field evolves to a steady state distribution.
The third time frame of interest begins after t � 50tc and
extends out to the final time step. Over this final interval we
can determine the asymptotic behavior of the system. We
begin our discussion with an analysis of the first time interval
of interest: the duration of the initial magnetic structure.

We consider a set of simulations for which neutrally
buoyant, relatively weak untwisted magnetic flux tubes

Fig. 4.—Comparison of the horizontally averaged spread of the initially
untwisted magnetic flux tube of run H1 data with an estimate obtained by
analytically solving the two-dimensional eddy-diffusion equation in the fluid
limit with D ¼ (�=3)VL ¼ 0:057 and � ¼ 0:58 (in normalized units; see text
for details). The vertical dotted line represents the time that corresponds to the
image of Fig. 3. Also shown for comparison is the evolution of the spread of a
reference run in which the same neutrally buoyant flux tube is placed in a
nonconvecting background. The small increase in the spread after t ¼ 4:5
reflects the tube’s growth in buoyancy due to thermal diffusion.

Fig. 3.—Effect of convective turbulence on the untwisted, ‘‘neutrally buoyant’’ flux tube of run H1. The tube was initially positioned at the center of the domain
and had an axial field strength of B0 ¼ Beq. This figure is a volume rendering of |B| at t ¼ 4:0 (in normalized units).
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(B0 ¼ 0:1Beq and q ¼ 0 in eqs. [8]–[10]) are centered at
( y; z) ¼ (Ly=2; Lz=2) in both constant-� and constant-� tur-
bulent model convection zones. The simulations are allowed
to progress until a significant amount of magnetic flux has
interacted with the closed upper and lower boundaries. For
each run, we calculate the average field-weighted position hzi
(as defined by eq. [11]) at each time step and plot the results
in Figure 5. For reference, we also show the evolution of hzi
for an initially untwisted, neutrally buoyant tube embedded
in a nonconvecting, adiabatically stratified domain (run R1 of
Table 1). The slight drift of hzi in this case gauges the effect of
numerical perturbations on the initial state (in unstable equi-
librium) and gives a measure of the growth in buoyancy due to
thermal diffusion. Figure 5 shows that on average hzi tends to
remain at or near the center of the box over the lifetime of a
magnetic flux tube. The spread evident in the flux tube runs of
Figure 5 (thin lines) is a result of the sensitivity of the tube’s
evolution to its initial placement (e.g., whether it is inserted
into the domain in the proximity of a strong downflow).

Since the initial evolution of a magnetic flux tube is sen-
sitive to its position relative to strong downdrafts, we follow
Tobias et al. (2001) and Dorch & Nordlund (2001) and ini-
tiateinitiateadditional simulations with neutrally buoyant horizon-
tal magnetic layers (Fig. 5, thick lines) and with a horizontal
magnetic field that permeates the entirety of the computational
domain. We focus our attention on four runs in particular:
LT1–LT4 (see Table 3). As in run H1 of Figure 3, run LT1
describes the evolution of a neutrally buoyant, horizontal,
untwisted flux tube of axial field strength B0 ¼ Beq (in this
particular run, the initial flux tube was positioned two zones
below Lz=2), while run LT2 describes the evolution of a
neutrally buoyant horizontal field of B0 ¼ 5 ; 10�2Beq initially
confined to a 10 zone–thick layer positioned at the same height.
In runs LT3 and LT4, the entire domain is initially threaded
with a constant B0 of 10�2Beq and 10�4Beq, respectively (the
latter being firmly in the kinematic regime throughout the
domain, even later in the run when magnetic fields become

locally concentrated in downdrafts). Each of these simulations
was allowed to proceed over a sufficiently long time interval
that meaningful temporal averages of steady state flux dis-
tributions could be calculated. Runs LT1 and LT2 concluded at
t ¼ 200Hr=vc and t ¼ 100Hr=vc, respectively, and runs LT3
and LT4 progressed through t ¼ 350Hr=vc. We note that the
diffusion timescale (as specified by the magnetic Reynolds
numbers of Table 3) far exceeds the total length of each run.
Figure 6 shows a volume rendering of |B| for runs LT1

(Fig. 6, left) and LT2 (Fig. 6, right) and gives a qualitative
picture of the evolution of the magnetic structures. The right-
hand coordinate system is displayed such that z increases
vertically and y increases from right to left (i.e., the reader
faces the boundary at x ¼ 0); thus, the horizontal tube of run
LT1 is essentially viewed along its axis. It is apparent in
Figure 6 that by t ¼ 10 convective flows have redistributed the
magnetic field to the point where the initial structures are no
longer recognizable and a number of new, distinct magnetic
structures have formed (see, e.g., the new flux tube at t ¼ 10
in Fig. 6, right). It is possible to infer from the volume ren-
derings that a significant amount of the field of run LT1 is
initially redistributed to the upper half of the domain (since the
narrow tube is pinned down by downflows at only two loca-
tions), while the strongest magnetic fields of run LT2 reside in
the lower half of the domain. This qualitative interpretation is
consistent with the evolution of hzi for runs H4 (thin dashed
line) and H6 shown in Figure 5 (thick dashed line).
It is important to recognize that hzi is a measure of the

average distribution of a nonconserved quantity |B| and is
sensitive to the effects of field amplification and the local dy-
namo. To obtain a more direct picture of the distribution of
magnetic flux (a conserved quantity) in runs LT1 and LT2, we
show the initial evolution of the signed flux threading a vertical
slice (a y-z plane positioned at x ¼ 109) through each domain
in Figure 7. Light shades correspond to positive-signed flux
(the component of the magnetic field in the x̂-direction points
toward the reader), and dark shades correspond to negative-
signed flux (the x̂-component of the field points away from the
reader and into the page). Since the upper and lower bound-
aries are impenetrable and the field is divergence-free, the total
amount of flux threading any given vertical slice remains con-
stant in time.
For run LT1 (Fig. 7, left) we can obtain a qualitative picture

of the transport of magnetic flux along this vertical slice.
Since this portion of the tube is not pinned down by a strong
downflow during this time period (the flux is instead en-
trained in broad, slower moving upflows), there is an initial,
net transport of magnetic flux into the upper half of the do-
main. The situation is not quite as clear for run LT2 (Fig. 7,
right); however, we can clearly see that by t ¼ 10 a strong,
oppositely directed field is being generated in and around
downdrafts in the lower half of the domain, and thus, a
greater proportion of unsigned flux is concentrated in this
region.
We now calculate the average amount of signed flux

threading vertical slices through the lower half of the domain,

�lh i ¼ 1

Lx

Z Lx

0

dx

Z Ly

0

dy

Z z0

0

dz Bx(x; y; z; t)

� �
: ð20Þ

Here z0 ¼ Lz=2, and we note that h�li is time dependent. The
total amount of flux threading any given vertical slice remains
constant; thus, any increase in h�li is accompanied by a

Fig. 5.—Average height hzi (in zones) of the magnetic field distribution as a
function of time for a subset of the simulations listed in Table 2 for which
‘‘neutrally buoyant’’ flux tubes (thin lines) and flux layers (thick lines) are
positioned at the center of the computational domain. Shown are runs H4 (thin
dashed line), H5 (thin solid line), H6 (thick dashed line), and H7 (thick solid
line). The evolution of hzi for the flux tube of Fig. 3 (run H1) is represented by
the thin dot-dashed line, and the evolution of hzi for reference run R1 is
represented by the thin solid line with the overlaid symbols. The horizontal
dotted line denotes the initial height of the magnetic structures.
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decrease in the average amount of signed flux residing in the
upper half of the simulation domain. Of particular interest is
the initial evolution of h�li=h�i (the total flux h�i is defined
by eq. [20] with z0 ¼ Lz) for runs LT3 and LT4, simulations
that are initiated with a domain-filling magnetic field of the
form B ¼ B0 x̂. Figure 8 (top) shows h�li=h�i, along with the

corresponding evolution of the unsigned field-weighted mo-
ment hzi (Fig. 8, bottom) for each run. Figure 8 (top) shows
that in the interval 0< t P 4tc, there is no net transport of
signed flux toward the base of the computational domain de-
spite the presence of flow asymmetries characteristic of strat-
ified convection (see Fig. 2).

Fig. 6.—Volume renderings of |B| for four characteristic times during runs LT1 (left) and LT2 (right). The coordinate system is displayed such that z increases
vertically, y increases from right to left, and x increases into the page.

Fig. 7.—Bx along a vertical y-z slice positioned at x ¼ 109 (the total number of grid cells in the x-direction is 288). Bx is displayed in normalized units (see text for
details). Left, LT1; right, LT2.
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To obtain a qualitative understanding of this result, we
neglect the effects of Lorentz forces and magnetic diffusion
and consider the ideal MHD induction equation,

@B

@t
¼ : < v < Bð Þ: ð21Þ

Applying Stokes’ theorem to equation (21) gives

d

dt

Z
A

B =dA ¼
I

v < B =dl: ð22Þ

Since we are interested in how magnetic flux threading ver-
tical slices through the volume is redistributed (on average),
we evaluate the line integral of equation (22) for a closed cir-
cuit encompassing the lower half of a single y-z slice through
our Cartesian domain. Since our domain is periodic in the
horizontal directions, and since the lower boundary of the
computational domain is assumed impenetrable (the vertical
components of v and B are antisymmetric across the lower
boundary and thus vanish at z ¼ 0), the only contribution to the
line integral is at z ¼ Lz=2. Then the time rate of change of
magnetic flux in the lower half of the vertical slice (at a given
instant in time) is simply

d�l

dt
¼

Z Ly

0

vxBz � vzBxð Þz ¼ Lz=2
dy: ð23Þ

Initially, the imposed magnetic field is of the form B ¼ B0 x̂
(B0 is assumed constant). Thus, the only way the total amount
of magnetic flux through any y-z slice above or below the
horizontal layer of height z0 ¼ Lz=2 can change is by the in-
teraction of vertical flows with the initially horizontal flux
layer. Then the average change in flux in the lower half of the
volume can be initially expressed as

d

dt
�lh i ¼ � B0

Lx

Z Lx

0

dx

Z Ly

0

dy vz½ �z ¼ z0

� �
: ð24Þ

In our implementation of anelastic MHD (ANMHD), it is as-
sumed that the horizontal average of vz is zero at each height

in the atmosphere (i.e., there is no bulk flow or net vertical
pulsation in the plane-parallel domain); thus,

d

dt
�lh i ¼ 0; ð25Þ

and we should expect no initial systematic tendency for hor-
izontal magnetic flux layers to be preferentially transported in
one vertical direction over the other solely as a result of the
presence of an asymmetric vertical flow field.
To extend our treatment beyond the initial stages of the

simulations, we take the horizontal average of equation (23),

d

dt
�lh i ¼ 1

Lx

Z Ly

0

vxBzh iz0�hvzBxiz0 dy ; ð26Þ

here we introduce the notation h f iz0 �
R Lx
0

f½ �z ¼ z0
dx (note

that h f iz0 is a function of y alone). The first term of the in-
tegrand represents the average increase or decrease of mag-
netic flux in the lower half of the domain due to flows in the
x-direction that tilt vertical field lines that thread the z ¼ Lz=2
plane, and the second term represents the average transport of
magnetic flux resulting from asymmetric vertical flows acting
on the horizontal component of the magnetic field. In the
MHD approximation, the electric field is expressed as E ¼
�(v < B)=c. Thus, equation (26) simply states that there is a
net transport of magnetic flux into the lower (upper) half of the
domain in our simulations if and only if there is a net positive
(negative) component of the electric field in the ŷ-direction
along a horizontal plane positioned at z0 ¼ Lz=2.
Integrating equation (26) with respect to time yields an

expression for the evolution of h�li,

�l(t)h i ¼ �l(0)h i þ
Z t

0

Z Ly

0

hvxBz � vzBxiz0 dy dt
0: ð27Þ

Note that for runs LT3 and LT4, h�l(0)i ¼ B0LyLz=2. Figure 9
(bottom) compares the normalized signed flux residing in the
lower half of the domain of run LT3 obtained directly from the
volume data sets via equation (20) with the ideal contribution
due to the presence of a net electric field in the ŷ-direction

Fig. 8.—Top, Normalized amount of signed flux as a function of time that
resides in the lower half of the Cartesian domain for runs LT3 and LT4;
bottom, height of the unsigned field distribution for each of the runs. Time is
displayed in units of Hr=vc.

Fig. 9.—Top, Horizontally averaged time rate of change of magnetic flux
entering into the lower half of the domain of run LT3 at a given time (thick
solid line), the ideal contribution calculated via eq. [26] (symbols), and the
resistive contribution (thin solid line); bottom, normalized signed flux residing
in the lower half of the domain as a function of time (solid line) and the
contribution due to a net electric field in the y-direction along a plane at
z ¼ Lz=2 (symbols). Time is displayed in units of Hr=vc.
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along the horizontal plane positioned at z ¼ Lz=2 (using
eq. [27]). The slight difference in the two curves (noticeable
after t �150) reflects the cumulative effect of magnetic diffu-
sion, a quantity not included in the derivation of equation (27)
for the sake of simplicity. Figure 9 (top) compares the ideal and
resistive contributions (the former calculated via eq. [26]) with
the horizontally averaged time rate of change of magnetic flux
in the lower half of the domain (obtained by evaluating the
normalized time derivative of eq. [20]).

We now focus on the long-term asymptotic behavior of run
LT3 and consider the time average of equation (26) over in-
creasing intervals in the period between t0 ¼ 50 (after the
vertical magnetic field has concentrated in downdrafts and
intergranular lanes) and t, F1(t) � 1=�t

R t

t0

R Ly
0

hEyiz0 dy dt
0.

Again, z0 � Lz=2 and �t � t � t0 for t > t0. We plot this
quantity in Figure 10 (top) over the interval t0 � t P 250 and
compare it with F2(t) � 1=�t

R t

t0
f (t 0) dt 0, for which we obtain

f (t) � hd�l=dti (Fig. 10, bottom) through a direct evaluation
of the simulated data sets via equation (20). It is clear that for a
sufficiently long time interval, 1=�t

R t

t0

R Ly
0

hEyiz0 dy dt
0 ! 0;

thus, over time in run LT3, there is no net transport of mag-
netic flux into (or out of) the lower half of the domain after
t ¼ t0.

Yet, Figure 11 shows that there is a relatively short period of
time after the initial stage of the run (0 < t < 5; see Fig. 8) but
before t0 during which there is a modest net transport of
magnetic flux into the lower half of the domain, where it
remains (on average) for the rest of the simulation. This is
most easily seen in Figure 11 (bottom), where we plot at each
time step a new quantity, h�i ¼ 1=Lx

R Lx
0
�x dx (solid white

line), that better characterizes the evolution of the average
distribution of signed flux along vertical slices throughout the
domain. Here �x is the analog of equation (12),

�x ¼
1

 x

Z Lz

0

Z Ly

0

zBx(x; y; z) dy dz; ð28Þ

and  x �
R Lz
0

R Ly
0

Bx(x; y; z) dy dz. Also shown in Figure 11
(bottom) is the evolution of hzi (dashed white line) and the

Fig. 10.—Top, F1(t) (solid line) and F2(t) (symbols) for run LT3 (see text for the definitions of these quantities); bottom, hd�l=dti for the interval between t ¼ 50
and 257. Again, the time is displayed in normalized units of Hr=vc.

Fig. 11.—Top: Normalized average amount of magnetic flux that resides in
the lower (solid white line) and upper (solid black line) halves of the domain.
The gray dashed line denotes half the total flux,

R
V
Bx dV , a conserved

quantity. The background gray-scale image corresponds to
R
A
Bx dV (A ¼

LxLy) along each horizontal slice; the lighter the shade, the stronger the field at
that height. Bottom: h�i at each time step (solid white line), hzi (dashed white
line), and the �0-weighted moment of the background stratification (black
line). The horizontal dotted line denotes the midplane of the domain. The
shading corresponds to

R
A
jBjdA for each horizontal layer (the y-axis in the

background image corresponds to the vertical extent of the domain); lighter
colors correspond to large positive values. Time is displayed in units of Hr=vc.

Fig. 12.—Top,  1 ¼ 1=t
R t

0

R Ly
0

hvxBziz0 dy dt
0 (thick solid line),  2 ¼

1=t
R t

0

R Ly
0

hvzBxiz0dy dt
0 (dot-dashed line), and F1(t) ¼ 1=t

R t

0

R Ly
0

hEyiz0 dy dt
0

(thin solid line), the average change of magnetic flux across the domain’s
midplane for run LT3; bottom, evolution of h�i in grid units (solid line) and its
associated time average,  3 ¼ 1=t

R t

0
�h idt 0 (dashed line) for run LT3. See text

for details. The vertical dotted lines bound the interval 5 < t < 50, and t is
given in units of Hr=vc.
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density-weighted moment of the background stratification,
hz�i ¼ 1=M

R
V
z�0 dV (where M ¼

R
V
�0 dV ; black line).

Note that on average hzi > hz�i. This reflects the fact that over
time B=� is not constant (as would be expected if the magnetic
field acted as a passive scalar and was mixed throughout the
domain via a mechanism similar to that described in Miesch
et al. 2000); rather, it gradually increases with height through
the center of the domain. The upper frame shows the average
amount of magnetic flux residing in the lower (solid white
line) and upper (solid black line) halves of the domain (h�li
and h�ui, respectively). The latter quantity is shown along
with h�l þ �ui=2 (gray dashed line) to demonstrate that flux
is conserved in the simulations and that there is no diffusive
flux loss through either vertical boundary. The gray-scale
image in Figure 11 (top) corresponds to the total amount of
x̂-directed field along a horizontal plane at each height z,
�(z) ¼

R Lx
0

R Ly
0

(Bx)z dx dy; the lightest shades correspond to
the largest positive values of �. We display this quantity to get
a qualitative feeling for the average distribution of signed flux
as a function of height. Similarly, the background image in
Figure 11 (bottom) corresponds to the total magnitude of the
field integrated over each horizontal plane.

We now consider the transition interval 5 < t < 50 (bounded
by the two vertical dotted lines in each frame of Fig. 11),

where there is a slow net transport of flux across the
midplane of the domain. In Figure 12 (top) we plot the
running time averages of each term in the integrand of
equation (26),  1 ¼ 1=t

R
t
0

R Ly
0

hvxBziz0 dy dt
0 (solid line) and

 2 ¼ 1=t
R t

0

R Ly
0

hvzBxiz0dy dt
0 (dot-dashed line). The thin solid

line represents the average time rate of change of flux in the
lower half of the domain, F1(t) ¼ 1=t

R t

0

R Ly
0

hEyiz0 dy dt
0, the

difference of the two previous quantities. Where  2 <  1 by a
significant margin (e.g., between t ¼ 5 and 50), there is a net
transport of magnetic flux across the midplane (as is evident in
Fig. 11). This result is reinforced in Figure 12 (bottom), where
we show the evolution of h�i (solid line) along with its asso-
ciated running average  3 ¼ 1=t

R t

0
h�i dt 0 after t ¼ 5 (dashed

line). We note that when t < 5 there is little net transport of
flux; thus,  1� 2 in this interval.
But why does the net transport of magnetic flux occur over

this relatively short time interval but at no other time (on av-
erage) during the simulations? The answer lies in Figure 13,
which shows the average normalized distribution functions g1
and g2 for the electric field along the midplane during the
time intervals 5tc < t < 20tc, and 50tc < t < 250tc, respectively
(the former being the time interval over which the initial flux
transport ismost pronounced). For each intervalwe also show the
relative contribution of each bin to the integral Ey ¼

R
gjEyj dEy

Fig. 13.—Top, Average normalized distribution functions g1 and g2 for the ŷ-component of the electric field along the midplane during the time intervals
5 < t < 20, and 50 < t < 250, respectively (time is in units of Hr=vc); bottom, g(Ey)jEyj, the contribution per unit dEy to the integral

R
g(Ey)Ey dEy (we show the

absolute value here to more easily visualize asymmetries in the above integral).
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(we show the unsigned quantity here to more easily visualize
asymmetries in the distributions). Each distribution function g1
and g2 is sharply peaked, and we find that a significant contribu-
tion to Ey comes from the tails of each distribution (each side of
the vertical lines in each panel).

During the transition period (Fig.13, left), it is evident that
there is a significant asymmetry in g1jEyj, as the vertical
magnetic field throughout the volume has yet to concentrate
and strengthen in regions of high vorticity in and around lo-
calized downdrafts. The left tail of the distribution is an im-
portant contributor to a net negative Ey along the midplane
(the first term in eq. [26], hvxBziz0 ), which, on average after
t � 50, balances the net positive Ey (the second term in eq. [26],
h�vzBxiz0 ) because of the presence of compressed horizontal
fields at the forefront of strong low-entropy downflows.

This initial imbalance is evident in Figure 14a, where we
show the quantity F(Ey) �

R Ey

0
(gþ � g�)E 0

y dE
0
y [where gþ �

g(E 0
y) and g

� � g(�E 0
y)] (dashed line) for the transition time

period along with its integrand (gþ � g�)E 0
y (solid line). Note

that if F(Emax) > 0 (Emax denotes the maximum value of jEyj),
then there is a net downward pumping of flux during the time
interval in question; similarly, if F(Emax) < 0 there is a net
upward pumping of flux. Figure 14a shows that the imbalance
in the wings of the distribution (to the right of the thin vertical
line) is clearly responsible for the net downward pumping of
flux during the transition interval. In contrast, the contribution
to the total component of the electric field in the ŷ-direction
from the tail of the equilibrium distribution (50tc < t < 250tc)
is more balanced (see Fig. 14b); thus, there is no longer any
net transport of magnetic flux into or out of the lower half of
the domain over time [F Ey

� �
¼ 0 at Ey ¼ Emax].

To gain physical insight into why the vertical component of
the magnetic field associated with vortical flows in down-

drafts provides a component of the electric field that on av-
erage balances the contribution due to vertical flows acting
on the horizontal component of the magnetic field, consider
the following heuristic picture. Imagine we are looking down
(in the �ẑ-direction) on x̂-directed magnetic field lines po-
sitioned both above and below a horizontal x-y plane (see
Fig. 15). Suppose the plane is now pierced by a narrow fast-
moving downdraft with negative vorticity (a clockwise-
rotating flow). As the downdraft passes through the plane,
field lines are entrained and twisted within the flow, and a
negative polarity associated with a positive-x̂–directed flow
forms, while a positive polarity associated with a negative-
x̂–directed flow forms. That is, in Figure 15, take a hori-
zontal field line, push it into the page (Fig. 15, middle), then
rotate it either clockwise (Fig. 15, top) or counterclockwise
(Fig. 15, bottom). We see that in each case, the first term of
Ey ¼ vxBz � vzBx is always less than zero (independent of the
sign of the vorticity) and counteracts the positive contribution
of the second term. In fact, vxBz always opposes the contri-
bution of �vzBx in this picture, even if we choose a different
sign for Bx or vz (note that in the broad, slower moving
upflows, the vertical component of the magnetic field is
smaller).

To summarize, we find that the net transport of magnetic
flux across the midplane is triggered by a net change in the
initial distribution of Ey over that plane. However, once a
steady state distribution is reached and the magnetic layer has
been expelled from the cell centers into converging down-
flows and intercellular lanes, the net transport of magnetic flux
comes to an end. We note that the amount of magnetic energy
(and unsigned flux) can continue to increase as a result of field
amplification or the local dynamo; however, these processes
do not affect the average distribution of the field and thus do
not contribute over time to a net transport of flux either into or
out of the lower half of the domain.

If the mere presence of an asymmetric vertical flow field
were enough to cause a preferential transport of magnetic flux

Fig. 14.—(a) F(Ey) �
R Ey

0
(gþ � g�)E 0

y dE
0
y [where gþ � g(E 0

y) and g
� �

g(�E 0
y)] for the transition time 0 < t < 20Hr=vc (dashed line) and its inte-

grand (gþ�g�)E 0
y (solid line). Ey is expressed in normalized units (see text for

details). (b) Same as (a), but for the time interval 50Hr=vc < t < 250Hr=vc.
Note that if F(Ey) ¼ 1 for large Ey, then there is a net downward pumping of
flux during the time interval in question (a), and if F(Ey) ¼ 0, there is no net
flux transport (b).

Fig. 15.—Contribution of vortex flows and vertical magnetic field to the
ŷ-component of the electric field Ey ¼ vxBz � vzBx along a horizontal plane.
See text for details.
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to the base of a stratified model convection zone, then the
transfer of magnetic flux from the top half to the bottom half
of the domain should begin immediately, particularly in the
runs LT3 and LT4 when the distribution of the magnetic field
is essentially uniform throughout the entire domain. The fact
that it does not (see Fig. 8, top, in the time interval 0 < t < 4)
indicates that the presence of vertical flow asymmetries alone
does not lead to a net downward transport of magnetic flux.
We emphasize this point in Figure 16, where we plot the
magnitude of the asymmetry � at the midplane of run LT3
against hd�l=dti every t ¼ 0:25 during the interval 0 � t �
250 (each quantity is normalized to its maximum value). The
two quantities are uncorrelated (although one might argue that

for low � upward transport predominates); thus, the relative
strength or weakness of a vertical flow asymmetry is not re-
lated to the net downward transport of magnetic flux across a
horizontal plane. This is a robust result and applies to all our
simulations, regardless of our treatment of viscosity.
It is perhaps not surprising that our simulations lack the

highly efficient turbulent pumping mechanism of Tobias et al.
(1998, 2001), since we do not include an overshoot layer in
our models. Clearly, in the presence of an overshoot layer a
magnetic field entrained within strong downdrafts will pene-
trate into the stable layers below the convection zone and will
not be able to reemerge over a typical turnover time. This will
surely affect the distribution of the transverse electric field
along the midplane of the domain, as flux is trapped in the
overshoot layer and cannot be recirculated in broad, slower
moving upflows. Thus, in the case of penetrative convection,
magnetic flux quickly accumulates in the overshoot layer,
leading to a rapid reduction in the amount of flux stored in the
convectively unstable layers.

3.3. Buoyant �-Loops

We now remove the artificial requirement that initial mag-
netic flux tubes or layers be neutrally buoyant and turn our
attention to simulations of buoyant flux ropes with initial axial
field strengths sufficient to allow the flux ropes to retain a
tubelike cross section during the entirety of their ascent
through the model convection zone. At these field strengths,
the flux is no longer passively advected by convective flows;
instead, the tube affects the flow pattern, inhibiting even
strong downdrafts in regions where the magnetic field is
particularly concentrated. We begin by investigating how our
two treatments of viscosity (see Fig. 1) affect the evolution of
a given flux rope in a nonrotating box.
Figure 17 shows how an initially untwisted, horizontal

magnetic flux rope with an axial field strength of B0 ¼ 3Beq

placed at the base of each box has evolved into looplike
structures. This choice of B0 is optimal for this particular
experiment, since it is slightly larger than the critical value
Bc � Hp=a

� �
1=2

Beq of Paper I (hereHp refers to the local pressure

Fig. 17.—|B| along a vertical slice through the center of the domain for two different untwisted horizontal magnetic flux tube simulations initially positioned near
the base of the two distinct model convection zones: one where the kinematic viscosity (�) is assumed constant with depth (top; run B2) and one where the dynamic
viscosity (� ¼ �0�) is assumed constant (bottom; run A2). The dips in the flux ropes coincide with areas where there are particularly strong downdrafts.

Fig. 16.—Magnitude of the asymmetry � at the midplane of run LT3
(horizontal axis) vs. hd�l=dti (vertical axis) at each t ¼ 0:25 during the in-
terval 0 � t � 250 (each quantity is normalized to its maximum value). Time
is given in units of Hr=vc.
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scale height), above which the magnetic buoyancy force of the
tube can overcome the hydrodynamic force of strong down-
drafts. Figure 17 (bottom) corresponds to run A2, for which
the untwisted rope is placed in the model convection zone of
constant dynamic viscosity (the state shown in Fig. 1, left),
and Figure 17 (top) corresponds to run B2, for which the same
tube is placed in the model convection zone of constant kine-
matic viscosity. The morphological details of the tubes shown
in Figure 17 differ, since the strong downdrafts in each con-
vective starting state are positioned at different locations in the
box, and the run for which � is assumed constant has a higher
effective Reynolds number where the tube was initially em-
bedded. However, the general characteristics of loop evolution
remain the same in each case; for example, the amount that
the tube fragments (as defined in Abbett et al. 2000) during
its ascent differs little between runs.

In our simulations, the strength of the axial magnetic field
relative to the kinetic energy of strong flows is the dominant
factor in determining whether a tube retains its cohesion in the
presence of convective turbulence. However, in the absence of
convective turbulence, it has been shown that field line twist
of an amount greater than that necessary to balance the dy-
namic pressure gradient due to the buoyant rise of the tube can
prevent a flux tube from splitting into counterrotating frag-
ments (see, e.g., Linton et al. 1996; Fan et al. 1998; Emonet &
Moreno-Insertis 1998; Abbett et al. 2000). In a similar man-
ner, a twisted flux tube may be able to to maintain its cohesion
in a turbulent medium if magnetic tension is able to counteract
dynamic forces acting to distort the tube’s cross section; that
is, if B2

0a=(4�L
2
c )þ B2

0q
2=4�a � �v 2c=Lc (here Lc refers to the

correlation length of convective flows). The first term repre-
sents the differential restoring force due to the axial compo-
nent of the magnetic field, and the second term represents the
contribution of the azimuthal component (here we have as-
sumed that the length scale of cross-sectional deformation is
of order the tube’s radius). Then in the absence of twist, the
tube retains its cohesion if �Bk (Lc=a)�K , where �B � B2

0=8�
and �K � �v2c=2 (a result consistent with that of Paper I). If
field line twist is present, then the above expression yields an
estimate for the amount of twist necessary for a tube with an
initial axial field strength of B0 to resist the destabilizing
effects of convective turbulence: qc � a=Lcð Þ1=2(vc=vA) [here
vA � B0= 4��ð Þ1=2, and we have assumed that a=Lc is small].

Thus, there are two relevant regimes—if the magnetic field
is sufficiently strong, field line twist is not required for the
tube to maintain its cohesion against the convective flow;
however, the tube may still experience fragmentation as a
result of hydrodynamic interactions resulting from its buoyant
rise. In this case, a modest amount of twist can prevent the flux
tube from fragmenting during its rise, and previous analyses of
buoyant flux ropes in nonturbulent model convection zones
are relevant (see Abbett et al. 2000, 2001). If, on the other
hand, the axial magnetic field is weak compared with the ki-
netic energy density of the strong downdrafts, q must exceed
qc for the tube to remain cohesive, and a modest amount of
twist (e.g., q ¼ 0:25 along a tube of radius a ¼ 0:1Hr with
B0 ¼ 0:1Beq) will not provide enough additional magnetic
tension for the tube to maintain its cohesion against convec-
tive turbulence.

If we apply an entropy perturbation to the tube at the onset
of a simulation such that the ends of the tube are neutrally
buoyant, we can simulate the evolution of a classical �-loop
embedded in a turbulent medium. Figure 18 shows a set of
such runs and demonstrates how an untwisted �-loop with an

initial axial field strength below the critical value (B0 ¼ Beq)
has its evolution dominated by convective flows, while a loop
where B0 exceeds Bc (B0 ¼ 5Beq) evolves as if the convective
turbulence were absent, a result consistent with the simu-
lations presented in Paper I and those of N. H. Brummell
(2002, unpublished); K. S. Cline, N. H. Brummell, & S. M.
Tobias (2004, in preparation); and Cline (2003). Figure 19
shows the evolution of the same untwisted �-loop for a choice
of B0 ¼ 3Beq � Bc.

However, an artificial entropy perturbation is not the only
computationally inexpensive way to generate �-loops. We find
that these structures form quite naturally as a result of low-
entropy downdrafts perturbing either a buoyant flux rope (see
Fig. 17) or a flux layer positioned at the center of the domain
(see Fig. 6, bottom right) or near the base (as shown in Fig. 20).
In the presence of rotation, we expect loops with B0 > Beq to
be acted on by the Coriolis force in such a way that on average
those positioned at high latitude emerge with a large tilt angle
(the inclination of the leading and trailing polarities with re-
spect to the east-west direction) and those at a low latitude
emerge with a correspondingly smaller tilt angle (see Fig. 21).
For B0 ¼ 2Beq (runs G1 and G2), we find that convective flows
introduce a significant spread in the tilt angles of the active
region progenitors that appear near the upper boundary of our
simulations, although the general shape of the loops—the
tendency for the trailing leg of the loop to be oriented more
vertically than the leading leg (see Fig. 20)—is a feature less
affected by the presence of convective turbulence.

It is important to note that we simulate the subsurface
evolution of magnetic flux ropes. At the photosphere, where
the acoustic Mach numbers may no longer be small and the
sound speed becomes comparable to the Alfvén speed, the
anelastic approximation breaks down, and a fully compress-
ible treatment (such as that of, e.g., Tobias et al. 2001; Bercik
2002) is required. It is therefore best to think of the simulated
magnetogram of Figure 21 as a snapshot of the magnetic field
below the visible surface, where � is large and the anelastic
treatment is valid. While our simulations seem to suggest that
active regions can result from a convective perturbation of the
field stored near the base of the convection zone at or near the
overshoot layer, we note that observational properties of ac-
tive region emergence (e.g., Hale’s law and Joy’s law) can be
reproduced in a simulation only if a strong east-west hori-
zontal field is imposed a priori in the lower layers at a given
latitude. Further, it remains to be seen whether the strong
narrow downdrafts that perturb the flux layer near the base of
the simulation box will continue to penetrate to these deep
layers if the Rayleigh number is substantially increased.

4. DISCUSSION

Of primary importance in determining the outcome of the
simulations is the choice of initial (axial) field strength of a
flux tube B0 positioned near the bottom of the simulation
domain. If the magnetic field is weak relative to the kinetic
energy density of the strong downdrafts and B0 is less than
the critical value Bc of Paper I, then convection dominates
the evolution of magnetic structures. In this regime, flux
tubes rapidly lose their cohesion, and after several turnover
times individual tubes are no longer distinguishable. Al-
though our three-dimensional MHD models demonstrate that
the local evolution of the magnetic field is complex—the tube’s
morphology depends on its location relative to the strong
convective flows, the magnetic field is quickly swept into
intergranular lanes near the surface, and the field is stretched
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and amplified near closed boundaries and along the narrow
cool downdrafts—we find that certain global averaged quan-
tities (such as the center of magnetic mass) evolve in a sur-
prisingly simple manner.

If the magnetic energy of a tube or flux layer exceeds the
kinetic energy density of the strong downflows, we are in a
dynamic regime in which the magnetic field is no longer
passively advected by convective flow; rather, the presence of
the field disrupts the typical convective flow pattern. In this
regime, the characteristics of the tube itself—its initial twist,
the apex curvature of the �-loop, and its initial latitude in a
rotating convection zone—determine whether or not the tube
can overcome the hydrodynamic forces (independent of con-
vective turbulence) that act to break it apart. The magnetic
tension resulting from the presence of field line twist provides a
force that can prevent the tube from losing its cohesion in either
regime: for the case in which convective turbulence dominates
the dynamics, however, the amount of twist necessary so that
the tube remains intact is quite large. This is not to say that
active region flux ropes must have a large amount of twist

to survive their ascent through the convection zone; in fact,
at field strengths typical of a large emerging active region
(Bz ¼ 1500 G at the photosphere), we are firmly in the regime
in which the magnetic field dominates the flow, and simulations
of emerging flux performed in the absence of turbulence remain
relevant. Studies of this type (e.g., Abbett et al. 2000, 2001)
have shown that �-loops embedded in a stratified (but non-
turbulent) three-dimensional rotating-model convection zone
require only a slight amount of field line twist to prevent
fragmentation, far less than that required by completely axi-
symmetric tubes (see Fan et al. 1998).
We show that in the absence of systemwide background flows

or oscillations in the vertical direction (i.e.,
R Ly
0

R Lx
0

vz dx dy ¼ 0
at all heights in the atmosphere), there is no initial net down-
ward transport of magnetic flux in a closed domain given an
initially horizontal magnetic structure of the form B ¼ B0 x̂
(where B0 < Beq is assumed constant), despite the presence of
flow asymmetries in the vertical direction. Suppose we no longer
require that density variations be small relative to the mean
stratification (as can be the case in fully compressible simu-
lations of magnetoconvection). Then we can obtain an expres-
sion for the net vertical velocity of a given layer by multiplying
both sides of the equation � ¼ �þ �� (where �� and � de-
note the density variations and horizontally averaged stratifi-
cation) by vz and integrating over x and y:

R Lx
0

R Ly
0

vz dx dy ¼
(1=�)

R
Lx
0

R
0
Ly �vz dx dy � (1=�)

R Lx
0

R Ly
0
� �vz dx dy.

Note that for a convectively unstable medium, when vz is
negative, �� is generally greater than zero, and when vz is
positive, �� is less than zero. Note also that on average for a
given layer in a closed domain,

R Lx
0

R Ly
0
�vz dx dy vanishes by

mass conservation. Thus, if �� is small (as is assumed in the
anelastic approximation), we should expect that for an en-
semble of numerical experiments, equation (25) holds and that
there will be no initial systematic tendency for the horizontal
magnetic flux layer to be preferentially transported in one ver-
tical direction over the other solely as a result of the presence
of an asymmetric vertical flow field. In a compressible
medium, �� may not be small, and the above argument
implies that on average in convectively unstable layers,R Lx
0

R Ly
0

vz dx dy > 0; thus, if anything, there should be a slight
initial tendency for horizontal flux to be transported upward

Fig. 18.—Apex cross section of |B| (left) as a function of height and time
and a corresponding slice along the loop (right) for �-loops with no initial
twist but two different values of initial field strength: B0 ¼ Beq (top five graphs;
run D1) and B0 ¼ 5Beq (bottom five graphs; run D3).

Fig. 19.—Same as Fig. 18, but for an initially untwisted �-loop of B0 ¼
3Beq � Bc (run C1).

ABBETT ET AL.572



Fig. 20.—Bottom, �-loops formed from convective turbulence acting on a thin horizontal sheet of flux inserted near the base of a thermally relaxed rotating-
model convection zone positioned at 15� latitude with a magnetic Rossby number of unity (run G1); top, corresponding volume rendering of the entropy
perturbations.



toward the surface. We have tested this conjecture using data
from the fully compressible simulations of surface convection
performed by Bercik (2002) and have found that indeed the
net vertical velocity along horizontal slices just below the
visible surface (in the convectively unstable layers) is positive
(although small) as the above argument predicts, while slices
taken above the surface in the stable layers show a net neg-
ative vertical velocity, as one would expect.

The notion that an asymmetric flow field will preferentially
transport magnetic flux in the direction of the strongest, most
concentrated flows is somewhat oversimplified. While it is true
that a portion of the horizontal flux layer is compressed and
advected toward the base of the domain by strong localized
downflows, it is also true that the vertical component of the
field becomes concentrated in these circulating downflows
and converging intercellular lanes (where transverse flows can
tilt field lines in a manner that partially counteracts the net
downward transport) and that the remainder of the flux is
transported upward in broad, slower moving upflows. Rather
than being correlated with the relative strength or weakness of
flow asymmetries, the net vertical transport of magnetic flux
through a horizontal plane (in a vertically closed domain with
periodic boundary conditions in the horizontal directions) de-
pends on whether or not there is a net component of the electric
field in a direction perpendicular to both the initially horizontal
flux layer and the vertical flow asymmetry, a quantity sensitive
to the distribution of magnetic fields and flows on that plane. In
the simulations, this occurs once the field distribution becomes
significantly nonuniform, during the time when the initial
magnetic layer is being expelled from cell centers into con-
verging downflows and intergranular lanes. Once a steady state
distribution is reached, there is no longer any net transport of
flux into the lower half of the domain.

Thus, the robust pumping mechanism evident in MHD
simulations of penetrative convection must be due to the
presence of the overshoot layer. In this case, the flux entrained
in the strong downflows quickly penetrates into the relatively
stable overshoot region where it remains over a much longer
timescale than is typical of convective turnover. Given the
relative success of a diffusion model in characterizing the
average properties of the flux rope of x 3.1, we suggest that
a simple statistical model of diffusion, one that represents
the average interaction of large-scale convective flows with
smaller scale magnetic structures, may provide a useful means
of interpreting global quantities obtained directly from three-
dimensional MHD simulations of penetrative convection. This
conjecture, in principle, can easily be tested: perform simu-

lations of magnetic flux transport in a strongly stratified
convecting medium, both with and without a convective
overshoot layer. If our conjecture is correct, then the addition
of an overshoot layer should result in a strong turbulent
pumping of magnetic flux downward, similar to that reported
by, e.g., Tobias et al. (2001). Further, by changing the sub-
adiabaticity of the overshoot layer, which affects the velocity
and mean free path, it should be possible to change the amount
of flux that can be transported downward. With our current
version of ANMHD, it is not possible to add an overshoot
layer, but we plan to remove this restriction in the future.

5. CONCLUSIONS

We have performed a large parameter space exploration of
active region–scale magnetic flux tubes embedded in a three-
dimensional stratified model convection zone to characterize
the effects of convective turbulence on the subsurface evolu-
tion of an emerging magnetic structure. We summarize our
principal results below:

1. If the magnetic energy density of a flux tube is weak
compared with the kinetic energy density of the strong down-
drafts, convective flows dominate the evolution of magnetic
structures, and flux tubes of any shape quickly lose cohesion.
If the initial axial field strength of a flux tube greatly exceeds
the critical limit of Paper I, the tube disrupts the characteristic
convective flow pattern and evolves as if the convective
turbulence were absent. In this regime, the tube (or apex of an
�-loop) may still fragment into two counterrotating elements
unless either the magnetic tension due to the presence of field
line twist or the effects of the Coriolis force are sufficient to
suppress the hydrodynamic forces independent of convective
flow that cause the tube to break apart.
2. We demonstrate that the relative strength or weakness of

the vertical flow asymmetry characteristic of stratified con-
vection is uncorrelated with the net transport of magnetic flux
into the lower half of a vertically closed, horizontally periodic
Cartesian domain. Given an initially horizontal, uniform mag-
netic field, we show that the net transport of flux across a
horizontal plane can be understood in terms of the net com-
ponent of the electric field along the plane normal to both the
initial flux layer and the vertical flow asymmetry. We find
evidence of a weak pumping mechanism once the field dis-
tribution becomes significantly nonuniform, during the time
when flux from the initial magnetic layer is being expelled
from cell centers into converging downflows and intergranular
lanes.
3. We find that the strong pumping mechanism evident in

simulations of penetrative convection—the tendency for mag-
netic flux to be quickly transported to the base of a stratified
convection zone over multiples of a convective timescale tc ¼
Hr=vc—does not manifest itself in a closed domain in the ab-
sence of an overshoot layer. Thus, we suggest that rapid
downward transport of magnetic flux occurs as a result of the
penetration of flux into the less turbulent overshoot layer where
it remains for many convective turnover times, rather than
simply as a result of the presence of vertical flow asymmetries.
4. Although our different treatments of the viscosity of a

Newtonian fluid, in which the coefficient of either kinematic or
dynamic viscosity is held constant throughout the domain,
result in distinctly different model convection zones, we find
that the overall evolution of embedded magnetic structures is
essentially independent of the choice of model. While the de-
tailed morphology of a given flux rope or flux layer may differ

Fig. 21.—Artificial ‘‘magnetogram’’ (image of the vertical component of
the magnetic field near the upper boundary) for one of the flux ropes formed as
a result of a convective perturbation of a flux sheet positioned near the base of
a rotating-model convection zone positioned at 15� latitude (see Fig. 20). Note
that a line drawn between the leading and trailing polarities of the bipole is
inclined from the horizontal (east-west) direction. The theoretical active region
spans roughly 70 Mm.
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somewhat between models, the evolution of global quantities
such as the level of fragmentation of a flux tube or the position
of the center of magnetic mass in the volume is insensitive to
our choice of models.
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