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[1] The main characteristics of the long-boom electric antennas installed on board the
Cluster satellites are derived from finite element modeling in a kinetic and isotropic space
plasma, in the frequency range of about 1–100 kHz. The model is based on the surface
charge distribution method in quasi-static conditions. The impedances of both types of
antenna, i.e., the double-wire and the double-probe, are computed versus the frequency
normalized with respect to the local plasma frequency and for several different Debye
lengths. Most of the code outputs are checked using analytic estimations for better
understanding of the involved physical mechanisms. As a by-product, the effective length
of the double-probe antenna and the mutual impedance between the two antennas are
computed by the code. It is shown that if it had been possible to implement such
measurements on board, one would have been able not only to determine accurately the
electric characteristics of the antennas but also to estimate the local plasma parameters.
Nevertheless, an interesting feature predicted by the model has been checked recently in
orbit by running a special mode of operation for testing the mutual impedance
measurement. The preliminary results are globally consistent with the predictions, except
that they suggest that our Maxwellian model for the electron distribution should be revised
in order to explain the unexpected low-frequency response. After analysis of the electron
flux measurements obtained simultaneously, it appears that a rough adjustment of the
electron distribution with a two-component distribution allows us to account for the
observations.
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1. Introduction

[2] Each of the four satellites of the Cluster space fleet
carries a pair of mutually perpendicular long-boom
antennas with spherical probes at their tips, each about
88 m tip to tip, located in the spin plane [Gustafsson et
al., 1997]. Several wave experiments use these antennas
at different frequencies, ranging from direct current up to

about 580 kHz in passive as well as active modes of
operation, within a coordinated consortium [Pedersen et
al., 1997]. Since the behavior of such antennas is known
to depend strongly on the frequency, their design is quite
sophisticated in order to comply with the constraints of
each experiment. For the modeling of the antenna in
terms of finite elements as presented here, we tried to
follow the real structure as closely as possible. This study
applies to a so-called ‘‘high-frequency’’ (HF) range, from
a few kilohertz up to about 100 kHz, a wide band which
includes the local plasma frequency along the Cluster
orbit. We will ignore the influence of the ions on the
waves in this range, and we will neglect the anisotropy
due to the steady magnetic field whenever the electron
cyclotron frequency lies well below the plasma frequency.
This contrasts with the quite different antenna behavior
in the near-zero and ULF ranges, which have their
own constraints mainly dominated by the magnetic
field and the conductivity of the ambient plasma,
including the current of photoelectrons escaping from
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France.

2Department of Physics and Astronomy, University of Iowa, Iowa
City, Iowa, USA.

3On leave from Swedish Institute of Space Physics, Uppsala,
Sweden.

4Queen Mary University of London, London, UK.
5Now at Blackett Laboratory, Imperial College London, London,

UK.

Copyright 2005 by the American Geophysical Union.

0048-6604/05/2005RS003264

RS6008 1 of 18



the Sun-exposed spacecraft (S/C) surfaces [Pedersen et
al., 1998].
[3] In the above defined HF domain the ambient

medium must be considered as a dielectric with a
frequency-dependent permittivity, which includes the
losses due to the radiation of kinetic waves from every
conducting surface in contact with the plasma [Béghin
and Kolesnikova, 1998]. The usual zero-order approxi-
mation to the basic theory for antennas shorter than the
electromagnetic (EM) wavelengths consists of attributing
to the ambient medium the scalar permittivity e0 of free
space, or possibly the tensor permittivity of a cold
plasma. In these conditions, most experimenters assume
that the effective length of a dipole antenna is its tip-to-
tip length in the case of a double sphere (or double
probe) and half this length for a double wire; here the
term ‘‘probe’’ signifies a sphere together with its con-
necting wire if this wire is not shielded in any way. In
some cases, a more or less arbitrary correction factor is
introduced to take account of the disturbances in the
electrostatic field near to the spacecraft (Figure 1) and
perhaps also of the noninfinite input impedance of the
receiver.
[4] The above approximations can lead to significant

errors in the interpretation of received signals, especially
at frequencies close to plasma resonances whenever
critical parameters, such as the ratio between the local
Debye length and the system size, are underestimated
(see, e.g., review by Béghin [2002]). This will be shown
in more detail in section 4.3 in the specific case of
Cluster for typical plasma conditions encountered along
the orbit. First, we summarize the general context in
which our modeling method is applicable, then we give
the results of the calculation for the effective antenna

length and of the simulation for various active modes of
operation that the present hardware design unfortunately
does not allow to be put into practice. As shown by our
study, the complex behavior of such antennas could
indeed be understood more easily by using a combina-
tion of active modes such as self-impedance and mutual
impedance measurements. Finally, we give the results of
a preliminary test of the mutual impedance measurement
which has been done recently between the long-boom
dipole and the double-probe antenna by coordinated
simultaneous operations of the relaxation sounder Wave
of High frequency and Sounder for Probing of Electron
density by Relaxation (WHISPER) [Décréau et al.,
1997] and the waveform receiver Wide Band Data
instrument(WBD) [Gurnett et al., 1997]. This test vali-
dated our modeling, though the results are somewhat
more complicated than we predicted initially with a
single Maxwellian electron distribution. In our view,
such a measurement can be regarded as an in-flight
calibration of the Cluster antennas and also as a prom-
ising complementary method of plasma diagnostics.

2. Baseline

[5] In our kinetic treatment the plasma permittivity is
described by the Vlasov theory using the quasi-static
approximation [Béghin, 1995]. We consider conditions
where the EM wavelength in the above defined HF range
is indeed always much larger than the device size, so the
quasi-static approximation is fully applicable. In an
isotropic plasma the refractive index of the ordinary
mode is always smaller than unity. Therefore, in the
particular case of Cluster, with an upper frequency
around 100 kHz, the EM wavelength can never be less
than the smallest vacuum wavelength, i.e., at least 3 km,
which is 30 times larger than the overall S/C size. In our
model the plasma is assumed to be steady, uniform, and
isotropic. The acting particles under consideration are
only thermal electrons, and in its present state of devel-
opment our numerical code is designed for a single
Maxwellian distribution only. However, the kinetic the-
ory allows us to introduce a combination of such
distributions in order to fit any kind of distribution,
provided that this remains stable enough to again use a
linear approach to the problem. While awaiting a next
improvement of our code including this possibility, we
are proposing an analytic approximation with a two-
component distribution for the interpretation of the
aforementioned flight test (section 5). Similarly, the
effect of a plasma drift may be significant in some
occasions, as, for instance, in the second pass of the test
flight. This effect can be evaluated occasionally accord-
ing to a method proposed by Kolesnikova and Béghin
[2001], but it will be not introduced in our preliminary
interpretation. It is nevertheless one of the future

Figure 1. Free space distribution of equipotential
surfaces associated with the component El of a uniform
external electric field in the vicinity of a rough model of
the S/C with a double-sphere dipole lying along the
direction of the field.
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improvements that we intend to introduce progressively
in the code.
[6] The key parameters are the plasma frequency and

the Debye length which must remain within certain
boundaries in order to comply with the constraints of
our model. Our model in its present state of development
does not include any ion sheath or photoelectron cloud
around the structure, and we assume the plasma to be
uniform and isotropic everywhere. We believe, however,
that the ion sheath can be reasonably forgotten whenever
the Debye length is at least of the same order of
magnitude or larger than the cross section of the consid-
ered device. In the particular case of Cluster this can be
easily satisfied for the antenna itself and marginally for
the S/C body whenever the Debye length is larger than
�1 m. However, secondary effects around the S/C body,
as well as the wake in the case of high plasma bulk
velocity, would have to be considered on some occa-
sions. These are not included in our model, but we think
that the ratio between the dipole length and the size of
the S/C structure is large enough to minimize the above
effects. This assumption is clearly supported by our
results which are not affected significantly when we
make a radical change to the shape and size of the S/C
body (section 3). Moreover, as long as the density of the
ambient plasma is greater than that of photoelectrons
inside a sphere with a diameter of the order of the tip-to-
tip antenna length, we may neglect the photoelectrons.
[7] The last major constraint applies for the value of

the plasma frequency, which must be at least 3 or 4 times
larger than the electron cyclotron frequency in order to
satisfy a first-order approximation of quasi-isotropy.
Along the Cluster orbit this condition may be not
satisfied everywhere, so the results of our modeling
cannot be extrapolated easily in those regions where
the magnetic field is strong. There are several studies
related to the behavior of electric antennas and imped-
ance probes in magnetized plasma which could be
applicable under such conditions (see, e.g., review by
Storey [1998]). For instance, in the case of mutual
impedance experiments on board the GEOS and Viking
satellites, when the condition of quasi-isotropy was not
satisfied in some portions of the orbit, valuable measure-
ments of electron density and temperature might never-
theless be obtained using the hydrodynamic approach in
magnetized plasma [Décréau et al., 1978; Perraut et al.,
1990]. Although the complex full kinetic treatment in
magnetized plasma could be considered, it is unlikely to
be achieved in the near future; we will show in section 5
that the isotropic approximation remains valid under
conditions similar to those of our test in orbit.
[8] Each conducting surface of the entire system is

supposed to reach an electric equilibrium imposed by the
reaction of the plasma to an external electric field or to an
internal source of voltage or current, taking into account

the constraints imposed by the internal connections
between these surfaces. We use a conventional equiva-
lent circuit for each component of the device that can be
considered as an antenna, namely, the outer shields of the
long wire booms and the terminal probes. By definition,
the transfer function of an antenna in the presence of an
external electric field is given by

Vin ¼ El l
0
ef

Zin

Za þ Zin
; ð1Þ

where Vin is the voltage at the receiver input, El is the
component of the undisturbed electric field along the
antenna axis (Figure 1), lef

0 is the effective length of the
antenna on open circuit, and Zin and Za are the input
impedance of the receiver and the self-impedance of the
antenna, respectively.
[9] Such a conventional description is applicable ob-

viously to any complex system as well as to an antenna
in a plasma, but equation (1), which seems quite simple,
becomes much more complex when both the effective
length and the antenna impedance depend on several
parameters such as frequency, electron density, and
electron temperature. So far, most authors have used
drastic approximations to obtain rough estimates of the
transfer function. It must be pointed out in particular that
the effective length on an open circuit depends essen-
tially on the current distribution induced along the
surface, a distribution that depends on the geometry as
well as on the properties of the medium. In the simplest
case of a long wire the assumption of a triangular
distribution is widely used, even though it is known
not to be always valid.
[10] In our approach, the above questions are bypassed

because our modeling method yields a self-consistent
solution for the equations of electric equilibrium, what-
ever the plasma conditions may be. In particular, the true
charge and current distributions are computed so as to
satisfy this equilibrium, taking into account the boundary
conditions. Thus we can define an ‘‘acting effective
length,’’ leading directly to a simplified transfer function,
the expression for which is

Vin ¼ El lef ; ð2Þ

where lef is the acting effective length, which now
includes the load on the antenna due to the preamplifier
input impedance.
[11] As we will see in section 4, besides the effective

length which is essential for the interpretation of natural
emissions, the model enables us to compute the self-
impedance of each component of the device, as well as
the mutual impedance between different components. In
this way we can confirm (section 4.3) the coherence of
the results derived directly from (2) using those obtained
by (1), where each quantity is evaluated independently.
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In fact, most of the code outputs can be validated by
comparing them to a simplified analytic approach so as
to check the orders of magnitude and to reveal some
interesting physical processes.

3. Surface Charge Distribution Method

[12] The complex layout of the dipole antennas of
Cluster has been adapted to a generalized simulation
code which has been developed recently at the Labora-
toire de Physique et Chimie de l’Environnement,
Orléans, France (P. Archambault, unpublished memoran-
dum, 2003). The modeling, which is an application of the
surface charge distribution (SCD) method proposed by
Béghin and Kolesnikova [1998], consists first of splitting
up the conducting surface of each individual part of the
device, including the S/C body, into finite elements in
order to follow the real shape as closely as possible, at
least for the conducting parts. In order to make the model
simpler we assume that the system possesses an axial
revolution symmetry by steps of 60� and a global
symmetry with respect to the central body (Figure 2),
though the model is really three-dimensional. The sizes
of the elements are adapted to each part of the device in
order not only to fit the real shape but also to allow us to
consider each of them as a point-like pulsating charge
seen by all the others. For each monopole, going from
the S/C body outward, the considered conducting parts
are successively the wire boom (�40 m long), which is
the active outer shield of the cables running out to the
preamplifier and is used as one half of the transmitting
dipole antenna for WHISPER; the guard (1.6 m long),

which is a passive outer shield; the outer case of the
preamplifier, which is hereinafter referred to as the
‘‘puck’’; and the probe, consisting of the thin wire
(1.5 m long) plus the terminal sphere (8 cm diameter),
which is used as one half of the double-probe dipole.
Thus the tip-to-tip antenna length is �88 m in our
model, as it actually is on Cluster (A. Eriksson, private
communication, 2004). The S/C structure is taken as
the reference, and at HF the pucks as well as the guards
are considered to be grounded to that structure through
large capacitances.
[13] The finite elements of each considered surface

have different shapes depending on where they are
located, but their overall dimensions must always be
shorter than the Debye length. For instance, thin cables
are split into small portions of cylinders a few tens of
centimeters long. Because of the axial revolution sym-
metry of the model the S/C body cannot have its real
shape. It is replaced by a hexagonal prism (3 � 2 m)
made of 54 equilateral triangles on each base and
27 square elements on each face (Figure 2). However, as
long as we consider modes of operation in a dipole
layout, the shape of the central body does not matter
because the return currents of each monopole are flowing
through the reference body in opposite directions. This
supposition has been checked by running the code with
the S/C body reduced to a thin cylinder of radius 10 cm
instead of 1 m, keeping the physical length of 3 m in
order to simulate the actual gap between the feed points
of the two wire booms. All results are practically
unchanged, except that a slight difference, no more than
�1%, appears in the kinetic resistance of the wire boom

Figure 2. Model of Cluster S/C equipped with one wire boom antenna (83 m tip to tip) and one
double-probe antenna (88 m tip to tip), the whole split up into 960 finite elements (not to scale).
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dipole. We believe that the same supposition would
apply to the influence of the other long-boom antenna
perpendicular to the one we are modeling. This would be
also likely true for the short solid booms carrying the
magnetometer experiments, which can be considered as
an additional part of the S/C ground. Of course, this
would not necessarily be true for operating modes in a
monopole layout between one half boom and the S/C.
[14] Once the geometrical model has been built, the

problem reduces to solving a linear set of equations
where the number of unknowns consists of all pulsating
charges corresponding to the total number of finite
elements, i.e., Nq, plus the voltages of all conducting
parts, i.e., Nv. Each set of equations is defined as follows.
[15] 1. For each finite element with subscript i, located

on the part with subscript j, the induced voltage Vj is
given by

Vj ¼ Vii þ
XNq

k¼1; 6¼i

qk

4pe0rik

f
f0

W;
rik

lD

� �
� El ri; ð3Þ

where Vii is the voltage induced on the element in
question by its own charge distribution; qk is the complex
pulsating charge qk exp(iwt) carried by each element with
the subscript k (assumed to be seen by all the others as
located at its own geometrical center); rik is the distance
from element i to k; f/f0 is the plasma transfer function
for a point source as defined by Béghin [1995], which
depends on the frequency normalized with respect to the
plasma frequency (W = w/wp) and on the distance
normalized with respect to the Debye length; El is the
longitudinal component of a possible external electric
field; and ri is the longitudinal coordinate of the element
with respect to an arbitrary point of reference, defined as
being at plasma potential. This point is taken at the center
of the S/C body since all voltages are referred to the
body. The value of Vii is obtained assuming a uniform
charge distribution on the surface of the element
concerned, i.e.,

Vii ¼
qi

4pe0Si

Z Z
si

f
f0

W;
rj j
l d

� �
dS

rj j

 aS

qi

4pe0Dr
; ð4Þ

where Dr is the characteristic dimension of the element
(e.g., the radius for a sphere) and the coefficient aS is
given by an analytic expression derived from the above
integral. Notice that while we assume a uniform charge
distribution on each individual element, its own edge
effect is not taken into account explicitly, though this
effect will appear globally with charges accumulated on
the terminal elements of the relevant part. This supposi-
tion holds also for a spherical element since its charge
distribution remains globally uniform whenever the
contact area with the closest element is small compared
to the sphere itself. Nevertheless, a small correction is

introduced in the code in order to account for the finite
size of the elements compared to the Debye length.
Using the first terms for the expansion of the function f/
f0 [Béghin, 1995], we get, for instance, the following
value of aS for a sphere of radius a:

Re að Þ ¼ 1þ 2

p
a

lD

� �
ReL0 þ

1

2

a

lD

� �2

þ 0
a

lD

� �3

ð5Þ

Im að Þ ¼ 2

p
a

lD

� �
ImL0 þ 0

a

lD

� �3

;

where L0 is given by

ReL0 ¼ 0 W � 1

ReL0 ¼ � pW

2
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� W2

p W < 1

ImL0 ¼
1

W

ffiffiffi
p
2

r
W2

W2 � 1

� �b

W > 1 b  0:4348ð Þ

ImL0 ¼
W
2

ffiffiffi
p
2

r
W � 1:

[16] 2. For each individual part of the device except the
central S/C body, its own voltage referred to this body is
given by a specific electrical interface equation, such as

Vj � VS=C ¼ iwZj
X
Sj

qi þ V0j; ð7Þ

where V0j is the voltage (if any) applied to the part with
the subscript j, Zj is either zero or the impedance through
which the current returns to the S/C, and the sum is taken
over the individual charges on all the elements used in
modeling the entire surface Sj of the part considered.
[17] A special case applies to the receiving probe,

which is made of a sphere and a thin wire. In this case,
equation (7) is replaced by a set of two; one of them is
the same as (7) for the thin wire, where the sum of the
charges involves both parts, and the second one is for the
sphere, i.e., simply Vsphere = Vwire. Here Zj is the high-
input impedance of the preamplifier Zin which is difficult
to measure accurately in a laboratory. We have taken
the most likely value, which is a capacitance of 4 or
5 pF shunted by a large resistance of at least 100 MW
(L. Ahlen, private communication, 2003).
[18] 3. The final equation expresses the condition of

charge neutrality for the entire system,

XNq

i¼1

qi ¼ 0: ð8Þ

(6)

RS6008 BÉGHIN ET AL.: MODELING AND TESTING CLUSTER’S ANTENNAS

5 of 18

RS6008



This linear system is closed, and the computation
consists of inverting the (Nq + Nv)-dimensional complex
matrix. The only difficulty for the code developer is to
optimize the accuracy and the efficiency for a large
number of elements which can be as much as several
thousand in some instances [Geiswiller et al., 2001].

4. Results of the Simulation

[19] We now summarize the main results of our
simulations, in free space and space plasma, concerning
(1) the self-impedances of both the double-wire and the
double-probe antennas, (2) the mutual coupling between
them under the conditions of the actual flight test, and
(3) the effective length of the double-probe antenna.

4.1. Self-Impedances

[20] The self-impedance of the double-wire dipole is
obtained assuming each monopole to be connected to a
signal generator that feeds the dipole with a differential
voltage balanced with respect to the S/C ground. The
same is done for the impedance of the double-probe
dipole. The amplitude of the current drawn by the
antenna and its phase with respect to the voltage yields
the complex impedance in terms of a reactance with a
resistance in series. In the range of Debye lengths
considered (6–12 m), the reactance is expected to be
capacitive even near the plasma resonance, and the
resistance is expected to be only the thermal wave
radiation resistance because EM radiation is negligible
in the frequency range considered. These assumptions
are confirmed by the code results, as briefly reported
below.
[21] The free space capacitances of the two antennas,

with respect to infinity, are easy to estimate analytically

using the classical equations for a long wire and for a
sphere:

Cwire ¼
2pe0l
ln l=r

; Csphere ¼ 4pe0a; ð9Þ

where l is the wire length, while r and a are the radii of
the wire and of the sphere, respectively.
[22] From (9) the capacitance of each of the 40 m

wire boom monopoles would be 212 pF, and that of the
thin wire plus the sphere would be 13 pF. The values
obtained by the code, i.e., 234 and 12.77 pF, respec-
tively (Figure 3), are consistent with these estimates,
given that the presence of the S/C structure is believed
to increase the boom capacitance slightly.
[23] For frequencies lower than the plasma frequency

the capacitance tends asymptotically toward a larger
value than in free space, in agreement with the following
analytic evaluation. Assuming a uniform charge distri-
bution along the antenna, as is almost the case for the
range of Debye lengths considered, the expression for the
capacitance of a long wire can be obtained from

Cwire ¼
Q

V0

; V0 
Q

2pe0l

Zl=2
dl

f
f0

W;
x

lD

� �
dx

x
: ð10Þ

Here the contribution to the voltage V0 at the center of
the wire, according to an expression similar to (4) and to
usual approximations, is assumed to come essentially
from charges laying on two symmetrical portions around
this position beyond a distance dl which is of the order of
the wire radius or so. One can check that in free space
where f/f0 = 1, one gets the same value for Cwire as is
obtained in (9) by setting dl = r/2 in (10). Obviously, we
can keep the same value for dl in the case with plasma

Figure 3. Capacitance of each monopole (left) of the wire boom and (right) of the double-probe
antennas versus the frequency normalized with respect to the plasma frequency, as a function of the
Debye length.
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whenever this distance is much shorter than the Debye
length; then the change will come only from the behavior
of the function f/f0. At frequencies approaching zero the
real part of this function tends to exp (�x/lD) [Béghin
and Kolesnikova, 1998], so the wire capacitance given
by (10) becomes

Cwire 
2pe0l

E1

r

2lD

� �
� E1

l

2lD

� � W � 1ð Þ; ð11Þ

where E1 is the exponential integral of the first order.
[24] When lD tends to infinity, we recover the free

space value as given by (9), but for any finite Debye
length the denominator in (11) is smaller than ln (l/r), so
the low-frequency capacitance is greater than its free
space value, in agreement with the code results plotted in
Figure 3. Moreover, since the contribution of charges at
large distances becomes negligible because of the second
exponential integral in (11), the influence of the S/C
body is less than in free space. This fact is confirmed by
the code outputs, which fit the analytic expression (11)
extremely well. For instance, for lD = 10 m the capac-
itance of a single wire boom is 250 pF as given by (11),
while the code gives 242 pF for the low-frequency
asymptotic value. Close to the resonance, antenna impe-
dances are much more difficult to estimate analytically,
and though this could be done, it is beyond the scope of
this paper. At frequencies well above the resonance the
capacitance obviously tends to its free space value, as is
shown also in Figure 3.
[25] Now, in series with the capacitance that is the

dominant part of the HF antenna impedance, there is a
small displacement resistance, which must be not con-
fused with the low-frequency Langmuir resistance. The
latter is due to a conduction current in parallel with the

HF impedance, while the series displacement resistance
is due to the thermal waves that are radiated when the
conducting surface reacts to the presence of electrons
nearby. In the equations this resistance corresponds to the
imaginary part of the plasma dielectric function f/f0, the
analytic expression for which is quite complicated
[Béghin, 1995]. However, this expression can be simpli-
fied at frequencies below the plasma frequency, reducing
to the so-called ‘‘screen function’’ which involves a
limited volume within a few Debye lengths of the source
[Béghin and Kolesnikova, 1998]. The low-frequency
imaginary part of f/f0 is given by

Im f=f0ð Þ  Wrffiffiffiffiffiffi
2p

p Fs rð Þ; W � 1ð Þ

Fs rð Þ ¼
X1
q¼0

1þ 2q ln r� y 2qþ 2ð Þ½ �f g r2q

2qþ 1ð Þ! ;

y nð Þ ¼ �gþ
Xn�1

k�1

1

k
; ð12Þ

where r is the normalized distance x/lD.
[26] By inserting (12) into an integral similar to (10)

we can estimate the antenna resistance, again assuming a
uniform charge distribution with a total charge mainly
determined by the capacitance. In the case of an object
smaller than lD, such as a small sphere, if we neglect the
influence of any other conductor far away from it, we can
use the first-order development of (12), which leads
immediately to

R0 ¼
1

4pe0wPlD

ffiffiffiffiffiffi
2p

p ¼ 0:92� 106ffiffiffiffiffi
Te

p ohm; W � 1ð Þ

ð13Þ

Figure 4. Resistance in ohm Hz units (see text) of each monopole (left) of the wire boom and
(right) of the double-probe antennas.
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where the unit for Te is kelvin (K). Expression (13) is
identical to that obtained by Meyer-Vernet and Perche
[1989], who also considered a Maxwellian plasma but
used a different approach aimed at estimating the thermal
noise generated by such a resistance. For an ideal double-
probe antenna with a tip-to-tip length much larger than
lD, the low-frequency resistance of the dipole would be
twice the individual value given by (13). For a double-
wire dipole the analytic estimate is slightly more
complicated, but it predicts that the resistance at the
low-frequency plateau should be about half of that of a
double-probe antenna with the same tip-to-tip length
whenever this length ranges around about 6–12 lD.
[27] The results obtained with our code are plotted in

Figure 4. For more generality, the values of resistance are
given as the product Rfp, which should be independent of
fp and depend only on lD. From (13) we get Rfp = 5.7 �
108/lD; hence the plateau values for each monopole of a
double-probe antenna should vary from 0.475 � 108 up
to 0.95 � 108 ohm Hz in the range of Debye length
considered. The values obtained by the code (Figure 4,
right) exhibit the expected behavior with the right order
of magnitude, but they are �30–40% smaller than the
analytic estimate above.
[28] Just above the plasma frequency the antenna

resistance exhibits a clear resonance which becomes
sharper as lD decreases, as was expected theoretically
and has been observed in space experiments, both by
active measurements of impedance and by passive mea-
surements of the spectrum of natural thermal noise [e.g.,
Meyer and Vernet, 1975; Maksimovic et al., 1995].

4.2. Mutual Impedance

[29] The measurement of the mutual impedance is
simulated by computing the signal induced on the
double-probe when the wire boom dipole is fed exactly

as for the self-impedance measurement. Thus both mea-
surements are closely associated in the same procedure,
as could be done experimentally. The amplitude and
phase obtained by the code are plotted in Figure 5. In
order to understand these results, we proceed as above
with an analytic estimation of the frequency response
below fp. Again, we assume a uniform charge distribu-
tion along each monopole of the wire boom antenna,
driven by the HF voltage V0, which is here half the
voltage feeding the dipole, so the induced voltage at the
electric center of one of the receiving probes is

V1 ¼ CwireV0

4pe0l

" Zd1þl

d1

f
f0

W;
x

lD

� �
dx

x

�
Zd2þl

d2

f
f0

W;
x

lD

� �
dx

x

#
; ð14Þ

where d1 is the distance (�2.5 m) between the tip of the
active shield of the wire boom and the electric center of
the receiving probe, this center being on the thin wire at
an estimated distance of �0.9 m outward from the puck
(Figure 2); l is the length of the active shield on each
monopole (�40 m); and d2 is the distance between the
feed point of the opposite active shield and the electric
center of the receiving probe (�45.5 m). Here, for
simplicity, we will use a constant value Cwire = 234 pF
for both the free space and the plasma conditions. As a
rough approximation, we assume that the entire receiving
probe is floating at the voltage given by (14) for a single
point. Then we get the following free space response:

V1

V0

¼ Cwire

4pe0l
ln

d2 d1 þ lð Þ
d1 d2 þ lð Þ

	 

¼ 0:116: ð15Þ

Figure 5. (left) Amplitude and (right) phase of the normalized mutual impedance between the
wire boom and double-probe dipoles, defined as the ratio between the induced HF voltage on each
probe (V1) and the voltage applied to its associated wire boom (V0).
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Moreover, the probe is loaded by the input capacitance of
the preamplifier (Cin � 4 pF). Therefore the dynamic
response will be reduced through the action of the
capacitance divider formed by Cprobe and Cin in series.
With Cprobe = 12.8 pF the free space response becomes
V1/V0 = 0.088, while the code (Figure 5, left) gives a
value quite close to this (0.074).
[30] In the plasma at low frequency, using the above

asymptotic expression f/f0 = exp (�x/lD), we get
from (14)

V1

V0

¼ Cwire

4pe0l
E1

d1

lD

� �
� E1

d1 þ l

lD

� �	

� E1

d2

lD

� �
þ E1

d2 þ l

lD

� �

; ð16Þ

which is significantly different from (15) because of the
behavior of the exponential integral function. The result
is to decrease the mutual impedance by a factor of �2.
For instance, for lD = 8 m we find from (16) that
jV1/V0j � 0.04 when the probe is floating and 0.03
when it is loaded by Cin. The value given by the code
(jV1/V0j = 0.032), as seen in Figure 5 (left), is very
close to this estimate.
[31] Another remarkable feature revealed by the code

is the pronounced minimum of jV1/V0j just below the
plasma frequency, which appears for a particular range of
Debye lengths (e.g., lD = 10–12 m, in Figure 5 (left)).
This feature can also be predicted by a simple analytic
estimation, using the asymptotic approximation for f/f0

at the plasma frequency [Béghin and Kolesnikova,1998],
which is

f
f0

W ¼ 1ð Þ  1þ x2

6l2
D

: ð17Þ

This states that the HF electric potential f created by a
single point charge is the sum of the free space potential
which decreases as 1/x with increasing distance, plus a
term that actually increases with increasing distance in
direct proportion to x; this second term is inversely
proportional to lD

2 . Hence the potential induced at the
surface of the receiving antenna results essentially from
the nearest portion of the emitting antenna for the free
space contribution and from the farthest portion for the
plasma contribution. Since the dipole is fed symmetri-
cally with a differential HF voltage, these two contribu-
tions have opposite phases, and it is their mutual
cancellation that produces the observed minimum in
the mutual impedance when the conditions are such that
their amplitudes are more or less equal.
[32] This effect may be estimated by putting the

expression (17) into (14), leading to

V1

V0

¼ Cwire

4pe0l

"
ln

l þ d1

d1

d2

l þ d2

� �
� l d2 � d1ð Þ

6l2
D

#
; W ¼ 1ð Þ;

ð18Þ

which gives the mutual impedance at the plasma
frequency with the same assumption as above, that is,
that each receiving probe takes the voltage at its electric
center. Then we get

V1

V0

� �
W¼1

¼ V1

V0

� �
free space

1� 11:4

lD

� �2
" #

: ð19Þ

This approximation predicts that the amplitude would be
strictly zero when lD = 11.4 m. However, we have
neglected the contribution of the imaginary part in (17),
which is significant at short distances [Béghin, 1995].
Nevertheless, since the imaginary part is small, the

Figure 6. (left) Amplitude and (right) phase variations of the effective length of the double-probe
dipole as a function of the frequency for different Debye lengths.
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amplitude can reach a sharp minimum at the plasma
frequency. This surprising prediction has been confirmed
by the flight test results, which are presented in section 5.
When lD increases well above this particular value, we
see from (18) and (19) that the response tends to the free
space value while the minimum is becoming shallower
progressively, which is confirmed by the code (not
shown in Figure 5).

4.3. Effective Length of the Double-Probe Antenna

[33] The amplitude and phase of the effective length
of the Cluster double-probe antenna, as defined in the
ways described in section 2 and as obtained by the
code, are plotted in Figure 6. The first comment is that
even in free space and on open circuit, i.e., with Zin
infinite in (1), the effective length lef is distinctly less
than the conventional tip-to-tip length l, as is shown in
Figure 1: The effect of the grounded outer shield of the
long boom reduces lef from 88 m down to 69 m. When
the probe is loaded by the input impedance of the
preamplifier (5 pF, 108 ohm in the case of Figure 6),
the acting effective length is reduced further, according
to (1) and (2), by the ratio Cprobe/(Cprobe + Cin), bringing
it down to �50 m. This is exactly what we get from the
code (Figure 6, left).
[34] For the antenna in the plasma, Figure 6 shows

only the acting effective length, which is the parameter
deemed most useful for interpreting natural wave mea-
surements. As expected, above about twice the plasma
frequency the effective length is almost equal to that in
free space in both amplitude and phase over the entire
range of Debye lengths. At lower frequencies we observe
a plateau for the amplitude, which lies between �52 and
53 m and depends slightly on lD, while the phase
exhibits a small shift that increases with decreasing
frequency and is due to the resistive part of the pream-
plifier input impedance.
[35] Close to the plasma frequency the effective length

exhibits the effect of the antenna resonance more and
more strongly as the Debye length decreases. This
behavior must be fully taken into account when inter-
preting the measured level of natural quasi-static emis-
sions, of the Langmuir type for instance. It is very
important to realize that the behavior we see here is
typical of any double-probe antenna: its effective length
is strongly influenced by the guards (i.e., the grounded
outer shields of the cables), especially in the vicinity of
the resonance [Béghin, 2002]. The situation is more
favorable with an ordinary double-wire dipole because
(1) its self-impedance is usually much smaller than the
load impedance and (2) the electric center of each
monopole lies near to the geometric center, more or less
independently of the plasma conditions so long as the
effective length is not greater than about 10–15 Debye
lengths. For that reason it would be unwise to compare

double-probe and double-wire dipole measurements
without a careful analysis of the above considerations.

5. Flight Test Results

[36] The wave measurement system installed on Clus-
ter was not designed for measuring the mutual coupling
between the wire boom and double-probe dipoles. Nev-
ertheless, by taking advantage of the flexibility of the
system we ran an unusual mode of joint operation
involving the relaxation sounder WHISPER [Décréau
et al., 1997] and the waveform receiver WBD [Gurnett et
al., 1997]. This was done with the wire boom dipole
used as the emitting antenna of the sounder and the
associated double-probe dipole used as the receiving
antenna. Unfortunately, among several hardware con-
straints which were unsatisfactory for making such a
measurement, the main one was the high level of the
signal applied by WHISPER to the emitting dipole,
which could not be reduced below 50 V (peak amplitude
of sine wave). According to our simulation this strong
signal would have induced �3.6 V at the receiver input
in free space conditions. Disregarding possible nonlinear
effects in the surrounding plasma, this level corresponds
nearly to the nominal upper limit of the dynamic range
for the WBD receiver above which saturation and
clipping occur. Therefore we will present here a prelim-
inary interpretation of the results, using only data that lay
marginally inside the normal linear range of the instru-
ment; only the amplitude of the mutual impedance
response, without the phase, could be derived in this
preliminary investigation.
[37] For precise comparison between the theoretical

modeling and the flight data, if such a mode of operation
had been planned originally, the ideal procedure would
have been to calibrate the entire loop transfer function of
the WHISPER-WBD hardware alone (independently
from the external medium) during the ground operations
and to make similar calibrations periodically in orbit. For
lack of that, we have had to construct a dedicated
calibration function, which contains several factors of
uncertainty.
[38] Before we present the results and comment on the

confidence levels we show the calibration data, which
after a careful investigation have been used for this
unusual mode of operation. The normalized mutual
impedance response, as defined in section 4.2, is the
ratio of the received signal Vr to the emitted signal Ve,
and it is expressed here by

Vr

Ve

¼ N

Ve

g

a b
; ð20Þ

where N is the 8-bit peak-to-peak raw amplitude (0–255)
of the waveform measured in the WBD data files for a
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given frequency step of the WHISPER emission; a and b
are the normalized transfer functions versus frequency of
the transmitter and of the receiver, respectively, in both
linear and dB scales (Figure 7); g is the 0 dB hardware
transfer function of the receiver, defined as a ratio
between the amplitude of the HF voltage received on the
double-probe antenna and the corresponding 8-bit peak-
to-peak output count; and Ve is the 0 dB nominal
amplitude of the voltage fed to the transmitting dipole
(50 V). In the absence of in-flight calibration we take the
conventional value of g, which corresponds to an electric
field of amplitude 36.9 mV m�1, the largest amplitude
that can be measured by the WBD in the 77 kHz
bandwidth mode without clipping. This field was
calculated by assuming arbitrarily an effective antenna
length of 88 m, leading to g = 36.9 � 10�3 (88/255) =
1.273 10�2 V per count unit.
[39] We emphasize that precise calibration is needed

for this experiment; it requires an absolute accuracy of
1 dB or even better for fitting the experimental data to
the theoretical curves produced by the modeling. Con-
sidering the quality and the reproducibility of the raw
data during our flight test, which always appeared as
pure sine waves, we find no evidence for any nonlinear
effects in the surrounding plasma. We think that the
above level of accuracy was achieved for the data
shown hereafter, except where otherwise stated, as,
for instance, for some short portions of clipped signals.
[40] The test was performed on board SC 1 (Rumba)

on two occasions in sequences of 15 mn duration each.

The first test was made on 11 April 2004 between 0045
and 0100 UT in the magnetosheath region (L = 12.70,
magnetic local time (MLT) is 0964), and the second was
made on 14 May 2004 between 2210 and 2225 UT in the
preshock solar wind region (L = 33.15, MLT = 0820).
Typical samples of the mutual impedance response are
plotted in Figure 8 together with the theoretical model
curves that fit the data best. At a first glance, the
Maxwellian model seems to fit the observed responses
very well for frequencies around and above the plasma
frequency (W = 1). During the time interval (0045:30–
0047:30 UT), corresponding to the sample plotted in
Figure 8 (left), the plasma resonance seen simultaneously
by WHISPER (in the sounder mode on the double-probe
antenna perpendicular to the one used for our tests)
and by WBD (on the one that we used), ranged �44–
45 kHz, i.e., ne = 24–25 cm�3. For the sample from
the second pass (2210:30–2211:12 UT), corresponding
to the plot in Figure 8 (right), these values were
36.75–37.75 kHz and 16.7–17.6 cm�3, respectively.
[41] As predicted by the model, we see in both cases a

clear minimum just below W = 1, and an apparent value
of the Debye length might be deduced from the fit with
the model above that frequency. One can retain lD �
11 m for the first pass and 10 m for the second one. From
the well-known relationship between the electron tem-
perature, the Debye length, and the plasma frequency,
which is

Te ¼ 2:6� 10�6 fplD

� �2 ð21Þ

in the SI unit system, and knowing that 1 eV = 11500 K,
we deduce from the above values an electron temperature
of about 6.2 � 105 K (i.e., 54 eV) for the first pass and
3.6 � 105 K (i.e., 31 eV) for the second one. Such high
temperatures seem quite unusual in these regions,
especially a value above 30 eV in the preshock solar
wind region. Moreover, the low-frequency response (W <
0.8) does not fit this model at all; to make it fit, the
Debye length would have to be much larger than 10 m,
leading to correspondingly greater temperatures. In
addition, the two samples exhibit quite different shapes
around the minimum, whereas the apparent Debye
lengths inferred from the HF response are quite similar.
The first possible cause of discrepancy with respect to
our model could be that the condition of plasma isotropy
is not satisfied. Nevertheless, this does not seem to be the
case because of the absence of a significant spin
modulation in the mutual impedance response. The
measured average amplitude of the steady magnetic field
lies around 28.5 nT in the first region and 8 nT in the
second one. These values correspond to a ratio of the
cyclotron frequency to the plasma frequency of about
2 � 10�2 and 5 � 10�3, respectively, which is too
small to account for the observed discrepancy.

Figure 7. Calibration curves for the mutual impedance
mode between WHISPER and WBD. Note that a is the
transfer function of the transmitter normalized to the
nominal amplitude of 50 V applied to the wire boom
dipole (H. Seran, private communication, May 2004)
and b is the WBD normalized frequency response in the
77 kHz bandwidth.
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[42] After having ruled out all possible hardware or
calibration artefacts that could produce such an effect, we
concluded that a simple Maxwellian distribution would
not suffice to account for the observations. Since the
present version of our code does not provide for a non-
Maxwellian distribution, we have developed in the
meantime an analytic approximation assuming an elec-
tron distribution with two Maxwellian components: one
cold, which is the major one, and the other hot. A similar
analytic approach has been proposed in case of thermal
noise induced by different kinds of non-Maxwellian
plasmas [Chateau and Meyer-Vernet, 1991]; however,
since their study is applicable to the real part only of the
impedances, we will proceed with a different way. Here a
two-population distribution enables us to account satis-
factorily for the observations, at least to a first order as
presented below.
[43] In order to derive the function f/f0 in the case of a

two-component distribution we must introduce two new
parameters. They are m = nh/nc, the ratio between the hot
and cold electron densities, and t = Th/Tc, the ratio
between the hot and cold temperatures. The global
plasma frequency is still fp, while lDc is now the Debye
length of the cold population, which we will take here as
a reference. From these we define the following normal-
ized parameters which will be used hereafter:

W ¼ f

fp
; Wc ¼

f

fc
W

ffiffiffiffiffiffiffiffiffiffiffi
1þ m

p
; Wh ¼ W

ffiffiffiffiffiffiffiffiffiffiffi
1þ m
m

s
;

lDh ¼ lDc

ffiffiffi
t
m

r
; m < 1; t > 1ð Þ; ð22Þ

where fc and fh are the plasma frequencies of the cold and
hot populations, respectively. Starting from the basic
equations given by Béghin [1995], the function f/f0 for
a pulsating point source is again given by

f
f0

¼ 2

p
lim

Imw)0

Z0
�1

sin kr

kr

dk

el k;wð Þ ; ð23Þ

where eo is the free space permittivity, k is the
wavenumber, el (k, w) is the longitudinal dielectric
permittivity, and w = 2pf is the complex frequency,
bearing in mind that el (k, w) is the limit reached when
the small negative imaginary part of w tends to zero,
corresponding to the steady state of the source after a
transient growing phase. In the quasi-static approxima-
tion, the dispersion equation is el (k, w) = 0 which reads
here

el k;wð Þ ¼ 1� z2c

W2
c

Z 0 zcð Þ � z2h

W2
h

Z 0 zhð Þ ¼ 0; ð24Þ

where Z0 is the first derivative of the dispersion function
Z(z) for a Maxwellian plasma [Fried and Conte, 1961],
the definition of which is

Z zð Þ ¼ 1ffiffiffi
p

p
Z1
�1

e�x2

x� z
dx Im z > 0ð Þ ð25Þ

with an analytic continuation for Im z � 0; the variable
quantity z is the ratio between the wave phase velocity

Figure 8. Samples of experimental response (error bar plots) of the mutual impedance
WHISPER/WBD measured (left) on 11 April 2004 in the magnetosheath and (right) on 14 May
2004 in the preshock solar wind region. Data are plotted together with the theoretical responses
given by both the Maxwellian model (solid lines) and the two-component model at Wh = 1
(asterisks), with m = 0.5, t = 2 (top asterisk), and t = 4 (bottom asterisk) for the first pass and
with t = 9, m = 0.2 (top asterisk), and m = 0.3 (bottom asterisk) for the second pass.
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and the thermal velocity of the relevant distribution.
Hence, using the other parameters defined in (22), we get

zc ¼
Wcffiffiffi
2

p
klDc

; zh ¼
zcffiffiffi
t

p : ð26Þ

[44] In the following, we will consider zc alone as the
variable quantity for a given value of t, since zh is just
proportional to it. The function 1/el can be expanded in
the form of an infinite Mittag-Leffler series, involving
the principal parts at all of its poles zn in the complex
plane. From (24) we get 1/el = 1 for zc = 0, so we can
write the Mittag-Leffler series as

1

el zcð Þ ¼ 1þ
X1
nj j

bn

zn
þ bn

zc � zn

� �
; bn ¼

1
del
dz

� �
z¼zn

; ð27Þ

where bn is the residue at the pole of order n, and the
ratio bn/zn is known as the excitation coefficient of forced
oscillations. As in the case of a single Maxwellian, there
are three families of poles, namely, the purely imaginary
poles, the usual Landau waves above fp, and the high-
order poles described in detail by Derfler and Simonen
[1969]. These are usually plotted in the complex plane of
k or of its normalized value K = klDc rather than of z.
The rigorous approach should consist of introducing the
expression (27) in (23), which amounts to adding
successively the contributions of (1) the free space term,
(2) the dominant poles, and (3) the high-order poles.
[45] A brief analysis of the solutions of (24) is pre-

sented in Appendix A, where we give the analytic
expression (A8) for the excitation coefficients. It is also
shown that for frequencies in a range around the global
plasma frequency the contribution of the main Landau
waves reduces to the same value as for a single Maxwel-
lian distribution, provided that we consider a ‘‘hybrid’’
Debye length as given by (A3). This remark applies
above W � 1 to the theoretical curves that are compared
with the flight test results in Figure 8. In this instance, we
have to consider the Debye lengths (10 and 11 m) as
‘‘hybrid’’ values, assuming that the distribution is not a
single Maxwellian. A similar approximation applies to
the evanescent waves at low frequencies. The problem
then is to decide which values of the adjustable param-
eters m and t should be adopted in our two-component
model. We will estimate these two parameters by trying
to fit a part of the low-frequency response, which
deviates significantly from the curve for the value of
lD that yields the best fit with the response curve at
higher frequencies.
[46] For this purpose, we will derive an expression for

the mutual impedance at low frequency by using an
analytic approximation similar to the so-called Landau
wave approximation [e.g., Chasseriaux et al., 1972]. In

the single Maxwellian case this approximation appears to
be quite satisfactory at large distance when compared to
the exact solution [Béghin, 1995]. Here we will use
instead a short-distance approximation which is more
suited to our specific conditions. Then, we will compare
these estimates with data from the Plasma Electron and
Current Experiment (PEACE), which measures the three-
dimensional velocity distribution of electrons in the
energy range from 0.6 eV to 26 keV during one spin
period of the spacecraft [Johnstone et al., 1997].
[47] In the usual approximation one assumes that

the induced potential at several Debye lengths from the
source is the sum of two contributions, one from the
main Landau poles and the other from the cold plasma
term (i.e., Te � 0). However, it has been proved in the
case of a single Maxwellian distribution [Béghin, 1995]
that the contribution of the infinite series of high-order
poles at large values of z (representing waves with large
phase velocities) is not negligible, contrary to what is
generally believed. In reality, this contribution tends
asymptotically at large distances to 25% of the actual
cold plasma contribution, in which it becomes included
implicitly. In these conditions the contribution of the
cold plasma is still 1/ec, which validates the above
approximation. In the case of a two-component distri-
bution, since we are changing essentially the tail of the
distribution, it is easy to understand that the transition
point in particle velocity space, where the cold and hot
populations are equally dense, must play an important
role in the contribution of the high-order poles. For two
Maxwellian distributions, denoted by the subscript i = 1
or 2, both of which obey the Boltzmann law

fi vð Þ ¼ ni
me

2pKTi

	 
3=2
exp � mev

2

2KTi

	 

; ð28Þ

the transition point occurs for a kinetic energy given by

1

2
mev

2 ¼ KTc ln z
1� t�1

; z ¼ t3=2

m
; ð29Þ

where K is the Boltzmann’s constant and ln z is a
parameter that governs the series of high-order poles (see
Appendix A). Thus the change observed at low
frequencies in the mutual impedance response is
expected to come essentially from the contribution of
these high-order poles (Kjnj>3). As long as we consider a
frequency much smaller than the global plasma
frequency, as for instance the plasma frequency of the
hot population, and distances much shorter than the
wavelength of these waves, it is shown in Appendix A
that their global contribution may simply be estimated
from the sum of their excitation coefficients defined in
(27). In these conditions the modified Landau wave
approximation for short distances leads to a quite simple
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expression for f/f0 given by (A14). The latter reduces
simply to the free space term plus a contribution
determined only by the evanescent poles. Finally, by
using the same method as for (15) and (16) the analytic
expression for the mutual impedance response becomes

V1

V0

¼ V1

V0

	 

f

1þ
X2
�2

bn

zn
� 2

b�2

z�2

 

� E1 d1k�2ð Þ � E1 d1 þ lð Þk�2½ � � E1 d2k�2ð Þ þ E1 d2 þ lð Þk�2½ �

ln
d2 d1 þ lð Þ
d1 d2 þ lð Þ

	 

�

ð30Þ

where the subscript f refers to the free space response and
k�2 is the wave number of the main imaginary pole z�2.
The procedure consists first of computing the two purely
imaginary poles at Wh = 1 from (24), then deducing their
excitation coefficient from (A8) and the value of k�2

from (26).
[48] In this preliminary investigation we have consid-

ered the possible ranges of variation for the two param-
eters m (from 0.1 to 1) and t (from 2 to 10) in order to
check if this simple model would allow us to explain the
observations. The best fit obtained for each of the two
passes is shown by the asterisks in Figure 8. It was
expected that the plasma conditions would be different in

the two regions where the tests were performed, but in
fact, the ‘‘hybrid’’ Debye length (10–11 m) and the total
electron density (24–18 cm�3) are quite similar. Never-
theless, our estimate leads to t � 2 and m � 0.5 for the
pass on 11 April (Figure 8, left) in the magnetosheath
and to t � 9 and m � 0.2 for the pass on 14 May
(Figure 8, right) in the preshock region. These values
correspond to nc = 16 cm�3, Tc � 39 eV, nh = 8 cm�3,
and Th� 79 eV for the first pass, assuming l0D = 11 m and
nc = 14 cm�3; and Tc � 12 eV, nh = 2.7 cm�3, and
Th � 108 eV for the second one with l0D = 10 m. As
the two measurements were performed more than
1 month apart, it would be not worth our while to
comment in more detail on to the geophysical meaning
of such different distributions especially as this would
be beyond the scope of this paper.
[49] The next step was to compare the above results

with the measurements of the electron flux made by the
experiment PEACE. The shape of the observed electron
energy distribution is plotted in Figure 9 for the relevant
time periods on each pass as a cut along the directions
parallel and antiparallel to the magnetic field. In the
magnetosheath the distribution is clearly of the flattop
type, which is a common occurrence in that region [e.g.,
Feldman et al., 1982]. The electron density, deduced as
the zero-order moment of the distribution function
using the Queen (Mary) Truncated Moments Corrector

Figure 9. Cuts of the electron distribution function in the parallel and antiparallel directions as
measured by the PEACE experiment during the two sample tests of mutual impedance. The solid
and thin dashed lines correspond to data taken at �1 min intervals, and the thick dashed line is the
two-component distribution derived from the analytic model.
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(QTMC) code [Génot and Schwartz, 2004], is found to
be about 24–25 cm�3, with an average of 38–39 eV
for the parallel and perpendicular temperatures. This
value of the total density is the same as obtained from
our active experiment, and the temperature is that of the
major constituent derived from our two-component
distribution model. In Figure 9 (left) we have plotted
the combined, two-component distribution function
alongside the PEACE data, and we judge the fit for
this pass to be quite satisfactory.
[50] A similar comparison for the second pass

(Figure 9, right) is less satisfactory. The best estimate
of the zero-order moment from the PEACE data for this
sample, using the actual value of the S/C potential (+2.9
to 3.9 V) obtained from the Electric Field and Wave
experiment [Gustafsson et al., 1997], leads to an average
electron density of 13–15 cm�3, which is the same as
our estimate of the major component deduced from the
mutual impedance measurement but slightly lower than
the total density deduced from the plasma resonance.
However, the shape of the distribution measured by
PEACE, as plotted in Figure 9 (right), is significantly
different from that of our analytic model. The PEACE’s
data could fit a two-component distribution representing
a major constituent with an electron density of 13–
15 cm�3 and a temperature of 6.5–8 eV, plus a weak
suprathermal component with a density of �0.1 cm�3

and a temperature of 80 eV. Except for a good agreement
on the density of the cold population with a more or less
compatible temperature, it appears either that the density
of the suprathermal component seen by PEACE has been
underestimated or, more likely, that the one deduced
from the mutual impedance has been overestimated.
[51] Indeed, because of the limitations of our analytic

approximation we cannot rule out the possible impor-
tance of other secondary effects that have been neglected
in this preliminary interpretation, for instance, the effect
of bulk plasma drift in the S/C reference frame, which is
significant in this case, with a velocity of �500 km s�1.
Other deviations from an isotropic distribution were seen
by PEACE on this second pass: a temperature anisotropy
of the order of 20% between the directions perpendicular
and parallel to the steady magnetic field and an asym-
metry of the distribution function in the plasma reference
frame, which is the signature of a heat flux in the
antiparallel direction. However, these last two deviations
are believed to have only a minor effect on the mutual
impedance response compared to the drift effect. On the
other hand, in a tenuous plasma both experiments may be
more sensitive to the nearly constant flow of photo-
electrons emitted from and impacting the S/C body than
they are in a dense plasma.
[52] Regardless of the respective constraints of each

measurement which appeared clearly in this preliminary
test, the complementarity of both experiments encour-

ages us to pursue such comparative studies, specifically
in order to improve our modeling of electric antennas in
complex plasma conditions in view of geophysical
applications.

6. Conclusion

[53] The aim of this paper was to present an exhaustive
analysis of the present state of art for modeling of electric
antennas in a kinetic space plasma. Though our method is
based on restrictive hypotheses, it remains to date one of
the most advanced approaches for modeling long electric
antennas in space plasmas. Most of the physical mecha-
nisms are well understood as a result of this study, and it
now appears that the design of the Cluster antennas,
which has evolved from long experience, is well suited
to the plasma environment in the HF domain considered
here. We believe that the main electric characteristics
deduced from our model are applicable to the equivalent
circuit of these antennas. We recommend in particular that
our evaluation of the actual effective length, as plotted in
Figure 6, should be used instead of the physical length
whenever accurate values of amplitude and phase of HF
electric field components are needed.
[54] The successful test in flight of the mutual imped-

ance measurement, performed in April and May 2004,
has globally validated our modeling. A first-order fit
between observed and theoretical curves, obtained not
only with the absolute amplitude but also with the
shape, allows us indeed to deduce the electron density
from the frequency of the plasma resonance and the
average electron temperature from an apparent Debye
length. However, the test has revealed one important
limitation coming from our initial assumption of an
isotropic Maxwellian electron distribution. Since the
mutual impedance response does not exhibit any sig-
nificant anisotropy, which would have been revealed
by perturbations repeating with the spin period, we
believe that the discrepancy between the observed low-
frequency response and that of the basic model must
be the signature of a non-Maxwellian distribution. This
assumption is broadly confirmed by the data from the
experiment PEACE, which provides the energy distri-
bution of electrons impacting the detectors. A rough
analytic approximation based on an equivalent two-
component electron distribution allows us to account
for the anomaly in the low-frequency response of the
mutual impedance.
[55] This simple model allowed us to estimate the

proportions of both components, though such estimates
are found to be in better agreement with the PEACE data
for the first pass than for the second one. We hope that
further investigation considering additional secondary
effects, such as those due to a bulk plasma drift, will

RS6008 BÉGHIN ET AL.: MODELING AND TESTING CLUSTER’S ANTENNAS

15 of 18

RS6008



enable us to obtain better agreement between the plasma
parameters derived from these different techniques. We
must point out that since we have restricted our approx-
imation to the response in a small range around the
supposed plasma frequency of the minor component, we
do not take advantage of all the information contained in
the entire range of frequency. Therefore further develop-
ment of the numerical code will necessarily include the
full kinetic treatment for a non-Maxwellian distribution
and/or for a drifting plasma in order to confirm the above
speculations.

Appendix A

[56] Let us consider first the solution of (24) for the
main Landau poles (z1 and z�2) around fp, using here the
same notation as by Béghin [1995]. For W ^ 1, we are
expecting the poles to lie close to the real axis, such as
jzj ! /, i.e., jkj ! 0, so we can use the following
asymptotic development:

z2Z 0 zð Þ ¼ 1� 4iz3
ffiffiffi
p

p
e�z2 þ 2

2z2
þ 15

4z4
þ . . . ;

� zj j � 1; Im zð Þ < 0ð Þ: ðA1Þ

As a first-order approximation, and assuming a low
damping rate by neglecting the imaginary part in (A1),
we get from (22) and (24)

el  1� 1

W2
� 3

2z2cW
2
c

� 3mt
2z2cW

2
c

; W  1ð Þ; ðA2Þ

which is the same as the conventional Landau dispersion
equation, albeit involving a ‘‘hybrid’’ Debye length
given by

l0
D ¼ lDc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ mt
1þ m

s
; W  1ð Þ: ðA3Þ

[57] For frequencies just below fp, as long as jzj � 1,
equations (A2) and (A3) are still valid, but zc

2 now takes
a very large real negative value, leading to the usual
evanescent pole z�2 corresponding to the wave number
k�2, which is nearly zero on the negative imaginary
axis. However, at low frequencies when W ) 0, the
modulus of z�2 decreases rapidly, so we can use the
power series for Z0, the first terms of which are

Z 0 zð Þ  �2þ 4z2 � 2iz
ffiffiffi
p

p
e�z2 ; zj j � 1ð Þ: ðA4Þ

Then (24) becomes

el  1þ 2z2c

W2
c

1þ m
t

h i
; W ) 0ð Þ; ðA5Þ

which is the same as the dispersion equation for the
evanescent waves (k2 lD = I and k�2 lD = �i) of a single
Maxwellian distribution, provided that we introduce a
new hybrid Debye length given in this case by

l00
D ¼ lDc

ffiffiffiffiffiffiffiffiffiffiffi
t

tþ m

r
; W ) 0ð Þ: ðA6Þ

As long as we are considering m/t � 1, the above
dispersion equation (A5) does not present any significant
difference with respect to the case of a single
Maxwellian. In the experimental conditions of the tests
the very low frequency response of the mutual
impedance mode was not observable below W � 0.2,
so we are not able to check the validity of the above
asymptotic equations for W ! 0. Accordingly, we will
limit our analysis to a range of low frequencies around
the plasma frequency of the minor constituent, i.e., Wh �
1. In order to compute the mutual impedance response at
low frequencies we need first to evaluate the function f/
f0 which is derived from (23) and (27) as

f
f0

¼ 1þ
X1
nj j

bn

zcn
� 2

p

X1
nj j

bn

zcn

Z1
0

sin x dx

xþ Knr
; ðA7Þ

where the excitation coefficient, obtained from (24) and
(27) by using the properties of the function Z and its
derivatives, is

bn

zcn
¼ 1

2z2cn
t 1� tþm

W2 1þmð Þ

h i
� 3þ 2z4cn t�1ð Þ

tW2 1þmð Þ Z
0 zcnð Þ

: ðA8Þ

When t tends to 1, the denominator in (A8) becomes
simply (2z2ec � 3), which is the same expression as for a
single Maxwellian [Béghin, 1995], and this is true
whatever m may be. One can check that the same is true
for any finite value of t, when we set m = 0 in the
dispersion equation (24) and in (A8). This demonstrates
that the problem reverts to the one with a single
Maxwellian distribution if both populations have the
same temperature or if the density of the hot population
is zero.
[58] The solution of the dispersion equation (24) at

Wh = 1 for the two evanescent poles z�2 and z2 is quite
easy to obtain analytically since zc and Z0 are purely
imaginary. We use the usual Landau wave approximation
in order to evaluate the real parts of their contributions to
the last right-hand term of (A7) as we did in the single
Maxwellian case [Béghin, 1995]. This is

D
f
f0

� �
z 2j j

 �2
b�2

z�2

exp� K �2ð Þ
�� ��r; W  Whð Þ; ðA9Þ
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where K�2 = k�2 lDc and r is the normalized distance r =
r/lDc.
[59] The last contribution that needs to be considered

is that of the high-order waves, which are expected to
have large phase velocities. Here we can use the first
two terms of the expansion (A1); then we rewrite (24)
as

el  ec þ 4i
ffiffiffi
p

p z3c

W2
c

e�z2c þ 4i
ffiffiffi
p

p z3c

W2
c

e �z2c=tð Þ
z

¼ 0;

zj j � 1ð Þ; ðA10Þ

where z = t3/2/m is the parameter that determines the
transition point between both populations, as we showed
in section 5. The above dispersion equation is multi-
valued because of the exponential terms, as it is for a
single Maxwellian [Derfler and Simonen, 1969]. The
solutions form an infinite series of poles arranged in pairs
symmetric with respect to the imaginary axis in a such
way that for any pair with subscript q the poles must
satisfy the following relationship: zq = �z*�q. The
distribution of these high-order poles in the negative
imaginary half plane is now much more complicated
than it is with the single Maxwellian, so we will not
discuss it in greater detail in this paper. We take note only
that all of them obey the following condition deduced
from (A10):

z2cn �
t

t� 1
ln zþ ipsgn nð Þ 2 nj j � 1ð Þ½ �; nj j � 1ð Þ:

ðA11Þ

The above equation states that these waves have a phase
velocity larger than at least

p
ln z times the thermal

velocity of the cold population; that is, they involve
electrons beyond the transition point. The global
contribution of these poles in (A7) can be written as

D
f
f0

� �
zcn� 3j j

¼ � 2

p

Z1
0

X1
nj j¼3

bn

zcn þ
rW
x
ffiffi
2

p

sin x dx

x
: ðA12Þ

Here we consider a low-frequency range such as W � 1
(e.g., Wh = 1) and distances short compared to the
wavelengths for the high-order poles, so we can evaluate
the integral in (A12) simply as

D
f
f0

� �
zcn� 3j j

 �
X1
nj j¼3

bn

zcn
;
rWh

zcn
ffiffiffi
2

p � 1: ðA13Þ

Returning to (A7), we add this result to the contribution
of the evanescent poles given by (A9), and finally, we
obtain the following approximate expression:

f
f0

 1þ
X2
�2

bn

zcn
� 2

b�2

z�2

exp� K �2ð Þ
�� ��r; W  Whð Þ;

ðA14Þ
which reduces the problem to the relatively simple one of
determining the properties of the dominant poles.
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