

RHESSI Microflare Statistics

Iain Hannah¹, S. Christe², H. Hudson², S. Krucker², L. Fletcher¹ & M. A. Hendry¹

UNIVERSITY of GLASGOW ¹Astronomy & Astrophysics Group University of Glasgow, Glasgow, Scotland, Ul ²Space Sciences Laboratory University of California at Berkeley, Berkeley, CA, US

Motivation: Why RHESSI?

- RHESSI (Reuven Ramaty High Energy Solar Spectroscopic Imager)
 - Provides unique sensitivity in 3-15 keV.
 - Effective area ~100 larger than at 10 keV.
 - HXIS on SMM
 - Energy resolution of 1 keV.
- RHESSI can provide new information on low-level energy releases:
 - X-Ray Bremsstrahlung from heated and accelerated electrons in microflares
- See lots of small bursts of x-rays
 - signatures of energy release into the corona.
 - but how much and how often?

RHESSI Microflares

- These are small flares (A-C Class), occurring in active regions
 - coronal acceleration (reconnection?)
 - heated & accelerated electrons
 - then bremsstrahlung out.
- RHESSI provides the x-ray spectrum and image of these events
 - times of shutter out and no decimation (quiet times) get about 2.5 flares per hour

- 10,000s of microflares so far - so need an automated process to
 - characterise these events

Looks like non-thermal footpoints plus lots of information in x-rays before EUV loop SOHO15 September 2004

Spectrum Characterisation

- Ratio: Less Accurate but always gives answer and know its limitations
 - T and EM from ratio of counts in (3-4.67)/(4.67-5.67) keV
 - Subtract thermal model for T,EM from data converted to photon spectrum
- Line Fit whatever is left to give γ
 SOHO15 September 2004

Microflare: 26-06-2002, B1.8

Microflare: 06-05-2002, A7.8

Tvs EM at Peak Time

Emission Measure vs Temperature at the time of peak i 3-6 keV for 199 flares.

Bias introduced by ratio method, but we know what this is and can correct for it?

OSPEX Comparison

Ratio←→**OSPEX**

Comparison of Ratio and OSPE2 EM, T at the time of the peak in 3-6 keV

OSPEX produces generally lowe T and higher EM

OSPEX results still lower than Feldman et al [1996]: RHESSI higher T and/or lower EM

No clear correlation again

So Ratio overestimating therma component and underestimating non-thermal part?

But we understand the bias it is introducing

Non-Thermal Energy

Calculate energy in non-thermal energy using Brown [1971], Lin et al [2001]:

 $P(>E_0) \propto \gamma^2 (\gamma - 1) \beta (\gamma - 0.5, 1.5) E_0^{-(\gamma - 1)}$

June Total Energy= 5.0x10³⁰ ergs !! A Bit High for B Class?

- But Steep Spectrum
- And E₀=10 keV, normally 25 keV so 10⁻³ smaller if using 25 keV (but no counts >20 keV!)

$$\frac{E_{25}}{E_{10}} = 2.5^{-\gamma} \approx 10^{-2} - 10^{-3}$$

Obvious Question

So is this: Hot Thermal + Non-Thermal

or something else like *Hot Thermal + Super-Hot Thermal?*

Probably non-thermal: Spectrum fitting works for non-thermal, observe type III radio burst [Liu et al. 2004 ApJ]

More Non-Thermal Energy

For a smaller event have overestimated thermal component and so underestimated non-thermal energy.

Even **OSPEX** which does a better job still has problems.

From Ratio only 1.6x10²⁹ ergs in this event ! (have only used time bins with less than 100% error)

Non-Thermal Energy Distribution

For Total Energy of 199 flares only used P with error < 100%.

All energies found from Ratio method: so smaller events have *underestimated energies* as thermal component overestimated

Get an index of ~1.1

If using $E_0=25$ keV energies would be shifted down by 10^2 or 10^3 , though few counts > 20 keV

Can also get distribution using Parnell & Jupp [2000] method which is *independent of bin size*, giving an *objective* measure of the index. This time about 0.94

Conclusions

- RHESSI excellent for observing microflares
 - These are small flares that occur in active regions
- They are hot (>10 MK) with presence of Fe K Complex
- Difficult to interpret thermal vs non-thermal spectrum or super-hot component
 - Possibly a lot of energy in the non-thermal electrons
 - Distribution (though biased) with index ~1
 Future Missions
- What about the current one, RHESSI?
 - Still got 1,000s of events to analyse
 - Quiet Sun gives great opportunity for 10,000s more
 - RHESSI does and will provide vital information about the energy input of these events into the corona