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ABSTRACT

The Ramaty High Enerqy Solar Spectroscopic Imager (RHESSI ) has yielded solar flare hard X-ray spectra with
unprecedented resolution, enabling reconstruction of mean source electron energy spectra F(E) by deconvolution of
photon energy spectra /(¢). While various algorithms have been proposed, the strengths and weaknesses of each have
yet to be explored in a systematic fashion. For real data F(E) is unknown, so these various algorithms must instead
be tested on simulated data for which the “true” F(E) is known. Accordingly, we devised several forms of F(E)
with “interesting” features, generated the corresponding (noise-added) I(¢), and recovered F(E) using a variety of
algorithms, including zero- and first-order Tikhonov regularizations, triangular matrix row elimination, and forward
fitting using a parametric form consisting of'a double power law with low/ high cutoffs plus an isothermal component.
All inversion methods reconstructed the general magnitude and form of F (E ) well, suffermg only from (1) blurring
of sharp features and (2) poor recovery at low electron energies E in cases in which F (E) was positive and large.
Addition of a steep thermal component at low E did not prevent recovery of features at higher values of E. Forward
fitting did recover large-scale forms and features well but, inevitably, failed to recover local features not expressible
within the parametric used. This confirms that inversions are the most dependable way to discover such features.
However, examination of the pattern of /(¢) residuals can suggest feature locations and so help refine the parametric
form used. Since quite smooth F(£) forms do reproduce the observed /() form with relatively small residuals, it ap-

pears that sharp features may be uncommon in actual flares.

Subject headings: methods: data analysis — Sun: flares — Sun: X-rays, gamma rays

1. INTRODUCTION

Much of the information on electrons accelerated in solar
flares must come from indirect (remote sensing) analysis of the
bremsstrahlung radiation signature produced by the accelerated
electrons. The quantity of central interest is the electron phase
space distribution function f;(v, r) [electrons cm—3 (cm s—1)=3].
However, for an isotropic cross section (a reasonable approxi-
mation for bremsstrahlung emission at nonrelativistic energies;
see, however, Massone et al. 2004), the bremsstrahlung produc-
tion rate is independent of the direction of the electron velocity
vector, and hence we need consider only the speed distribution
(v, ), which has the units of electrons cm—3 (cms~')~'. We can
therefore define the “energy flux spectrum” F(E) (electrons
cm~2 57! keV~!) through the relation

F(E, r)dE = of (v, r) dv. (1)
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Since dE = m,vdv, where m, is the electron mass, we see that
F(E,r) and f(v, r) differ only by a multiplicative constant:
FE,r) = f(v,r)/m,.

In determining the solar accelerated electron spectrum through
its bremsstrahlung signature at the Earth, we observe in practice
only the volume-integrated hard X-ray photon spectrum /(¢)
(photons cm~2 s~! keV ") at the Earth. For the optically thin
conditions pertinent to the problem at hand, /(¢) is a convolu-
tion of the electron flux spectrum F(E, r) with the proton target
density n(r) and the (solid-angle-averaged, per target particle)
bremsstrahlung cross section Q(e, E') for production of a photon
of energy € by an electron of energy E. In such cases, the only
quantity that can be inferred unambiguously from the observa-
tions is the (density-weighted volumetric) “mean source electron
spectrum” F(E)= [F(E,rn(r)dV/[ n(r)dV (electrons cm~>

~! keV~!), where dVis an elementary element of volume. For-
mally, the observed photon spectrum /() is related to F(E) and
O(e, E) by the relation

10 =4 | FE)0 E)E, @)

where the mean density 7 = (1/V) [ n(r)dV and R is the Earth-
Sun distance (Brown 1971; Brown et al. 2003). Extracting in-
formation on F(E) from observations of I(¢) involves either
(1) inversion of integral equation (2)—i.e., finding the best model-
free nonparametric fit to the data subject to constraints such as
smoothness, or (2) forward fitting of a parametric model form of
F(E) to the observed /(¢) to find the best-fit parameter values for
that model.

Both forward-fit and inversion methods are limited in the extent
to which they can recover features in F'(E ). Regularized inversion
techniques (e.g., Piana 1994; Piana & Brown 1998; Kontar et al.
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2004) reduce the level of spurious noise in F(E) by requiring
overall smoothness in the solution; this inevitably smears sharp
features in F(E) and reduces their detectability. In the matrix
row elimination procedure, followed by Johns & Lin (1992) in
their solution of equation (2), regularization is replaced by ju-
dicious energy binning (i.e., local smoothing) of the data before
inversion to avoid unacceptably noisy F(E); the necessary pre-
smoothing of the data, and widening of the solution bins, means
again that sharp features escape detection because of the need to
suppress noise. In the forward fitting of F(E) (e.g., Holman et al.
2003), the (generally) small number of parameters utilized, and
the corresponding severe constraints on the allowable form of
F(E), imply that spectral features outwith the scope of the pa-
rametric forms used cannot be detected.

With the high-resolution (Ae < 1 keV) hard X-ray spectra now
available from the Reuven Ramaty High Enerqgy Solar Spectro-
scopic Imager (RHESSI; Lin et al. 2002), it is important to assess
the relative merits of the various approaches by which F(E) can
be determined. Since we do not know ab initio the true form of
F(E), it follows that analysis of actual solar flare data is not a
viable way of testing the appropriateness, strengths, or weak-
nesses of any given method. Rather, what is required is testing
on simulated data for which F(E) is known. Thus, here we in-
vent forms of F(E) with interesting features in them, generate the
corresponding /(¢) forms through forward application of equa-
tion (2) and addition of a realistic level of data noise, then recover
F(E) by the various available methods and compare them with
the originally assumed F(E) to provide a measure of the fidelity
and accuracy of each method.

For such an exercise to have objective validity, it is important
that the researchers seeking to recover the form of F(E ) from the
synthesized spectra /(€) have no knowledge of the input form of
F(E). To this end, the forms of F(E) were generated by one of
the authors (J. C. B.) and provided to another (A. G. E.), who gen-
erated the corresponding (noisy) data /(e) and then distributed
these alone to the other authors. These latter authors, working in
the blind, used their reconstruction algorithms to generate forms
of F(E), which were then sent to A. G. E. for comparison with
the original forms. Only after F(E) spectra had been recovered
by all methods in all cases were the results shared for discussion.

In § 2 we provide an overview of the process by which the syn-
thetic spectra (both electron and photon) are generated. In § 3 we
discuss the general principles of the various methodologies used
and what one might anticipate as their likely strengths and weak-
nesses. In § 4 we present the forms of F(E) used and the rationale
behind them. In § 5 we show the forms of F(E) reconstructed by
the various recovery techniques and compare them critically with
the originally supplied forms. In § 6 we present our conclusions.

2. GENERATION OF THE SYNTHETIC DATA

For the proposed exercise to be credible and of practical value,
it is important that (1) the various participants use exactly the
same cross section Q(e, E) in their analysis, and (2) that the syn-
thetic spectra generated have a realistic level of noise comparable
with typical large solar flare events as detected by current instru-
mentation such as RHESSI. After much discussion, we agreed
to (1) use an isotropic form of the bremsstrahlung cross section,
viz., the relativistic 3BN cross section of Koch & Motz (1959)
and (2) ignore modifications to the hard X-ray spectrum resulting
from photospheric albedo backscatter (e.g., Langer & Petrosian
1977; Bai & Ramaty 1978), the addition of which effectively
changes the form of Q(¢, E) to a form Qe (e, E, F[E]). Al-
though the resulting nonlinearity of the basic problem can be
circumvented by a Green’s function method (Kontar et al. 2006),

Vol. 643

we do not include such considerations here, since our concern is
with comparing the reconstruction algorithms in an ideal situ-
ation where the true primary photon spectrum is known.

The top left panel of Figure 1 shows photon spectra, character-
ized by relatively flat spectral forms at all energies, generated from
three of the assumed mean source electron spectral forms (bottom
left panel). These have all been scaled to produce ~30 photons
cm~2 57! keV~! at the Earth at 30 keV. While the photon spectra
look smooth and broadly similar in form, the electron spectra used
to generate them are enormously different. This is equally true of
the additional three cases shown in the right panels of Figure 1,
which are all characterized by fairly steep components at the lower
end of the observed energy range; these components are intended
to represent thermal sources with temperatures significantly lower
than the photon energy range under observation. It is apparent that
the various features exhibited by the electron spectra are heavily
filtered by the bremsstrahlung cross section so that all the photon
spectra are, at first sight, rather featureless. Nevertheless, infor-
mation regarding the electron spectra is contained in the details of
these photon spectral forms, and it is the primary purpose of this
paper to evaluate the ability of the various reconstruction algo-
rithms to extract this information from these details.

3. RECOVERY METHODOLOGIES
3.1. Basics

Since the aim of the present paper is to detect features in (i.e.,
the shape of ) mean source electron spectra F(E), the absolute
magnitudes of F(E) or of I(¢) are not critical, except inasmuch
as they determine the level of noise in the (simulated) data. The
observed photon fluxes of Figure 1 are approximately 10 times
larger than a major solar flare (see, e.g., Holman et al. 2003; Piana
et al. 2003). Hence, in order to generate count spectra with a rea-
sonable level of uncertainty, we used an integration time of 1 s; the
count spectra (and their associated uncertainties) therefore cor-
respond to an actual large flare observed over a more reasonable
(~10 s) time interval. The synthetic hard X-ray spectra /(¢) were
generated over the range €nin — €max = (10—150) keV. To this
photon spectrum we then added random (Poisson) photon noise.

We do recognize that, in reality, additional systematic noise
(background, detector response, etc.) should be added to re-
produce observed count spectra. However, since the goal of the
present paper is an isolated comparison of various methods for
recovering electron spectra F(E) from photon spectra I(¢), no
attempt was made to include such additional noise terms in the
data function. Another way of looking at this is to assume that
the observed count spectra have been converted to photon spec-
tra through a preprocessing algorithm prior to their use as data
functions in the recovery of the mean source electron spectra. '

In this section we briefly summarize the various methodol-
ogies used to recover the form of F(E) from the “observed”
photon spectrum /(€). More details of each method can be found
in the references cited. All “inversion” methods (Craig & Brown
1986) involve first discretizing both the mean source electron

1% Indeed, such a conversion from count spectra to photon spectra is routinely
done by the instrument calibration teams, utilizing equations similar in form to
eq. (2), but interrelating the count and photon (rather than photon and electron)
energy spectra. The conclusions of this paper regarding the ability to discern fea-
tures in the source electron spectrum from the observed photon spectrum there-
fore also apply to the ability to discern features in the emitted photon spectrum from
analysis of the observed count spectrum. However, it should be noted that count —
photon reconstructions through instrument response usually involve matrices that
are much nearer diagonal in form than those associated with “source-intrinsic”
problems (Craig & Brown 1986) such as the photon — electron reconstruction
problem addressed here.
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Fic. 1.—Synthetic mean source electron spectra (bottom) and their resulting photon spectra (top).

spectrum F(E) and the hard X-ray spectrum /(¢) into vectors, so
that the integral relation (eq. [2]) may be written in the matrix form

1=Q-F, (3)

where Q is a matrix with elements corresponding to the values
of the cross section integrated over the appropriate photon and
electron energy ranges. Formally, inversion of equation (3) pro-
vides the vector of F values. In practice, for large matrices Q,
the determinant is small and the condition number large, so that
direct inversion leads to large amplification of noise in I and
spurious high-frequency structure in F. Thus, we have instead
to solve equation (3) subject to some constraints that suppress
such spurious structure (e.g., Craig & Brown 1986).

3.2. Matrix Inversion with Data-adaptive Binning

The essence of this approach (Johns & Lin 1992) is to take ad-
vantage of the upper triangular form of Q to solve equation (3) by
standard square matrix row elimination, starting at high energies.
Physically, this comes down to using the fact that

e+de
I(e +de)—I(e) = / F(E)O(e, E)dE
= F(e)0(, €)de,

so that essentially F(E) is derived locally from I(¢). In practice, the
I and F vectors must be judiciously adjusted by combining indi-
vidual fluxes into aggregated bins larger than the data resolution
(1 keV in this example) to prevent unacceptably large oscillations
in the recovered vector F. The method is thus what Craig & Brown

(1986) termed ““data-adaptive™ and is tantamount to stabilizing
the inversion of equation (3) by adjusting Q through judicious
energy binning until its condition number is sufficiently small to
yield a meaningful solution for a prescribed data precision.

To avoid numerical problems, the electron bins are shifted
upward slightly relative to the photon bins, so that the lower
limits of the electron energy bins correspond to the (logarithmic)
midpoints of the photon energy bins. Further, because photon data
above a certain energy em, (150 keV in this exercise) are trun-
cated, and since an appreciable fraction of the photon spectrum
in the observed range € < e,y is due to electrons with energies
E > €nmax, it is necessary in this method (see Johns & Lin 1992) to
include an extrapolated form Zeyirap(€) for €max < € < €ypper, Where
€upper 18 an arbitrarily assigned value, here taken to be 1 MeV, or
~7 times the maximum photon energy observed.'' The method
inverts the spectrum over the augmented range €min < e < €eyppers
but, recognizing that the recovered F(E) in the range £ > - €max
is based on an assumed form, rather than on data, only F(E)
points in the energy range enin < E < €max are retained.

" Extending this extrapolated power law to even higher energies has a neg-
ligible effect on the results, due to the very low number of photons in the region
of observation that are produced by the electrons with energies corresponding to
the high-energy end of the extrapolated photon spectrum. The actual choice of
upper cutoff epper (and hence the maximum electron energy for which FlE] is
calculated) will depend to some extent on the steepness of the observed photon
spectrum—steeper spectra may have upper energy cutoffs safely applied at lower
values of €pper; @ 5 times maximum photon energy rule of thumb was found
empirically to be adequate. To ensure that the results are not sensitive to the
value of the upper energy cutoff used, one could recalculate F(E) for an increa-
ing range of eypper values until no significant change in the recovered F(E) in the
range E < €max results.
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3.3. GSVD Regularized Matrix Inversion

Instead of reducing the resolution locally by binning asin § 3.2,
the approach here (Piana et al. 2003; Kontar et al. 2004) is to solve
equation (3) with an added smoothness (minimized roughness)
constraint. Rather than stabilizing the solution of QF — I = 0
by binning adjustment of Q, we instead solve (Tikhonov 1963)

|QF — I* + /|LF)* = minimum, 4)

with the “roughness” penalty being determined by the form of the
(user-specified) operator L and the value of A chosen. If L = 1
(the identity matrix), then the method is referred to as “zero-order
regularization.” Higher-order regularization methods (which force
even greater smoothness—e.g., higher order differentiability—
on the solution) can be invoked through a different choice of L.
Kontar et al. (2004) discuss how some of these different orders
of constraint can be interpreted physically in terms of properties
of F(E). In practice, the solution to equation (4) is commonly
generated (Golub & van Loan 1933) by utilizing the general-
ized singular value decomposition (GSVD) of the matrix gen-
erators Q and L (although other approaches to regularization
are possible; Thompson et al. 1992; Craig & Brown 1986). The
choice of the regularization parameter A (with small A corre-
sponding to solutions that are faithful to the data, but noisy, and
large A corresponding to solutions that are smooth, but possibly
unfaithful to the data) is determined according to a statistical
trade-off between the sizes of the two terms in equation (4).

In these methods, there is no requirement for the matrix Q
to be square, so that the solution for F(E) can be found over
arange of E that extends beyond the maximum observed pho-
ton energy emax. The method (and its SVD/GSVD implementa-
tion) depends on a number of factors, such as the order of the
method (or, equivalently, the form of the matrix L), the form of
the matrix Q (square or rectangular), the determination of what
array of photon energy bins to associate with the supplied photon
data and what array of electron energy bins are used for the re-
covered F, and the method by which the regularization param-
eter 4 is determined. In addition, Kontar et al. (2004) have shown
how pretransformation of the input and output vectors for I and
F (either by scaling or subtraction of reference spectral forms)
can lead to a better solution.

Two different regularization methods were used in the pre-
sent study. The first algorithm used a zero-order regularization
(L = 1), nonsquare SVD method. The photon data were binned
into 1 keV bins, and the midpoint of the photon energy bin was
used for the photon energy array; 1 keV bins were also used for
the recovered mean source electron spectrum. To transform the
problem into one more easily solved, we first prescaled (Kontar
et al. 2004) the photon and electron vectors by ¢” and E?, re-
spectively, using an optimum value p(7) obtained from a lookup
table. Here ~ is the average of the best-fit local power-law
spectral indices at low and high energies to the observed photon
spectrum; in practice, p ~ %(7 — 2). The solution was then re-
scaled back to the original variables. The regularization param-
eter A was determined by a two-step procedure. First, a trial value
was obtained using the “discrepancy principle” (Morozov 1966).
Then, recognizing that this principle generally results in over-
smoothed solutions with large photon spectrum residuals, the
value of 4 was reduced until the cumulative normalized photon
spectrum residual (see Piana et al. 2003; Kontar et al. 2004) lay
within 43 ¢ at all points.

The second method was also a nonsquare algorithm but using
a first-order (GSVD) algorithm with L = D, the derivative op-
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erator. The photon spectrum was preconditioned by first sub-
tracting the best-fit thermal plus double power-law fit to the
observed spectrum (see below); this subtracted spectrum was
then added back to the result to get the final overall solution.
The method used the same photon and electron energy arrays
as the zero-order method, and the same two-stage analysis to de-
termine /4. As explained by Kontar et al. (2004), the use of first-
order regularization may result in recovered forms of F(E) that
are more suited to subsequent differentiation, such as when de-
termining the corresponding injected thick target electron flux
spectra Fy(Ey) (Brown 1971; Brown & Emslie 1988). Discus-
sion of the Fy(Eyp) problem is deferred to a later paper, but we
note here that our preliminary results for F(Ey) are also good
[albeit noisier than those for F(E) due to the second deconvo-
lution involved]. They still reveal the presence of marked features
in F(Ep) and also yield unphysical results for Fp(Ep) in cases in
which the model F(E) used is not in fact compatible with a thick
target model (Brown & Emslie 1988).

3.4. Forward Fitting

In this approach (Holman et al. 2003), a parametric form of
F(E) is assumed, and the corresponding form of I(¢) produced.
The residuals between the /(€) generated by the forward-fit form
and the data provided) are normalized to the standard error on
each photon data point, and the x> minimized with respect to each
parameter to determine the “best” form for F(E). In this study we
assumed parametric forms corresponding to a single-temperature
thermal distribution (characterized by a total emission measure
EM and a temperature 7') plus a broken power law with ad-
Jjustable low- and high-energy cutoffs (4E =01, Elow < E < Epg;
AE{?{‘S‘E % Epy < E < Epax)- There are thus (up to) eight in-
dependent parameters (EM, T, A, Eiow, Epk,; Emax, 01, 62)in
the fit. This method does not restrict the energy range of F(E)to
E < emax. However, since a specific form is assumed and since
the number of parameters that one can specify is necessarily
limited, it follows that some types of feature in F(E) can never
be inferred by this method, although their presence might be
suspected where the residuals are large.

4. INPUT FORMS OF F(E)

After some experimentation, we considered six different forms
for the input mean source electron spectrum F(E) (electrons cm 2
s~! keV~1). The first three are empirical basic forms chosen with
challenging properties, while the second three are similar but
with the addition of a large low-energy ““thermal” components
to test whether its presence (as in real flares) masks recovery of
high-energy features. As discussed in § 3.1, all are scaled to
produce photon spectra with ~30 photons cm™2 s~! keV~! at
the Earth at a photon energy of 30 keV.

4.1. Basic Forms

These F(E) forms are shown (on logarithmic scales) in the
bottom panels of Figure 1.

Case A:

E\[2 30\*| 1000
— R=|1-(= <
<30>{27[1 (35) T }E 30,

— 8.0 x 10%° 3

Fa(B)=——7—q (100}, (2)(E 30 < E<35

v (E2 3\35) | DR

100
3B E > 35.

(5)
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This spectral form is the smoothest of those studied; it is con-
tinuous and decreasing everywhere, but has a “knee” in the
30-35 keV range, within which its gradient sharply increases. It
is the form closest to those used in forward-fit parametric forms.

Case B:
21 1 EY
E—4+—|1-(=) |, E<50,
64 ' 9 50

_ 1.8 x 10%*

FB(E):iﬁV E 200 3
— (=) -1 50 < E < 200
192<E) ’ < &= 20,
0, E > 200.

(6)

This form is slowly increasing below 50 keV and also has an
upper cutoff at 200 keV, which is above the maximum photon
energy in the supplied hard X-ray “data.” This form was chosen
for two reasons. First, we wish to see if the upper energy cutoff
at 200 keV can be detected through its influence on the photon
spectrum in the “observed” (10—150) keV range. Second, we
wish to determine the ability of the various methods to recover
an increasing form of F(E).

Case C:
E 8
— E <30
5.5x10% <30)7 T
Fo(E)=——=7—X%x/ E\ (7)
nv — ), 30 < E <250,
30
0, E > 250.

This case is an exaggerated version of case B. It is very steeply
increasing below a “cusp” at 30 keV and has an upper cutoff at
250 keV, which is again above the maximum photon energy in
the supplied hard X-ray data. The steeply increasing form of
F(E) below the cusp implies that, contrary to more conven-
tional cases, the photon emission at low energies is not domi-
nated by the electron spectrum near these energies but rather
comes from £ >> e. Hence, even small errors in determining the
large F(E) at, say, 30 keV have a profound effect on the photon
emission at, say, 15 keV and hence (see below) on the deter-
mination of the electron spectrum at 15 keV, which makes only
a small contribution to 7 (¢ = 15 keV).

4.2. Forms with a Thermal Component Added

These forms are shown in the right panels of Figure 1.
Case D:

2.5
500€7E/2‘7+ (IEO) e*E/lSO’ E< 427

_ 1.0 x 1057 25
Fp(E)=———" x o.z(lfo) e E/250,

nV
2.5
(9 e
®)

This case is the first of those characterized by a large low-energy
thermal component. This part of the spectrum corresponds to a
differential emission measure £(7) ~ T~ !> above kT = 2.7 keV.
We deliberately chose to model the low-energy part of F(E)
with a nonisothermal form in order to test how well such a form is
dealt with by forward-fit methods that constrain the low-energy
part of F(E) to be isothermal.

42 < E < 50,

E > 50.
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Case E:
10 3.7
300eE/3 + (—) , E <55,
E
s |1\
_ 2.0x 10 = 55 < E <70,
Fg(E)= =y (7) -
10\*
) 70 < E < 250.
0, E > 250
)

This form is characterized by a sudden decrease (by almost an
order of magnitude) at 55 keV and by a plateau region from 55
to 70 keV. It also has the steepest spectrum at high energies.
Apart from the thermal component, which has the same form
as case D but with kTy = 3 keV, it has a power-law index of
3.7 at low and 4.0 at high energies.

Case F:
E 7
100 £/27 4 0.02(—) . E <40,
— 1.5x 10%7 40
Fr(E)=—"—"x 40\ 3
nv 0.02 =) 40 < E < 350,
0, E > 350.

(10)

This form is characterized by a relatively smooth “dip” ex-
tending from ~20 to ~40 keV and is reminiscent of the spec-
trum obtained by Piana et al. (2003) in their analysis of the 2002
July 23 flare. It is, in fact, similar to the cusp form of case C plus
a thermal form as in cases D and E, with kT, = 2.7 keV.

5. RESULTS
5.1. Presentation

Figure 2 shows the reconstructed mean source electron spectra,
using the various methodologies outlined in § 3, for all six cases.
The top set of lines in each figure shows the input spectrum
(dashed line), shifted upward by a factor of 10 (for ease in visu-
alization of the results), together with the similarly scaled re-
construction using the zero-order regularization algorithm. The
second set of lines shows the unshifted spectrum, superposed
on the reconstruction, obtained using the first-order regulari-
zation algorithm. The third set of lines shows the reconstruction
obtained by the matrix binning method (shifted downward by a
factor of 10), and the bottom set shows the results of the for-
ward-fitting method, (shifted downward by a factor of 100).

In the case of the adaptive binning method the bounds on the
solution are shown as error boxes whose width and height
indicate, respectively, the local bin E range (“‘resolution”) and
the uncertainty in F. (We refer the interested reader to the Ap-
pendix for a brief discussion of how these are related and should
be interpreted). The error boxes were obtained successively,
starting at high energy, by increasing the bin width (Alog E)
until, for each energy band, the fraction of the dynamic range of
log F’ represented by each 1 o error box height (Alog F') was
approximately the same as the fraction of the dynamic range of
log E represented by that energy band (Alog E). (In this way, 1 o
error boxes would look approximately square on a log-log plot
with axis scales just covering the full range of each variable.) This
equality is a subjective choice akin to the choice of smoothing
parameter in the Tikhonov regularization methods and could be
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Fic. 2.—Recovered forms of F(E ) obtained by the various methods. Top set of curves ( green): zero-order regularization, shifted upward by a factor of 10; second set
of curves (red): first-order regularization, unshifted; third set of curves (brown): binned-matrix-inversion method, shifted downward by a factor of 10; bottom set of
curves (blue): forward fit, shifted downward by a factor of 100. The dashed curves show the true forms of F(E). The forward-fit solution is plotted without error bars. For
the top two curves (regularized solutions), the results are plotted as a 3 o river, i.e., the band within which ~99% of all (sufficiently smooth) solutions lie; the horizontal
lines illustrate the energy resolution as a function of electron energy that is achieved. Results for the binned-matrix-inversion method are shown as error boxes; the
vertical and horizontal extents of each box correspond to the 3 ¢ uncertainty level and energy resolution, respectively.

increased or decreased if we wanted to give more emphasis to
bin width (resolution) or to accuracy, respectively. That is, en-
ergy resolution and uncertainty are coupled by an ‘““uncertainty
principle”: increasing one reduces the other (Craig & Brown
1986).

In the zero- and first-order regularization approaches, the reg-
ularized solution is shown as a confidence strip (CS) or solution
“river.” This is created by generating solutions F(E) from
random Gaussian realizations of /(¢) out to &3 o (i.e., rejecting
any random realization of a data point that exceeds these lim-
its) and plotting the extremes of these solutions. This CS river
then defines the bounds within which almost all (~99%) suit-
ably smooth solutions compatible with the data will lie. Note,
however, that nonsmoothed solutions lying inside the CS river

are not acceptable [e.g., F(E) lying along the top bank for £ < E|
and along the bottom bank for £ > E|], since they violate the
smoothness constraint and may, in some cases, give unacceptable
residuals. Likewise, the resolution of a regularized solution is a
somewhat technical issue and is closely linked to the solution
uncertainty. These issues, to be discussed in more detail in a future
paper, are briefly touched on in the Appendix. Here we simply
note that, in the zero-order regularization method, the resolu-
tion AE was estimated from the half-width between the zeros
of the highest order singular function used in the recovered so-
lution (Bertero et al. 1988), while for first-order regulariza-
tion the FWHM of the rows of the resolution matrix (Moore
1920; Penrose 1955; Press et al. 1988; Mankat 1989) were used.
Although these give somewhat different answers, they are of
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comparable order. We have superimposed selected illustrative
horizontal lines of width A E on the CSs in Figure 2 to indicate
the resolution as a function of electron energy E.

5.2. Fidelity of Recovered Spectra

All methods do a reasonable job of determining the rather
simple spectral form of case A, the forward-fit method averag-
ing out the knee in F(E), replacing it with a spectral index break.
In case B, the forward-fitting method gives reasonable agreement
with the upper energy end of the spectrum, but it fails to capture the
increasing form of F(E) at low energies, the best approxima-
tion achievable by the parametric form being to impose a low-
energy cutoff at ~20 keV to bring the hard X-ray intensity at
low energies toward agreement with the simulated data. In the
data-adaptive matrix binning method, the F(E) points are deter-
mined by row elimination in order of decreasing energy, starting
at a high-energy point (here 1 MeV') where the photon spec-
trum above e, = 150 keV is a power-law extrapolation of the
observed data. While some inference on the electron spectra
above €,y 18 possible, it is generally assumed to be unreliable in
detail so F(E) is retained only for £ < €y, making it impos-
sible for the method to detect the upper energy cutoff in F(E).
On the other hand, the two regularization algorithms determine
F(E) over the entire range. The zero-order method does a re-
markably good job offinding the upper energy cutoffat 200 keV
(the recovered value is 205 keV), while the first-order regu-
larization method overestimates this cutoff somewhat, due to
the high penalty it imposes on rapid variations in slope.

Case C presented the most difficult challenge. Because of the
steeply rising electron spectrum below 30 keV, the bulk of the
photon emission at, say, 15 keV is dominated not by electrons
with an energy slightly greater than 15 keV (as it would if the
electron spectrum were steeply decreasing), but rather by elec-
trons near 30 keV. Thus, points in the electron spectrum below
30 keV contribute little to the observed photon spectrum and so
are progressively more poorly determined as one goes below
30 keV. The forward-fit method simply truncates the spectrum
at ~27 keV to avoid an overproduction of low-energy photons;
the inversion methods fare quite well until just above 20 keV, at
which point the errors become unacceptably large and the so-
lution becomes unphysically negative.

Case D is characterized by two main features—a steep thermal
(but not isothermal) low-energy component, and a “notch” from
42 to 50 keV. The regularized inversion methods, with their re-
quirement of spectral smoothness, smear the shape of the notch
feature from rectangular to Gaussian-like, while the matrix bin-
ning method recovers the location of the notch feature only at the
expense of requiring rather coarse binning, so that the feature is
characterized by only a couple of energy points. Not surprisingly,
the limited set of functions allowed by the parametric form of the
forward-fit method cause this feature to be completely ignored.

From the results, it is apparent that the presence of a strong
low-energy thermal component does not detract from the ability
of the inversion methods to determine features in the high-energy
part of the spectrum (as long as these are appreciably beyond the
“bulk” of the thermal component). All three inversion methods
also determine well the (nonisothermal) form for the low-energy
component of F(E). [This does not imply that the emission mea-
sure &£(7) differential in T is well determined. ]

The single-temperature-plus-broken-power-law forward-fit
model does a respectable job of finding a single representative
temperature (7 = 2.3 keV) for the thermal component. Interest-
ingly, this is just below the low cutoff temperature 7y = 2.7 keV
in the actual &(T) distribution (similar results were obtained in
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cases E and F, with the recovered 7T being 81%—84% of T} in
each case). However, the residuals between the observed pho-
ton spectrum in case D and that calculated using the recovered
F(E) are unacceptably large (up to almost 10 ¢ in the range from
30 to 40 keV), so that the poorness of the isothermal fit to the
low-energy end of the spectrum is well established. Whether
the form of these photon spectrum residuals contains sufficient
information to hint at the actual (nonisothermal) form of F(E)
remains to be determined. While inversion algorithms recover the
low-energy (nonisothermal thermal) part of F(E) rather well,
the problem of converting the form F(E ) into the corresponding
form of &(T) is a formidable challenge (Prato et al. 2005).

Case E is similar to case D, but with a sharp drop plus plateau
in lieu of the notch. The quality of the recoveries is generally
less good than that in case D. The first-order regularized method
(red “river””) smooths through the plateau region from 55 to
70 keV, showing only some inflection and systematically over-
estimating the electron flux there and then, consequently (to
compensate for the excess photons created by this overestimate),
underestimates the electron flux from ~70 to 150 keV. Both the
zero-order regularized method and the matrix binning method
show more sign of a steep decrease in F(E) at ~55 keV and
some sign of flattening of F(E) from 55 to 70 keV, but within
the errors, no method ensures confident inference of the true form
of F(E) in this range. The differences between methods are again
simply a reflection of the fact that there is no unique answer to
an inverse problem with noisy data, and the solution one gets
varies according to the prior information/assumptions added.

Case F is characterized by a medium-energy “dip” in F(E)
reminiscent of that found by Piana et al. (2003) in their analysis
of the 2002 July 23 solar flare. All the inversion methods do
faithfully recover this dip, while the parametric limitations of
the forward-fitting model again necessarily forces a bad fit there.
However, it should be noted that since the photon residuals for
this forward fit are unacceptably large, they warn the modeler of
the inadequacy of the parametric form chosen.

Overall, then, the “inversion” methods far outperform forward-
fitting methods in their ability to recover sharp spectral features—
a limitation intrinsic to forward-fitting methods, which by their
nature can recover only the overall shape of the underlying spec-
trum, within the limits of the form used.'? However, in practice,
forward-fit methods can still reveal the presence of features out-
side their parametric form through examination of the pattern of
photon spectrum residuals. Figure 3 illustrates this for case F.
While the residuals from the inversion methods are acceptably
small everywhere, with little evidence of strong clustering, the
residuals from the forward-fit method are vastly greater and
indeed cluster at negative values (of order —5 ¢) in the vicinity
of 30 keV, the location of the dip in F(E). The form of the
cumulative residual function (Fig. 3, bottom) is only marginally
acceptable at the 3 o level. On examination, this behavior is seen
to be a consequence of the steep isothermal form in the forward
fit extending to quite high energies in the forward fit (before it
jumps up to the high-energy broken power-law form), which
renders the recovered spectrum in the 30—40 keV range much
lower than the actual form. Recognizing this, an aptly modified
parametric form of the forward-fit function might thus be de-
duced and applied to the data.

It must be noted that acceptable patterns of residuals (in
addition to acceptable values of x?) are generally obtained in
forward fits to solar flare data analyzed so far (e.g., Holman et al.

12 Similar arguments apply to the inference of spatial features in image
reconstruction algorithms (Bertero & Boccacci 1998).
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FiG. 3.—Photon residuals for case F. The top panel shows the residuals (data-
reconstructed photon spectrum) as a function of photon energy, normalized to the
Poisson standard deviation at each photon energy, for two recovery methods—
zero-order regularization (/ight ) and forward fitting (dark). The middle panel shows
the distribution of residual sizes for each method; each is Gaussian in form with
a standard deviation of approximately unity. The bottom panel shows the be-
haviors of the “cumulative residual” (the average of the residuals from the low
energy end of the spectrum to the energy in question) as a function of ¢, as dis-
cussed by Piana et al. (2003); an acceptable behavior should lie within the 3 o
bounds shown by the dashed lines. While the residuals for the regularized in-
version show acceptable behavior, those for the forward fit do not. Specifically,
both the pattern of residuals and the cumulative residual plot reveals a high degree
of clustering of residuals around 30 ke V—the vicinity of the dip in the actual F(E)
spectrum. This shows that the forward fit F(E) is not an acceptable recovery of
the true mean electron source spectrum and even suggests where adjustments
should be made in order to obtain a better fit.

2003), including the few cases found in which the F(E) de-
termined through regularized inversion methods seems to involve
a significant dip (e.g., Piana et al. 2003). The absence of ob-
vious contrary features in the pattern of residuals argues against
the presence in these real solar events of sharp features, such as
those being investigated here, of amplitude large enough to be
detected above current levels of data uncertainty, although it
should be noted that the assumed presence (Holman et al. 2003)
of systematic uncertainties over and above the Poisson uncer-
tainty level will increase the reference noise value and thus
lower the magnitude of the normalized residuals.

A feature we found in the results using inversion methods is
that the form of the recovered mean source electron spectrum
depends slightly on the photon energy to which one ascribes the
photon flux in a given bin; methods that use the low-energy end
ofthe bin (on the grounds that for steeply decreasing spectra the
average photon energy is near the lower bound) obtain results
that are slightly different from methods that use the midpoint
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energy of the photon bin. Of course, neither of these methods is
correct except in special cases—the average energy in a given
bin is a weighted average of the (a priori unknown) spectrum
across that bin. This problem of “where to plot the points in a
hard X-ray spectrum” has been known for years in the context
of low-resolution scintillator spectra (Dennis 1978), and it is
interesting that it is still notable in the era of keV-resolution hard
X-ray spectra.

6. CONCLUSIONS

We have demonstrated that various methods in use for recover-
ing the model-independent mean bremsstrahlung source electron
spectrum F(E) are dependable in recovering various large- and
small-scale spectral features, albeit to varying degrees. Which
of these methods should be applied to observed spectra depends
to a large extent on the type of information desired.

The Tikhonov regularization methods generally recognize and
recover most of the interesting spectral features, including high-
energy cutoffs, dips, and bumps. The adaptive-binning matrix
inversion method faithfully recovers features within the energy
range defined by the input photon spectrum but, by its nature,
cannot determine the form (or even existence) of features out-
side this range. The adaptive-binning matrix inversion method
recovers certain features of the input data (e.g., the low-energy
end of case B, the plateau of case E, and the notch in case F') par-
ticularly well; this would appear to be a consequence of the local
smoothing involved as compared with the global smoothing in
the regularization algorithms. Very sharp features (such as cutoffs)
are generally less well fit by first-order regularization methods
because of the requirement for a smooth first derivative.

Parametric forward-fit methods, by their very design, cannot
recover such features unless they are built into the parametric
form. However, analysis of the photon spectrum residuals can pro-
vide clear indication of the inadequacy of the assumed functional
form and may even suggest locations and/or likely amplitudes
of additional features. Forward-fit methods should be adequate
when either a gross indication of the spectral form, or a quantity
related to its integral (e.g., the electrical current, or the injected
energy flux), are desired. However, to obtain the detailed shape
of the spectrum (of interest, e.g., in searching for sudden transi-
tions in form associated with a candidate acceleration or trans-
port mechanism), the use of overall regularized inversion methods
or data-adaptive binning is essential. Codes to perform all of these
recovery techniques, written in IDL, will very soon be available
on the Solar Software Tree.

This work was supported by NASA’s Office of Space Science
through Grant NAG5-207745, by a PPARC Rolling Grant, and
by the International Space Science Institute.

APPENDIX

RESOLUTION AND UNCERTAINTY IN REGULARIZED SOLUTIONS

For practical purposes of data interpretation, the confidence strips (CSs) in Figure 2 should be seen as delineating that part of the
E, F(E)plane in which ~99% of solutions (with the imposed degree of smoothness) lie. Caution is needed in reading any more into
the CS river than that and especially in considering how it relates to the resolution A E and the uncertainty A F of the solution. These
issues will be discussed fully in a future paper; here we simply give some cautionary pointers.

1. AEand AF are not independent. If we reduce A E (by binning or by reducing smoothing parameter /) to improve resolution,
then the uncertainties A F" worsen. On the other hand, if we sacrifice energy resolution, we can get a much smaller uncertainty on a
mean value of AF over a wide energy range. The tradeoff between these two is subjective.
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2. Inthe case of the adaptive binning method, the resolution A E is local and fixed by the criterion chosen for the acceptable level of
error AF. Thus, as can be seen in Figure 2, A E and A F can vary considerably from bin to bin, depending on data noise and on the true
shape of AF(E). On the other hand, for the regularization methods, the smoothness constraint is applied globally, i.e., to the whole
solution, giving the CS river of globally smoothed solutions a relatively small value of AF compared to the error in the (locally
smoothed) adaptive binning solution.

3. The resolution of, and uncertainty in, a regularized solution can be defined in various ways. Both are affected by the level of
noise in the data and by the degree offiltering action imposed by the kernel (Q here). Setting a value for the acceptable uncertainty AF
basically fixes the resolution A E in terms of the properties of Q and the value of the smoothing parameter 4 (eq. [4]). For the zero-
order regularization method, the value of A determines the truncation of the singular function expansion of the solution and a natural
measure of resolution is the separation of the zeros in highest order singular function used (Bertero et al. 1988). For the first-order
regularization method, the FWHM of the rows of the “resolution matrix” (Moore 1920; Penrose 1955; Press et al. 1988; Mankat
1989) were used. This matrix represents the combined properties of the unconstrained matrix problem and the action of whatever
smoothing algorithm is used.

4. Ttis tempting to interpret the “height” of the CS river as the uncertainty in the solution at that point, and the “width” of the river
(in E space) as the resolution of the method. This is not the case, however, since the CS height and width depend on the true shape of
F(E).Forexample, if F(E) were constant, then the CS river height would indeed indicate the uncertainty in F(E), but its width would
be the entire solution energy range, a quantity far greater than the achievable resolution AE, i.e., the width of the narrowest feature
whose presence could be inferred. Similarly, if F(E)had a large local discontinuity, then the height of the CS river at that point would
be far larger than the noise error in F(E).

5. On the other hand, the uncertainties (AF) in the adaptive binning method do have the traditional meaning with the caveat that
what is really determined in the method is the product F(E)AE in each energy bin. Thus, for example, if the AF correspond to 1 o
error bars, the true value of [ F(E)dE in each energy bin is within the range (F + AF )AE of the recovered spectrum 68% of the
time.

6. In forward fitting, the concepts of resolution and error do not have the same meaning since a prescribed functional form is
assumed. However, it is possible to estimate confidence intervals for the model parameters and hence a strip in the E, F plane by the
modified x> method given for example, by Simmons et al. (1982). Basically, recognizing that the model does not in fact come close to
fitting the data within data errors, one fits it within ‘“model error” bars estimated from the variance in the fit itself. Such a method has
been applied by Kasparova et al. (2005) in the solar flare case.
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