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Abstract

We have performed one-dimensional full particle simulations of perpendicular shocks and found that an electron cyclotron micr-

oinstability can develop in the foot during the self-reformation phase of low bi supercritical shocks. The instability is excited by the

beam of reflected ions interacting with the incoming electrons. It exhibits a rapid growth, and propagates along the shock normal

towards upstream. This instability, which does not require high Mach number, has a frequency comparable to the electron cyclotron

frequency and a wavelength shorter than the electron inertia length. It basically results from the coupling of electron Bernstein waves

with an ion beam mode carried by the reflected ions. Dispersion properties in the foot are analysed. We discuss the effects of varying

parameters, in particular as the fake ion-to-electron mass ratio used in the simulations converges to more realistic values. Compar-

ison with other microinstabilities evidenced in recent full particle simulations of shocks is outlined.

� 2005 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

It has been surmised for many years that the presence

of a beam of reflected ions in the foot of a supercritical

shock could trigger plasma microinstabilities. The prop-

osition still holds interest considering the continuing
search for dissipation mechanisms in collisionless

shocks. A lot of past works, dating as far back as the

70�s, modelled the foot as a three-population plasma

made of the incoming ions, the reflected ions, and the

electrons. Possible instabilities associated with relative

drifts between the populations were analysed, mostly

through studies of the dispersion relation. A review of

those efforts may be found in Wu et al. (1984). Although
they provide useful insights into potential instabilities,
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those works were limited in that they considered the foot

as a stationary, homogeneous plasma independent from

the whole shock structure and then investigated its prop-

erties with chosen ad hoc parameters. Yet we know from

full particle simulations that the foot is an evolving and

transient feature, which forms and disappears during the
cycle of shock front self-reformation, even at moderate

yet supercritical Mach numbers (Biskamp and Welter,

1972; Lembège and Dawson, 1987; Lembège and Savo-

ini, 1992; Scholer et al., 2003).

Only recently, thanks to advances in computational

power, has it been possible to design and run

particle-in-cell (PIC) simulations of shocks with enough

resolution, both spatial and temporal, to enable one to
actually ‘‘see’’ some of the microinstabilities at work in

the foot. Investigations that adopt this self-consistent

approach are still few at the present time and reported

in just a handful of articles. Scholer et al. (2003) set up

simulations of quasi-perpendicular shocks and observe
ved.
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the modified two-stream instability. This instability

(MTSI) is driven by a relative drift Ue–i between elec-

trons and ions across the ambient magnetic field B

(McBride et al., 1972; McBride and Ott, 1972; Mats-

ukiyo and Scholer, 2003). It has the remarkable prop-

erty to operate for moderate drifts Ue–i < vte, where vte

is the electron thermal speed, even with Te � Ti. The

unstable frequency lies between the ion and electron

gyrofrequencies, so that the ions are assumed unmagne-

tized yet the electrons strongly magnetized. In the elec-

trostatic limit of the dispersion relation, the electron

term associated with their free motion along B looks

as ðxe=xÞ2ðcos hÞ2, where xe is the electron plasma fre-

quency and h is the wave propagation angle to B. This
term provides the second ‘‘stream’’, the first one being

the unmagnetized ion term (xi/x)2 with xi the ion

plasma frequency. At very oblique angles such that

cos h �
ffiffiffiffiffiffiffiffiffiffiffi
m=M

p
the electrons have an effective mass com-

parable to the ions, which gives rise to a two-stream-like

instability, hence the name MTSI. On the other hand, in

a strictly perpendicular geometry the second ‘‘stream’’

vanishes and the instability disappears.
A perpendicular shock has the appeal of simple mac-

roscopic conditions. Because of the geometry, there is

only one component of the magnetic field to consider,

Bz(x, t), where ẑ points to the direction of the upstream

magnetostatic field B and x measures the distance along

the shock normal. A single parameter links downstream

(subscript 2) and upstream (subscript 1) values of the

flow velocities, densities, and magnetic field amplitudes:
V1/V2 = N2/N1 = Bz2/Bz1 = r (e.g., Tidman and Krall,

1971, Ch.1). The shock exhibits no upstream dispersive

effects. Moreover, all the forces acting on the particles

are in the plane [x,y], making their dynamical motion

effectively two-dimensional.

PIC simulations of perpendicular shocks with good

resolution have also recently been reported (Shimada

and Hoshino, 2000; Hoshino and Shimada, 2002).
These authors investigated shocks with a high Alfven

Mach number MA, in the foot of which a Buneman

instability takes place between incoming electrons and

the reflected ion population. This leads to the forma-

tion of electron holes in phase space and, according

to these authors, to the subsequent acceleration of some

electrons to high energies through shock surfing. The

simulation runs were performed with a ratio of plasma
frequency to cyclotron frequency xe/Xe = 20. The value

is quite large compared to values commonly used in full

particle simulations of shocks, for example xe/Xe = 2 in

Hada et al. (2003) and some runs of Scholer et al.

(2003). This important parameter affects the simula-

tions and is linked to the ratio between electron inertia

length ke and Debye length kd through the electron

beta,

ke=kd ¼ ð2=beÞ
1=2ðxe=XeÞ: ð1Þ
In their runs, Shimada and Hoshino (2000) use be = 0.15

and have the electron inertia length about 70 times the

Debye length, which leaves plenty of room for electro-

static waves to develop. However, the authors utilize

such a small ion-to-electron mass ratio, M/m = 20, that

their results are controversial. Indeed, as the mass ratio
increases toward realistic values, the electron thermal

speed vte = (Te/m)1/2 becomes an ever larger multiple of

the Alfven velocity VA since

vte=V A ¼ ðbe=2Þ1=2ðM=mÞ1=2
: ð2Þ

Hence, to prevent the electrons from overlapping in

phase space with the reflected ions, whose velocity is pro-

portional to MAVA, shocks with large MA producing

large relative drifts Uri–e between the reflected ions (�ri�)
and the electrons (�e�) need be considered. In order to sat-

isfy the Buneman condition that U ri–e >
ffiffiffi
2
p

vte, ever
higher Mach numbers are required as the mass ratio ap-

proaches more realistic values. Scholer and Matsukiyo

(2004) carried out simulations with a fixed, moderate

Mach number (MA = 4.5) and quasi-perpendicular

geometry (h = 87�), yet increasing mass ratios. They show

the Buneman instability to be stabilized at higher ratios.

As we will demonstrate in this paper, there is a micr-

oinstability in the foot of perpendicular shocks which
does not require a large Uri–e. The instability basically

results from the coupling of electron Bernstein waves

with an ion beam mode carried by the reflected ions.

Its phase velocity can lie within the distribution of elec-

trons, which makes the instability kinetic as opposed to

the fluid Buneman instability. It has a short wavelength,

under an electron inertia length, and is mostly

electrostatic.
2. Simulation conditions

2.1. Darwin PIC code

A newly developed one-dimensional code is used for

the simulations. It follows the motions of both ion and
electron macroparticles, as a standard full particle PIC

code, yet implements the Darwin model for computing

the evolving electromagnetic fields. The Darwin model

(e.g. Hewett, 1985) has equations very similar to the ex-

act Maxwell equations. Faraday�s law is included for

example. The Darwin equations, though, neglect the

transverse part of the displacement current, which elim-

inates radiation. This affords us a larger time step than
the Courant condition would otherwise impose on a grid

resolving the Debye length. In a ‘‘Maxwell’’ electromag-

netic code, the time step dt is bounded by the Courant

condition applied to the propagation of radiation over

the grid at speed c. Thus, the large number of steps re-

quired to reach an ion cyclotron period is given by
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N t > ð2pkd=dÞðc=vteÞðxe=XeÞðM=mÞ; ð3Þ

where d is the size of a grid cell. It is well known that

simulationists play with the mass ratio in order to re-
duce the computational effort. Less known is that they

compromise also with using too small a c/vte ratio. This

ratio yet, besides entering into Eq. (3), determines a

compression of the spatial scales between the electron

inertia length ke and the much smaller electron Debye

length kd. By adopting a Darwin model we drop the fac-

tor c/vte from the right-hand side of Eq. (3). We at once

reduce the required number of steps to reach an ion
cyclotron period and are freer to better separate kd from

ke, which makes this code quite attractive for the prob-

lem of concern.
Table 1

Upstream plasma parameters for each species

Name Electrons Ions

Plasma frequency xe = 0.624 xi = 0.0624

Gyrofrequency Xe = 0.315 Xi = 3.15 · 10�3

Thermal velocity vte = 1 vti = 8.0 · 10�2

Debye length vte/xe = 1.60 vti/xi = 1.28

Inertial length c/xe = 24 c/xi = 240

Gyroradius qe = 3.17 qi = 25.4

Beta be = 0.035 bi = 0.022

Cyclotron period sce = 20 sci = 2.0 · 103
2.2. Initialization

Our PIC code is open-boundary and the method for

producing the shock is similar to that used by Leroy
et al. (1982). Incident on the left boundary are the up-

stream ions and electrons while exiting on the right

boundary are heated particles. In between, the simula-

tion box contains the shock transition, which is at rest

in average. In other words, we work in the so-called

shock frame of theoretical studies (Tidman and Krall,

1971). Our shock frame is also the so-called normal inci-

dence frame where the upstream velocity is parallel to
the shock normal. While preparing a simulation run,

we use fluid theory and general flux conservation equa-

tions in order to establish a specific model for the mac-

roscopic transition layer between the upstream and the

downstream plasmas compatible with Rankine–Hugon-

iot. Profiles for quantities such as electron and ion den-

sities Ne(x), Ni(x), bulk velocity flows Vex(x), Vix(x),

Vey(x), etc. are used in the code to initiate the simula-
tions and define the boundary conditions. In practice,

we load the particles with the appropriate drift, velocity

spread, and number density, and the fields automatically

come out. After many steps, once the population of re-

flected ions has built up, a completely self-consistent

shock structure emerges. For somewhat large bi it

evolves into a quasi-steady structure, while for small bi

as here (bi = 0.022) one observes the self-reformation
of the shock front . More details about the simulation

conditions and the code will be published elsewhere.

For the main run reported here, the simulation box

consists of 1500 grid cells, each with an average of

1000 macroparticles per species. The cell size is

d = 1.87kd,1 with kd,1 the upstream electron Debye

length. The timestep is dt ¼ 0:2�x�1
p , where �xp is the elec-

tron plasma frequency averaged over the box. Subse-
quently, time is given in units of �x�1

p , velocity in units

of the upstream electron thermal speed vt ” vte,1, and dis-

tance in units of vt=�xp. In plots, however, distances are

shown in electron inertia length ke ¼ c=�xp. Also, mag-
netic field and density are shown in units of their up-

stream values B1 and N1. We simulate a supercritical

shock with an Alfven Mach number MA = 3.0. The

ion-to-electron mass ratio M/m = 100 and the tempera-

ture ratio Te/Ti = 1.56. The upstream values of the elec-

tron plasma frequency and gyrofrequency are
xe;1 ¼ 0:624�xp and Xe;1 ¼ 0:315�xp, respectively. De-

tailed physical parameters for each species are given in

Table 1. The choice of parameters is quite close to that

in Hada et al. (2003), save for the grid resolution which

is 2.7 times better and the particle statistics which is an

order of magnitude larger herein.

2.3. Frame transformation, characteristic velocities, and

specular reflection

To avoid confusion when discussing results about

shocks, it is important to know in which frame velocities

are measured. Two inertial frames are popular in numer-

ical studies: the upstream and the downstream frames,

where the usptream, respectively downstream, plasma

is at rest. Due to the reformation process, the shock
front itself is highly nonstationary and cannot provide

an inertial frame. However, there is an average shock

frame in between the upstream and the downstream

frames, which is inertial. This frame has the upstream

plasma impinging from the left with a positive velocity

V1 that determines the shock Mach number,

V1 = VAMA. It has the downstream plasma leaving to

the right with a positive velocity V2. The velocities V2

and V1 are related by the compression ratio r, which

in a perpendicular geometry controls both density and

magnetic compression: r = N2/N1 = V1/V2 = B2/B1 > 1.

This paper, unless specified otherwise, uses the average

shock frame.

During the cyclic self-reformation of the shock, the

front�s position moves toward downstream and then

jumps back upstream where the new front forms. The
front�s speed is thus unsteady, which makes it a priori

difficult to apply the concept of specular reflection of

the incoming ions at the front. However, our simula-

tions as well as the results of Lee et al. (2004), who dis-

cuss this question in detail, show that the front�s speed is



3.

1.
0. 30. 60. 90. 120. 150.

1200.

840.

480.

120.

[
]

ω
p-1

tim
e

3.

1.

N /Ne 1

0. 30. 60. 90. 120. 150.

1200.

840.

480.

120.

x/λedistance

[
]

ω
p-1

tim
e

Fig. 1. Top: profiles of magnetic field Bz stacked in time. Horizontal

axis shows distance along the shock normal in electron inertia length

ke. Time runs from bottom to top and is marked on the left (units:

electron plasma frequency averaged over the box, �xp). The plot

illustrates the process of shock front self-reformation. Bottom:

associated profiles of electron density Ne. A short-wavelength insta-

bility reappears periodically in the foot ahead of the sharp ramp. More

details in the text.
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close to the downstream velocity V2 at times of maxi-

mum particle reflection. For the sake of simplicity we

will thus assume that the incident ions impinges on the

front with a bulk velocity

U 1 ¼ V 1 � V 2 ¼ V 1ð1� 1=rÞ ð4Þ

which after specular reflection becomes Ur = �U1. As

approximate as it may be, this picture is in fact borne

out by, e.g., Fig. 2 of Lee et al. (2004), or Fig. 4 of Scho-

ler and Matsukiyo (2004), which both display the ion

phase space in the downstream frame. One can see that

the reflected speed is the minus of the injected speed. As

measured in the average shock frame, we will therefore
assess the reflected velocity to be

V ri ¼ �V 1ð1� 2=rÞ ð5Þ

The velocity is negative since these ions are moving back

from the shock ramp toward upstream. In our simula-

tions r � 3, hence the reflected velocity is predicted to

be about �1/3V1. If one further assumes that the elec-
trons in the foot adapt their velocity so as to maintain

a zero normal current, their bulk speed in the foot can

be expressed in terms of the ion reflection rate a and

the incident ion speed:

V e ¼ V 1ð1� 2aþ 2a=rÞ: ð6Þ

There are thus two possible types of instability within the
foot: one associated with the relative drift Ui–e ” Vi � Ve

between the incoming ions and the electrons, and one

associated with the relative drift Uri–e ” Vri � Ve between

the reflected ions and the electrons. For shock simula-

tions which use the piston method and hence have the

upstream plasma at rest, their velocities ~V are related

to the velocities here by ~V ¼ V � V 1 where V1 is the

velocity at which the shock sweeps through the upstream
plasma (i.e., the shock velocity Vsh = MAVA). We will re-

turn to these expressions in Section 4 where the disper-

sive properties of the instability we observe are analysed.
3. Simulation results

Fig. 1 shows the process of shock self-reformation. In
the top panel, profiles of the magnetic field Bz are

stacked in time. The horizontal axis indicates distance

along the shock normal in units of electron inertia

length ke. Time runs from bottom to top and is marked

on the vertical axis at the left in units of inverse electron

plasma frequency. For displaying purposes, the succes-

sive profiles have been shifted both vertically and hori-

zontally by an amount indicated via the oblique line
on the left. The line shows the position of a point that

stays at rest in the simulation frame. In other words,

the last profile at t = 1440 is shifted by nearly 45ke as

compared with the first profile at t = 120. On the vertical

axis at the right, we provide a scale for the profiles�
amplitude. Note the sharp magnetic ramp with a charac-

teristic width of a few ke, which reappears periodically.

Note also the foot which develops in front of the ramp

to eventually turn into a new shock front with a new

sharp ramp. The process repeats itself periodically,

which yields a reformation time T ref � 540�x�1
p . We will

return below to this evaluation while discussing Fig. 4.

The bottom panel of Fig. 1 displays the electron density
profiles associated with the magnetic profiles of the top

panel. Conspicuous is a short-wavelength microinstabil-

ity which emerges in the region of the foot whenever the

latter builds up. A display of the ion density (not shown

here) reveals the same features as Ne, yet with some

minor amplitude differences.

We focus now on one reformation cycle and exam-

ine the development of the microinstability in the foot.
Fig. 2 shows the profiles of the magnetic field and the

electrostatic field for four successive times starting at

t = 840. The instability emerges in the foot, x/ke � 60,

in front of the steep magnetic ramp. It shows up as

short-scale wiggles in the profile of the electrostatic

field, yet is virtually invisible in the magnetic profile.

Note that they appear to develop within the flat por-

tion of the magnetic foot, while it is slowly convected
toward the right (in the simulation frame). The growth

time of the instability is of order 60�x�1
p , i.e., � 30X�1

e in

terms of local electron cyclotron time. By t = 1020
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when a bump in the Bz profile begins to form where the

new shock front will be, the unstable wave appears

confined to 60 < x/ke < 72. The reason for this spatial

confinement becomes clear later.
Fig. 3 is a composite snapshot which displays details

about both the field quantities and the particle phase

space at time t = 960 when the microinstability is well

developed. From top to bottom, we show the magnetic

field and the density, the electrostatic field Ex, the elec-

trostatic potential, and the electron and ion phase space
[x,vx]. One can see the short-wavelength wave in the

density and the electrostatic field profiles, yet barely in

the potential. The wavelength is equal to 15kd,1 with

kd,1 the upstream electron Debye length. The density

compression associated with the instability is well visible

in both the profile of Ne and the striations which mark

the electron phase space for 60 < x/ke < 70. Unlike the

incoming ions, the reflected ions are clearly affected by
the wave, which slows them down. Note the small tines

that the reflected population develops at the location of

the wave.

Snapshots of the ion [x,vx] phase space at various

times are displayed in Fig. 4. They show the evolution

of the reflected ions, from an early time at t = 840 when

the wave is just beginning to grow to a later time at

t = 1140 when the ions nearly close the ‘‘vortex’’ to be
reaccelerated in the positive x-direction before penetrat-

ing the downstream region. As is well known from pre-

vious simulation works, the reflected ions are

accelerated in the y-direction by the transverse compo-

nent of the electric field Ey (known also as the motional

electric field) until they acquire a large vy component.

They then feel a strong magnetic force vyBz which turns

their velocity around with a positive vx component.
As for the effect of the microinstability on the re-

flected ion beam, an examination of Fig. 4 reveals that

it spreads the particles over phase space. Unlike the first

half of the ‘‘vortex’’ (72 < x/ke < 77 at t = 1140) which

keeps almost intact its shape, the second half is strongly

affected by the instability which leads to a marked scat-

tering (57 < x/ke < 72 at t = 1140). This second half cor-

responds to the location where the instability reaches its
maximum amplitude: time t = 1020 in Figs. 2 and 4. By

this time the vx component of the reflected ions that have

reached beyond x [ 60 has changed to vx [ 0. The rel-

ative drift Uri–e between reflected ions and electrons has

changed significantly, so that the resonance condition

for the instability is no more satisfied. This explains

the apparent confinement of the instability to the flat

portion of the magnetic profile, which we noted in Figs.
2 and 3. Compare the two t = 1020 snapshots of Figs. 2

and 4.

Although the microinstability has a definite but lim-

ited impact on the electrons, as Fig. 3 makes clear, it

has a non-negligible impact on the shock front dynamics

itself via the reflected ions. These ions are strongly scat-

tered by the instability in the second half of the vortex

pattern, as noted above. Thus, reflected ions accumulate
over a broad spatial extent upstream of the ramp,

including (i) ions near the ramp and (ii) ions further
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Fig. 4. Successive snapshots of ion phase space [x,vx] starting at

t = 840 when the instability has not yet developed. Velocities are

normalized to vt ” vte,1. Note how the instability affects the second half

of the forming ‘‘vortex’’. More details in the text.
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from the ramp. Part (i) corresponds to ions having a

shorter gyromotion and contributes to speeding up the

build up of the foot near the ramp. Part (ii) has an oppo-

site effect and contributes to the upstream end of the

foot. The simulation results show that part (i) has a

dominant effect and contributes to reducing the period

of cyclic self-reformation. Without the presence of any

microinstability, the period is comparable to the ion
gyroperiod calculated from the mean downstream value

of the magnetic overshoot (Lembège and Savoini, 1992),

namely sci ¼ 665�x�1
p for our magnetic field profile. In
the present case, with the instability operating, the

period is T ref � 540�x�1
p , namely 20% less than 665�x�1

p .

The present case stands in contrast with the situation

where reflected ions form a very collimated beam (with-

out scattering) during their gyromotion and accumulate
further from the ramp�s location (Lembège and Dawson,

1987; Hada et al., 2003). The time necessary for the ions

to describe this narrow ring in velocity space is larger

than the time covered by ions of part (i). Accordingly,

the build up of the foot in the present case requires a

smaller time, which decreases the self-reformation

period.

In order to study the possible streaming instabilities
and carry out the dispersion analysis of Section 4, we

have produced local distribution functions of both elec-

trons and ions at time t = 960. Fig. 5 shows such distri-

butions. For comparison purposes, they have been

recorded in two different bins. Upstream distributions

are measured in the interval 0 < x/ke < 10, hence corre-

sponds to the injected plasma. Foot distributions are ta-

ken in the interval 60 < x/ke < 70. Note the excellent
statistics in the electrons and the two beams in the ions,

incoming and reflected.
4. Dispersion analysis

The observed microinstability is mostly electrostatic

and grows in the flat portion of the foot. It is resonant
with both the reflected ions and the broad distribution

of electrons. We believe that it is a variety of the electron

cyclotron drift instability, which was studied in the 70�s
and has since been all but forgotten (e.g. Forslund et al.,
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Fig. 6. Dispersion analysis of the instability. (a) Two ion beam modes

(diagonal lines) intersect with the first three branches of electron

Bernstein modes (thick lines) raising the possibility of coupling. Upper

hybrid frequency is denoted by �UH�. (b) Numerical solution of Eqs.

(7)–(9) showing the coupling of the Bernstein waves with the slow

beam mode and the associated unstable ranges. (c) Actual growth/

damping rate for the three branches. More details in the text.
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1970). The idea is illustrated in Fig. 6(a) which displays

the two ion beam modes at x = k(Vd ± vti) intersecting
with the first three branches of Bernstein modes. At
the intersections, the otherwise purely real cyclotron

waves couple with the slow beam mode and acquire a

positive growth driven by the positive slope of the ion

beam distribution.

We suppose that the standard assumptions of an infi-

nite, uniform plasma apply to the flat portion of the
foot, and adopt a coordinate system in which the elec-

trons are at rest, the ion beam drifts in the positive

x-direction, while B points in the z-direction. The elec-

trostatic dispersion reads

1þ ve þ vi ¼ 0; ð7Þ

where ve and vi are the susceptibilities contributed by the
electrons and the ions, respectively. The electron contri-

bution is the term for electron cyclotron Bernstein waves

ve ¼ �
1

k2k2
d

�1þ I0ðgÞe�g þ 2
X1
n¼1

InðgÞe�g x2

x2 � n2X2
e

" #
;

ð8Þ

where g ” (kqe)
2 = (xe/Xe)

2(kkd)2. The ions are taken as

unmagnetized since the duration of the foot is much less

than an upstream ion gyro-period and the instability
growth is seen to occur on a rapid time scale

vi ¼ �
a

k2k2
d

T e

2T i

Z 0
x� kV driffiffiffi

2
p

kvti

� �
� ð1� aÞ xi

xþ kV di

� �2

:

ð9Þ

The first term represents the reflected ion population
with drift Vdri and relative density a. The second term,

which represents the incoming ions with drift �Vdi, is

non-resonant and negligible for the parameters of the

simulation.

A numerical solution of the dispersion relation with

Eqs. (8) and (9) is displayed in Fig. 6(b). The panel dis-

plays the real part of the frequency for three simulta-

neous branches. The unstable ranges, which are
marked with plusses, show the signature of the beam

in their alignment. For kkd � 0.4 the slow beam mode

couples with the first Bernstein harmonic. Similarly,

there is a coupling with the second harmonic at

kkd � 0.7. To draw the plot we have chosen parameters

that emulate the simulation: xe/Xe = 2, Vdri/vte = 1.8,

M/m = 100 , a = 0.25, and Te = Ti.

The growth rates for the three branches are indicated
in the three panels of Fig. 6(c). They are seen to decrease

with increasing harmonics. A rate c = 0.06Xe is fast en-

ough to explain the simulations, where the instability

is seen to grow with a time scale of �30X�1
e (see Fig.

2). Due to the grid resolution used herein, we observe

only the instability at the first harmonic. In fact the

wavelength k = 15kd,1, which was estimated from Fig.

3, falls right in the middle of the first unstable range.
What about the associated frequency x = 1.4Xe? Is that

what we see?
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By means of a probe we have measured the apparent

frequency in the frame of the simulation box. This fre-

quency is 0.2xe,1. Doppler-shifting it into the electron

frame we have x = 0.2xe,1 + k Ve. Now, while the wave-

number is well defined, kvt = (2p/15)xe,1, Ve is more dif-

ficult to evaluate precisely. One can either use Fe(v)
shown in Fig. 5 and compute the first moment, or use

Eq. (6) of Section 2.3. The former way produces

Ve = 1.3vt while the latter yields Ve = 1.5vt (with

a = 0.25, r = 3). If we choose the result produced by

Fe(v) of Fig. 5, we obtain a frequency

x � 0.74xe,1 � 1.5Xe,1, which is close to the result pre-

dicted by the dispersion relation.
5. Discussion

Present results clearly show that the microinstability

observed in our simulations of perpendicular shock is

a variety of the electron cyclotron drift instability which

was studied in the 70�s (see, e.g., Forslund et al., 1970;

Gary, 1971,, and references in the review by Wu et al.
1984). It is a variety in the sense that the instability is

not driven by the whole ions drifting as a bulk, yet just

by an ion beam. Also, it takes place in the foot and

propagates along the shock normal, while the electron

cyclotron drift was thought to occur in the ramp and

propagate parallel to the shock front. The latter turns

out to be an important distinction. The various drifts

that are caused by the gradients in x within the ramp
and which occur in the y-direction were shown to detune

the resonance condition leading to reduced growth rates

(Gary, 1971). Here, since the wavevector is in the x-

direction, the instability is unaffected by possible, gradi-

ent-related drifts in y.

A characteristic of the instability is its short wave-

length. This may explain the difficulty to observe it

either experimentally or in other previous numerical
simulations of shocks. Because of the large wavenum-

ber, the frequency that could be detected in the space-

craft frame is presumably significantly Doppler shifted

from the electron gyrofrequency into some uncharacter-

istic frequencies. We should also emphasize that the

instability may take place only for shocks with rela-

tively cold ions, meaning where the ion thermal velocity

is much less than the upstream shock velocity, for
which self-reformation occurs. Moreover, then only a

portion of the reformation cycle is concerned, as shown

in Fig. 1.

Let us consider now what to expect when simulation

parameters converge toward more realistic values. Using

Eqs. (5), (6) and (2), one evaluates the relative drift be-

tween reflected ions and electrons as

U ri–e � 2MA

2

be

� �1=2 m
M

� �1=2

ð1� aÞð1� 1=rÞvt: ð10Þ
Now, a physical condition for the instability to occur is

as follows. The electron cyclotron frequency of the first

Bernstein wave needs to be seen by the reflected ions as

close to a natural frequency of theirs. Therefore, one has

the resonant condition

kðU ri–e � vtiÞ � Xe;f ; ð11Þ

where the subscripts ‘‘e, f’’ denotes the electron cyclo-

tron frequency evaluated in the foot. Combining Eqs.

(10) and (11) where we assume vti to be negligible com-

pared to Uri–e, we obtain an estimate of the wavenumber

in terms of simulation parameters:

kkd �
1

MA

M
m

� �1=2 Xe

xe

� �
be

2

� �1=2 r
r � 1

0:5

ð1� aÞ
Xe;f

Xe;1

� �
:

ð12Þ

The factor in square brackets is of order unity. For

example, in our simulations we have r � 3, a � 0.25

and Xe,f/Xe,1 � 1.5, resulting in a factor 1.5. As discussed

in Section 2.1 both factors M/m and xe/Xe, which are

large numbers in the solar-terrestrial environment, have

generally a fake reduced value in PIC simulations so as
to decrease the computational effort and make the sim-

ulation altogether feasible. Raising the ion-to-electron

mass ratio alone shortens the wavelength. Raising the

ratio xe/Xe alone elongates the wavelength.

In order to test this prospective analysis, we per-

formed two complementary simulation runs with a lar-

ger mass ratio, M/m = 256. For the first run all other

parameters were kept the same. The cyclotron instability
developed in the foot as described in this paper, yet with

a wavelength of 9kd,1, i.e. significantly shorter. Such a

wavelength is at the limit of what our grid could resolve.

For the second run, we also used M/m = 256, yet raised

the plasma-to-gyro frequency ratio xe/Xe, while keeping

the same be. The parameters were: Xe,1/xe,1 = 0.255,

be = 0.034 and MA = 3.0. Again, the cyclotron instabil-

ity emerged in the foot during the reformation cycle
yet had now a wavelength of 19kd,1. Thus, the unstable

wavelength varied according to our expectations.

Although this last run is preliminary and still needs to

be analysed in detail, we show here the development

of the instability as recorded. Fig. 7 displays profiles

of the magnetic field Bz and the electrostatic field Ex

for four successive snapshots. Again, a short-wavelength

electrostatic instability emerges in the flat portion of the
foot.

In light of the above, one should increase both M/m

and xe/Xe when converging toward more realistic

parameters. The two ratios compensate each other,

making the electron cyclotron instability a promising

candidate to account for the electrostatic turbulence in

the shock front. Otherwise, if only M/m augments, the

wavelength becomes so short that it is unphysical and/
or invisible to the grid. The short wavelength combined
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length electrostatic instability emerges in the flat portion of the foot, as
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Table 2

Comparison of simulation regimes

Simulations MA M/m xe/Xe ke/kd kkd kd

Present 3 100 2 15 0.3 0.6

Hada et al. (2003) 3 84 2 15 0.3 1.5

Lembège and Savoini (1992) 2.2 42 2 7 1.1 2.6

Scholer et al. (2003) 6 1836 2 9 1.2 0.6

Ideal 3 1836 50 200 0.2 N/A
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with the parameter choice explains why this instability

has not been observed in previous simulation works.

Table 2 provides a comparison between different PIC

simulations: chosen values of parameters and the associ-

ated wavenumber predicted by formula (12) are shown.

Hada et al. (2003) with kd = 1.5 and Lembège and Savo-

ini (1992) with kd = 2.6 clearly lack the grid resolution.
Scholer et al. (2003) report a 90� case with real mass ra-

tio M/m = 1836 and good grid resolution. At this point,

why they did not see the instability is an open question

which is under active investigation.

If we consider the cold limit, where the relative drift

Uri–e between reflected ions and electrons is much larger

than the electron thermal spread, then both ve and vi

greatly simplify. Taking the limit g! 0 in Eq. (8) and
vti! 0 in Eq. (9) leads to the dispersion relation

1þ x2
e

x2 � X2
e

þ ax2
i

ðx� kV drÞ2
¼ 0: ð13Þ

The electron mode which the ion beam mode couples to

is now the upper hybrid. Furthermore, for Xe� xe one

recovers the famous Buneman instability observed by

Shimada and Hoshino (2000) in their simulations. We

note also that when the Buneman instability is possible,

its development is so fast that it preempts the slower
cyclotron instability we have discussed here.

To close this section, we note that the microinstability

does not strongly alter the global dynamics of the re-

flected ions. As visible in Fig. 4, their accumulation at

the upstream end of the foot is still the main source of

the shock front self-reformation. Even if the instability

amplitude is quite large, the associated ion diffusion fills

only partially the large ‘‘vortex’’ in phase space which
forms in front of the ramp. The present case differs from

the oblique, quasi-perpendicular situation studied by

Scholer and Matsukiyo (2004). Their setup allows the

modified two-stream instability to develop, which was

seen to drastically alter the ‘‘vortex’’ pattern. In their

case, the instability interacts with the incoming ions,

which leads to their phase mixing with the reflected ions

and to the formation of a new ramp upstream of that re-
gion of heated ions. We conclude that the difference is

due to the electron cyclotron instability acting locally

in phase space, only on the reflected ions and, moreover,

only on a portion of their trajectory within the large

scale ‘‘vortex’’.
6. Conclusion

By means of PIC simulations, we have shown that

there is a microinstability in the foot of strictly perpen-

dicular shocks that does not require a large relative drift
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between reflected ions and the electron bulk. As such, it

takes place for moderately supercritical shocks and

emerges during the self-reformation phase, when a beam

of reflected ions progresses upstream. The instability

basically results from the coupling of electron Bernstein

waves with an ion beam mode carried by the reflected
ions. It is mainly electrostatic and propagates along

the shock normal toward upstream as the ion beam.

As its phase velocity is close to the beam velocity, it

has a noticeable impact on both the populations of elec-

trons and reflected ions, but does not interact with the

incoming ions. Its wavelength is shorter than an electron

inertia length and requires a fine grid to resolve, for

which a Darwin-type PIC code reveals to be quite
adapted. It is the first time this microinstability is ob-

served in a truly self-consistent model, where the insta-

bility is embedded within the larger frame of an

evolving shock structure. It could be a component of

the electrostatic turbulence observed in the front of the

terrestrial bow shock.
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