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Abstract. Multiple spacecraft observations have confirmed the ubiquitous nature
of Langmuir waves in the presence of auroral electrons. The electrons show vari-
ations consistent with bunching at or near the plasma frequency. Linear analysis
of the interaction of a finite Gaussian packet of Langmuir waves shows that there
are two components to the perturbation to the electron distribution function, one
in-phase (or 180◦ out-of-phase) with respect to the wave electric field called the
resistive component and one which is 90◦ (or 270◦) out-of-phase with respect to
the electric field. For small wave packets, the resistive perturbation dominates. For
longer wave packets, a non-linear analysis is appropriate which suggests that the
electrons become trapped and the reactive phase dominates. Rocket observations
have measured both components. The UI observations differ from those of the UC
Berkeley observations in that a purely reactive phase bunching was observed as com-
pared to a predominantly resistive perturbation. The resistive phase results of the
UC Berkeley group were interpreted as arising from a short wave packet. The UI
observations of the reactive phase can be explained by either a long, coherent train
of Langmuir waves or that the narrower velocity response of the UI detectors made
it possible to capture only one side of the reactive component of the perturbed dis-
tribution function for a short wave packet in the linear regime. Future wave-particle
correlator experiments should be able to resolve these questions by providing more
examples with better velocity space coverage.

Key words: Electron bunching, Langmuir waves, resistive and reactive
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13.1 Introduction

The precipitation of auroral electrons provides an example of a beam-plasma
interaction which generates Langmuir waves from the free energy in the elec-
trons. The resulting waves play several important roles in the Earth’s auroral
ionosphere. First, the waves Landau damp on the thermal electron population
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and thereby form a direct conduit for energy exchange between the auroral
electron beam and the thermal electrons. Several authors have speculated that
Langmuir waves play a significant role in establishing the electron tempera-
ture in the auroral ionosphere [3, 15]. In addition to heating electrons, the
Langmuir/upper hybrid waves radiate away some of their energy into elec-
tromagnetic radiation, which can serve for remote sensing of auroral plasma
processes from ground level and from satellites. For example, auroral roar is
an EM emission observed near 2–3 and 4–4.5 MHz at ground level [14, 30]
and from satellites [1, 12].

Understanding these auroral wave emissions is important not only to fully
understand terrestrial aurora and related phenomena, but also because they
shed light on analogous emission processes elsewhere in the solar system and
beyond. For example, the generation of auroral roar is similar to that of ter-
restrial continuum radiation, which is generated via mode conversion of upper
hybrid waves at the plasmapause, and possibly continuum radiations at other
planets as well. Solar type III radiation results from mode conversion of Lang-
muir waves in the solar wind, and recent observations of structured type III
emission [Reiner et al., 23, 24] indicate the significance of frequency structure
in the causative Langmuir waves.

High frequency (HF) electric field observations in the topside auroral ionos-
phere, for which the plasma frequency is typically greater than the electron
cyclotron frequency, have revealed plasma waves in the range fpe ≤ f ≤ fuh

ever since the earliest measurements [2, 29]. Simultaneous wave and electron
distribution measurements have shown that the waves are excited by Landau
resonance but that temporal variation of the distribution function or wave
refraction from vertical density gradients can limit wave amplitudes as shown
by McFadden et al. [19]. Many examples of waves near fpe were observed us-
ing Aureol/ARCAD 3 satellite wave receivers and the free-energy source was
identified as the electrons [Beghin et al., 3]. Although rocket-borne receivers
have detected HF waves at E-region altitudes attributed to generation by sec-
ondary electrons [Kelley and Earle, 13], most observations pertain to altitudes
from 300 km and up, where the waves have amplitudes ranging from less than
1 mV/m to as large as 1 V/m [4, 6, 8, 17, 18, 28] These waves are highly
bursty in time, sometimes lasting as little as 1 ms but sometimes appear-
ing continuous for ∼1s. Recent high-resolution experiments reveal that they
can have complex frequency structure [17, 18, 25]. Other investigators have
detected plasma waves through particle-particle correlator techniques. Using
a rocket-borne electron detector of large geometric factor, ∼5% modulation
at frequencies 4.2–5.6 MHz was found during a 7-second interval when the
rocket passed the boundary of two oppositely directed Birkeland sheet cur-
rents [27]. Strong modulation (∼30%) was observed at 2.65 MHz of 4–5 keV
electrons, corresponding to energies at which a positive slope was observed in
the perpendicular and parallel velocity distribution functions [Gough and Ur-
ban, 11]. Rocket measurements in which 1.4 MHz fluctuations were detected
in the 7.5 keV electrons, just below the electron beam energy, were reported to
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occur simultaneously with a positive slope in the electron distribution function
[Gough et al., 10].

Linear theory explains the existence and parallel polarization of auroral
Langmuir waves [see, e.g., Nicholson, 22]. Theory and simulations have shown
that Langmuir waves in the auroral plasma most likely do not develop into
strong turbulence but that observed non-linear features in amplitudes and
modulations of the waves are consistent with nonlinear interactions between
the Langmuir waves and ion acoustic waves [Newman et al., 21]. More re-
cently, the difference between Langmuir wave-electron interactions both at
rocket altitudes and at the altitude of the Freja spacecraft have been studied,
finding that standard quasi-linear diffusion theory does not hold for large am-
plitude Langmuir waves at Freja altitudes, but should hold at lower altitudes
[Sanbonmatsu et al., 26].

Correlating waves and particles directly probes the physics of their in-
teraction by providing a superior picture of the microphysics compared to
statistically associating an unstable feature of the distribution function with
the presence of waves. Elementary theory implies that if the electrons and the
waves are exchanging energy, the electrons will have an oscillatory component
at a velocity equal to the phase velocity of the waves. Identifying the velocity
at which the electron distribution function has this oscillatory component de-
termines the wave phase velocity and therefore the wave number. Measuring
the phase of this oscillatory component of the electron distribution function
relative to the wave electric field yields further information. The phase bunch-
ing splits into two pieces: 1) the resistive component, in phase with the electric
field indicating wave-electron energy exchange; and 2) the reactive component,
90◦ out of phase with the electric field indicating trapping [Nicholson, 22].

Detailed treatment of phase relationships by Muschietti et al. [20] for
Gaussian Langmuir wave packets, show that the linear perturbation in the
distribution function may be considered as the sum of a resistive and reactive
components. For both components, the perturbation narrows and increases
in magnitude as the wave packet length increases. Electron detectors with
broad energy resolution can only detect the resistive component because it
has only positive polarity and adds over the entire energy range. Detecting
the bipolar nature of the reactive component requires narrow energy response
(∆v/v ≤ 5 − 6%) detectors.

Only three high frequency (MHz) wave-particle correlation experiments
have been reported in the literature [7, 9, 16]. Very similar experiments have
been tried on FREJA by Boehm et al. [5] and on FAST by Ergun et al. [7]
but were limited in phase resolution. The first two of these experiments used
a correlator that worked by binning individual detected particles according to
the phase of the strongest wave detected by a broadband (0.2–5 MHz) wave
receiver [Ergun et al., 7, 9]. The most recent experiment used a correlator
which had higher phase resolution and detected electrons bunched 90◦ out-
of-phase with respect to the electric field, suggesting non-linear evolution and
trapping of the electrons.
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In what follows, we discuss the theory of linear perturbations to the dis-
tribution by a Gaussian wave packet and also present the theory of extended
wave packets via a BGK analysis. We then describe in detail two of the three
high frequency wave-particle correlator measurements referred to above. We
then conclude with a discussion of these results in the context of theory.

13.2 Finite-Size Wave Packet in a Vlasov Plasma

Consider a coherent, Langmuir packet propagating in the x direction with a
phase ψ = kx−ωt where the frequency ω is close to the plasma frequency ωp.
The wave packet is assumed to be localized, which we specify by a form factor
η(x, t) which is piecewise continuous, bounded, and vanishing for x → ±∞.
Its slow time dependence describes the drift due to the group velocity of the
Langmuir wave or the growth (or damping) due to the interaction with the
electrons. Explicitly, the wave electric field is written as

E(x, t) = E0η(x, t)eiψ + c.c. (13.1)

where c.c. is the complex conjugate.
The electrons are assumed to consist of two populations: a dense back-

ground and energetic, streaming particles. In the problem that we treat, the
density of the energetic electrons is orders of magnitude smaller than the
background density, so that only the latter determines the real part of the
dispersion relation. The electrons are described by a homogeneous distrib-
ution function F (v) which includes velocities around the phase velocity of
the Langmuir wave, vp ≡ ω/k. Under the influence of the wave field, the
streaming population develops a time-dependent, inhomogeneous component
f(x, v, t) which satisfies the Vlasov equation

d

dt
f ≡

(
∂

∂t
+ v

∂

∂x

)
f =

eE

m

∂

∂v
(F + f) (13.2)

where −e and m are the electron charge and mass, respectively. Our goal is to
find explicit expressions for f(x, v, t) and to analyze their phases versus the
wave phase ψ in view of correlator applications.

In the linear approximation, one neglects the perturbation ∂f/∂v on the
right-hand side of (13.2) and formally integrates the equation,

fL(x, v, t) =
eE0

m

∫ t

−∞
η(x′, t′)eiψ(x′,t′) ∂

∂v′F (v′) dt′ + c.c. (13.3)

The integration is carried out along the trajectories x′(t′), v′(t′) that have
x and v for end points at t′ = t, namely x′(t) = x and v′(t) = v. The
perturbation at large negative times when x′ → ±∞ is ignored. From (13.3)
one sees that the linear perturbation fL oscillates in time with the same
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frequency as the electric field. One also notices that the perturbed distribution
depends upon the structure of the form factor η along the past trajectories of
the particles, which leads to a phase shift relative to the present wave phase
ψ(x, t).

13.2.1 Linear Perturbation of the Electrons

Taking as characteristics the straight trajectories v′(t′) = v and x′(t′) =
x + v(t′ − t), where v is constant and positive, one rewrites (13.3) as

fL(x, v, t) = A0 ei(kx−ωt) ∂F

∂v

∫ 0

−∞
η(x + vτ, τ + t)ei(kv−ω)τdτ + c.c. (13.4)

where A ≡ eE0/m. The integral explicitly relates the distribution fL to the
motion of the particles at earlier times, so that the effect of spatial gradients in
the electric field amplitude will be directly seen in the resulting phase relation.

Let us for instance consider the simple profile of a square window with a
width L,

η(x) =

{ 0 : if x < 0
1 : if 0 < x < L
0 : if x > L

(13.5)

From (13.4), one readily obtains

fL(x, v, t) =
iAeiψ

ω − kv

∂F

∂v

[
1 − βx : if 0 < x < L

β(x−L) − βx : if L < x

]
+ c.c. (13.6)

where β ≡ exp i(ω/v−k). In the square bracket to the right, the exponents re-
flect the presence of the boundaries and modify the phase of the perturbation
relative to the wave phase ψ. They also yield a ballistic term β(x−L)−βx down-
stream of the interaction region. An important point is that these boundary
terms keep the perturbed distribution function of resonant electrons bounded.
The usual expression for a plane wave [(13.6) with the square bracket equal
to unity] shows the perturbation to have a singularity at resonance, where the
assumed linear solution, therefore, breaks down. Instead, the right-hand side
for 0 < x < L can be expanded for velocities close to the phase velocity vp.
The resulting expression is finite. One can then differentiate it with respect to
v and thus evaluate at v = vp the derivative we neglected in the linearization
of Vlasov equation (13.2). Using the notation F ′ ≡ ∂F/∂v, the result can be
written as

∂fL

∂v
|vp = F ′(vp)

2A

ωvp

[
(vp

∂lnF ′

∂v
− 1)kx cos ψ + (kx)2 sin ψ

]
(13.7)

The term proportional to sinψ (thus out of phase with the electric field) is seen
to grow quadratically with the distance into the packet. Therefore, the packet
must have a finite extent to assure the validity of the linear perturbation,
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which we write (kL)2 � ωvp/(2A). This inequality introduces an important
parameter to the problem at hand

µ ≡ 2eE0k

m

(
kL

ω

)2

. (13.8)

This quantity measures the effect of the localized electric field on the elec-
trons and can be used as a small expansion parameter. We can think of it as
the square of the bounce frequency times the transit duration of a resonant
particle.

13.2.2 Case of a Gaussian Packet

A more realistic envelope of wavepacket is provided by a Gaussian. In fact,
since the dispersion relation of Langmuir waves is quadratic, a Gaussian packet
moving at the group velocity describes well a propagating Langmuir packet.
Its dispersion time is given by td ≈ (L/λd)2ω−1

p with λd the Debye length. This
time is very long compared to, for example, the transit duration of resonant
electrons, tt ≈ kL ω−1

p . For simplicity, we choose here a static form factor

η(x) = exp[−x2/(2L)2] , (13.9)

which is justified since for many applications the group velocity u is much
smaller than the velocity of resonant electrons, u/vp = 3 (kλd)2 � 1. After
substituting (13.9) into (13.4) and some algebra, one obtains

fL(x, v, t) = Aη(x)ei(kx−ωt) ∂F

∂v

L

v
(−i)Z(ξ) + c.c. (13.10)

where Z is the usual plasma dispersion function, yet has here a completely
different argument:

ξ = (ω − kv)
L

v
− i

x

2L
. (13.11)

The real part of the argument is the Doppler-shifted frequency seen by a
traversing electron times its transit duration through the wavepacket. It de-
termines the proximity to resonance during the interaction. The imaginary
part of the argument describes the position with respect to the center of the
packet.

Let us evaluate now (13.10) at the center of the packet. We can define a
resonance function that represents the response of the electron distribution to
the wave field:

R ≡ −iL

v
Z(ξr) =

L

v

(
√

πe−ξ2
r − i 2e−ξ2

r

∫ ξr

0

ey2
dy

)
(13.12)

The real part of R, associated with the Gaussian e−ξ2
r , represents the resistive

contribution (in phase with the electric field). The imaginary part, associated
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Fig. 13.1. Resonance function defined by (13.12). Real and imaginary parts of
R are shown for various packet sizes (Reprinted with permission from American
Geophysical Union)

with the Dawson integral, represents the reactive contribution (out of phase
with the electric field). When the packet is large so that ωL/v → ∞, Re(R)
tends to the usual delta function of the Plemelj formula, πδ(kv−ω), and Im(R)
tends to the principal part of 1/(kv−ω). Plots of real and imaginary parts of
R are displayed in Fig. 13.1 for various sizes of packets. One clearly sees the
tendency to a delta function for large kL and, conversely, the broadening of
the resonance for a more localized wavepacket.

The perturbed oscillating distribution has components in and out of phase
with respect to the electric field. Let us split fL of (13.10) into resistive and
reactive terms, in a way that emulates the procedure performed by the wave
correlator on rocket data. One obtains

fL =
µ

kL

v2
p

v
F ′(v) η(x) [Zi cos(kx − ωt) + Zr sin(kx − ωt)] (13.13)

where the acceleration factor A = eE0/m has been rewritten in terms of µ
using (13.8). The perturbation is thus either rather resistive or reactive de-
pending upon the relative weight of Zi and Zr. Its amplitude is proportional
to the wave amplitude, to the packet size, and to the slope of the distrib-
ution F . Figure 13.2 displays the perturbation in phase space by means of
contours. Solid contours with gray shadings indicate a positive value, i.e. an



320 C.A. Kletzing and L. Muschietti

30.

20.

10.

0.

-10.

-20.

-30.

-40.

-50.

0.90 0.95 1.00 1.05 1.10

30.

20.

10.

0.

-10.

-20.

-30.

-40.

-50.

-0.01 0.01

e
Te

n

d
is

ta
n

ce
kx

velocity v/vp

Fig. 13.2. Linear perturbed distribution as described by (13.13) with power-law
model F (v) ∼ v−4. Contours with gray shadings indicate enhancements at levels
0.006 (light) and 0.018 (dark). Dashed contours denote depletions at levels −0.006
and −0.018. The perturbation (normalized to F (vp)) features a chain of bunch-
ellipses centered at the phase velocity vp. Panel marked δn at right displays the
resonant density perturbation, split into its resistive (thick line) and reactive (thin
line) components. Rightmost panel shows the potential φ of the Langmuir packet
with characteristics: kL = 30, µ = 0.09

accumulation of electrons. Dotted contours indicate a negative value, i.e. a
dearth of electrons. The bunching of the particles yields a chain of ellipses
centered on the phase velocity vp and zeroes of the potential, which is shown
in the rightmost panel. The panel marked δn displays both the resistive (thick
line) and reactive (thin line) components of the density perturbation. It is clear
that the linear perturbation is mostly resistive. In addition, from the maxima
of δn being in phase with ∂φ/∂x > 0 we can conclude that the wave accel-
erates the electrons, whereby it is being damped. This is consistent with the
power-law model, F (v) ∼ v−4, we have chosen for drawing the plot.

Note the slight tilt of the ellipses in Fig. 13.2. A consequence is that the
result of a velocity-integration of the perturbed distribution critically depends
on the integration window’s width and centering. For computing δn shown
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in the mid-panel we used a 7% width on either side of vp. However, if the
window is narrower and not centered on vp, the integration will emphasize
the reactive component. Furthermore, the sign of the latter depends upon
whether the window happens to be centered a little above or below vp.

In Fig. 13.2 the parameter µ is small, µ = 0.09, hence the interaction
is justifiably in the linear regime. However, when either the wave amplitude
is larger or the packet is more extended, the linear solution to the Vlasov
equation loses its validity and one must account for nonlinear corrections.
These corrections to the orbits of resonant electrons δv and δx are difficult to
compute analytically. Instead, we resort to particle-in-cell simulations, where
consistent interactions between field and particles are automatically taken
into account. The results of these simulations are shown in Fig. 13.3 which
display the bunch-ellipses in a weakly nonlinear regime with µ = 1.2. Solid
contours and shaded areas indicate a positive value, or an accumulation of
electrons. Dotted contours indicate a negative value, or a dearth of electrons.
Two points must be noted. First, the wave is here driven by a bump on the tail
of the distribution function. Accordingly, resonant electrons are decelerated

Fig. 13.3. Bunch-ellipses in a weakly nonlinear regime, from a particle-in-cell simu-
lation where the Langmuir packet is amplified by a bump on tail located at v = 10ve.
Here µ = 1.2 and vp = 8.7ve. Accumulation locales (shaded in gray) have decelerated
while dearth locales (dashed contours) accelerated. More in the text
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by the wave and maxima of δn are in phase with ∂φ/∂x < 0. Second, since
bunches of accumulated electrons are decelerated, the nonlinear correction to
their orbit has δv < 0 and δx < 0. In contrast, bunches associated with a
dearth of electrons are accelerated and thus have δv > 0 and δx > 0. Hence,
the two types of bunch-ellipses are no longer aligned at v = vp as in Fig. 13.2.
One can see in the plot that the solid contours have moved to the left while
the dotted contours have moved to the right. In addition, their position in
x drifts and slowly converges toward maxima of the potential, whereby their
phase becomes more reactive.

13.3 Extended Wave Packet: A BGK Analysis

The only nonlinear term in the Vlasov-Poisson system of equations is the
acceleration term on the right hand side of (13.2). In Sect. 13.2, we chose to
linearize this term by splitting the distribution in a large, homogeneous part F
and a small, inhomogeneous part f , and then neglecting ∂f/∂v versus ∂F/∂v.
We found that this was justified as long as µ � 1. However, when the wave
packet is so extended that a traversing electron can satisfy the resonance
condition for a long time, this electron can be significantly accelerated by
the electric field. Its orbit is then deeply altered. Therefore, the distribution
function is strongly modified and the linearization procedure breaks down.

The BGK method offers another approach to solving the Vlasov-Poisson
system of equations. Let us now imagine a very long wavepacket and examine
the phase-space orbits of electrons in the so-called waveframe (frame moving
with the wave phase velocity). These orbits are determined by the energy of
the electrons

w = v2/2 − φ(x) where E(x) = −∂φ

∂x
. (13.14)

For this section, in order to simplify the notation, we introduce dimensionless
units where length is normalized by λd, velocity is normalized by the electron
thermal velocity ve =

√
Te/m, and the electrostatic potential is normalized

by Te/e. Electrons with w < 0 are trapped in local maxima of the wave
potential. Electrons with w > 0 are untrapped and alternately accelerate and
decelerate while passing over hill and dale of the potential. Now, any function
of w where φ(x) is time-independent automatically satisfies Vlasov equation.
The BGK approach exploits that property and assumes that the distributions
are function of w only and that they are in a self-consistent steady state with
the potential. This enables one to concentrate on solving the Poisson equation
for a given model of wave field, e.g. here a sinusoidal wave

φ(x) = Ψ sin kx . (13.15)

Let Fe(w) and Ft(w) be the distribution functions of, respectively, the
passing and the trapped electrons. Poisson equation reads
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d2φ

dx2
= −ni +

∫ ∞

Ψ

F+
e (w) + F−

e (w)√
2(w + φ)1/2

dw +
∫ Ψ

−φ

√
2Ft(w)

(w + φ)1/2
dw . (13.16)

Terms on the right hand side represent, in order, the density of the ions, which
are supposed to form a constant background, the density contribution from the
passing electrons, and that from the trapped electrons. The passing electrons
have been split into those moving to the right, F+

e (w), and those moving to
the left, F−

e (w). The trapped electrons, by contrast, must be symmetric with
the same flux of right and left moving particles, F+

t (w) = F−
t (w) = Ft(w), in

a stationary situation.

13.3.1 Passing Electrons

A model of distribution for the ambient electrons that is practical for com-
putational purposes and representative of the observed distributions is given
by

F±
e (v) =

2
π

1
[1 + (v ± vp)2]2

, (13.17)

where v is an absolute number measuring the velocity from the wave frame,
and the direction is selected by the ± sign. Note that this distribution is
normalized to unity and becomes a power-law in v−4 at large velocities. In
the presence of the wave it translates into

F±
e (w) =

2

π
[
1 +

(√
2(w − ψ)1/2 ± vp

)2
]2 with w > Ψ . (13.18)

After integrating this expression for the densities of right and left moving
particles, one obtains the total density of passing electrons as

np = 1 − 2
π

√
ϕ (1 + ϕ − v2

p)
v4

p + 2v2
p(1 − ϕ) + (1 + ϕ)2

− 1
π

arctan
(

2
√

ϕ

v2
p + 1 − ϕ

)
(13.19)

where the notation ϕ ≡ 2(Ψ+φ) is introduced. The density is maximum where
the potential is minimum, at ϕ = 0, and monotonically decreases toward a
minimum where the potential is maximum, at ϕ = 4Ψ . We will assume that
4Ψ � 1, which enables us to expand the complicated expression above into
the simpler

np(φ) = 1 − 4
√

2
π(v2

p + 1)2
(Ψ + φ)1/2 −

16
√

2(5v2
p − 1)

3π(v2
p + 1)4

(Ψ + φ)3/2 (13.20)

The most important term, in ϕ1/2, has a coefficient that is related to the value
of the ambient distribution at the wave phase velocity ((13.17) with v = 0).
This is in agreement with the intuitive idea that electrons which move slowly
along the separatrix (located at v =

√
2Ψ(1 + sin kx)) are strongly affected

by the potential and thus contribute the most to the density variations. By
contrast, fast-moving electrons far from the separatrix hardly “notice” the
potential and pass by quasi undisturbed.
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13.3.2 Trapped Electrons

We formally define the density of trapped electrons nt as an unknown function
of φ through the expression

nt(φ) ≡
∫ Ψ

−φ

√
2Ft(w)

(w + φ)1/2
dw . (13.21)

This integral equation can be inverted for Ft(w), which yields

Ft(w) =
1√
2π

∫ −w

−Ψ

1
(−w − φ)1/2

d

dφ
nt(φ) dφ . (13.22)

The potential φ(x) is given by (13.15) and requires a net density perturbation

ns(φ) = −k2φ with ns = np + nt . (13.23)

Substituting ns and np for nt in (13.22), one obtains after integration

Ft(w) =
2

π(v2
p + 1)2

−
√

2
πv2

p

(Ψ − w)1/2 +
4(5v2

p − 1)
π(v2

p + 1)4
(Ψ − w) (13.24)

with − Ψ ≤ w < Ψ .

This is an explicit expression for the distribution of trapped electrons that is
consistent with a sinusoidal wave. Due to the v8

p dependence in the coefficient’s
denominator, the third term is considerably smaller than the second. Thus,
the sign of the second term indicates that the distribution is punctuated with
periodic holes located where (Ψ − w) maximizes, namely at maxima of the
potential φ.

An illustration of the perturbed distribution is provided in Fig. 13.4. It
has been recast in terms of x and v in the plasma frame and normalized to
fe(vp). The display is similar to Figs. 13.2 and 13.3, including the potential
in the right panel. Gray shadings indicate the phase space density with light
grays denoting depletion. Clearly, a velocity integration by means of a window
centered on vp will provide a density perturbation δn which is (1) reactive and
(2) characterized by δn < 0 where φ is maximum.

13.4 Electron Phase Sorting Measurements

The predictions of the theory of Langmuir wave interaction with electrons raise
the question of experimental tests of the theory. In particular, measurements
of the portion of the electron distribution which is resonant with the waves
along with measurements of the waves themselves permits detailed comparison
of theory and data which probes the success of these models..

The past 15–20 years have seen the development of wave-particle correla-
tors which sort individual electron counts into bins corresponding to the phase
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Fig. 13.4. BGK solution showing the perturbed distribution in a self-consistent
state with an infinite wave train φ(x) = Ψ sin kx. Phase space density is indicated
by gray shadings where darker gray means more particles. Clearly, integrating over a
velocity window around vp produces a reactive signal with density minima in phase
with maxima of the potential and vice versa

of the observed wave as each electron arrives at the payload. The advantage
of instrumentation of this type is that by accumulating the sorted electron
counts over many wave periods, the average phase relation of the electrons
relative to the wave can be determined for a relatively modest usage of space-
craft telemetry bandwidth. In this way, key aspects of the detailed physical
interaction of Langmuir waves and electrons can be studied as never before.

13.4.1 Measurements of the Resistive Component

The first electron phase sorting correlator which measured the electron to
Langmuir wave phase relation was developed at UC Berkeley in the late 1980’s
for use on auroral sounding rockets. The principle of operation is illustrated
in the schematic shown in Fig. 13.5.

The incoming waveform from the parallel electric field antenna is first
passed through a bandpass filter to remove signals outside the frequency range
expected for Langmuir waves. At rocket altitudes in the auroral zone, this
corresponds to a 200 kHz-5 MHz band. By removing frequencies outside this
range, any significant signal remaining has high likelihood of being that from
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Fig. 13.5. Schematic diagram of the UC Berkeley electron phase sorting correlator
from the work of Ergun et al. [9]. The instrumentation sorted electron into two
phase bins of 180◦ width, one centered on 0◦ phase and one centered on 90◦ phase.
By combining these bins with total counts over the entire interval, the phase of
electrons could be determined within four 90◦ intervals (Reprinted with permission
from American Geophysical Union)

Langmuir waves. After this filter, the signal was then passed through an analog
phase splitter to produce one signal with no phase shift and an identical signal
shifted by 90◦ in phase. Each of these two signals was then passed through
a comparator to produce a one-bit digitization of the signal. Because the
count rate of phase-bunched electrons is typically a small fraction of the total
electron count rate (of the order of 1%), it is essential that this digitized signal
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have a precise 50% duty cycle so as not to bias the results. This was ensured
through the use of a baseline restoring circuit which monitored the integrated
digitized signal as a function of time and adjusted the baseline of the incoming
analog signal to yield an accurate 50% duty cycle.

The two digitized signals, dubbed SIN for the 0◦ phase signal and COS
for the 90◦ signal, were used to sort electrons at several fixed energies as they
arrived at the rocket payload. When a given signal was high, the counter was
gated open and allowed to accept incoming electron counts. When the signal
was low, the counter was gated closed and would not accept electron counts.
In this way, counts were accumulated over the 180◦ phase interval centered on
0◦ phase (the COS counter) and over the 180◦ phase interval centered on 90◦

phase (the SIN counter). In addition to these two counters, a third counter
accumulated counts over the entire wave period. The set of three counters was
duplicated 12 times to analyze electron counts from 12 fixed energy channels of
a fast electron spectrometer that was oriented to detect electron precipitation
parallel to the magnetic field.

Under the assumption that the phase correlation of the electrons is sinu-
soidal, the square root of the sum of the squares of the SIN and COS channels
yields the amplitude of the correlation. The phase of the correlation is then
the opposite of the inverse tangent of the ratio of the SIN and COS counters.

In analyzing correlator results, it is important to consider how random
fluctuations in counting rate can influence the results. Poisson statistics can
give significant variations away from the average count particularly for small
numbers of counts. Thus it is essential to analyze correlation data in terms
of standard deviations σ away from the expected background. In terms of
standard deviations, the probability of 2σ variation is once in 22 samples and
is generally not considered significant. A 3σ variation is expected to occur
once in every 370 measurements. However, a 3.5σ variation should occur only
once every 2149 samples and 4σ events occur only once every 15783 samples.
Thus to be considered truly significant, events with σ > 3.5 are preferred.

The correlator was flown on a rocket launched from Poker Flat, Alaska on
March 4, 1988 which crossed several auroral arcs during the expansion phase
of substorm. During the flight, the parallel component of the electric field
reached amplitudes of 100 mV/m in the frequency band from 200 kHz to 5
MHz with a dominant frequency of 1.4 MHz indicating the presence of strong
Langmuir oscillations. The output of the correlator showed several events with
significant correlation with electrons from the eight lowest energy channels
which covered a range of energies from 380 eV to 3.2 keV. The correlations
appeared first in the higher energy channels and then moved to lower energy.

Analysis of the data from this rocket flight yielded five events with fluctu-
ations greater than 4σ. These five events, plotted as function of wave electric
potential, are shown in Fig. 13.6 taken from Ergun et al. [9].

Each event is plotted with the associated error bar as determined from
experimental uncertainties as well as the 1σ statistical error of the counts.
All five events are located near 90◦ or 270◦ with respect to the wave electric
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Fig. 13.6. Phase of bunched electrons for five events of correlations at levels greater
than 4σ from Ergun et al. [9]. The phase of each event is plotted along with error bars
derived from experimental uncertainties (Reprinted with permission from American
Geophysical Union)

potential. This corresponds to 0◦ or 180◦ with respect to the wave electric
field. The frequency of all 5 events was 1.4 MHz which, when combined with
the electron energies of 380 eV to 3.2 keV, yields wavelengths of 8 m to 20 m.
Events 2 and 5 were such that more electrons were being accelerated by the
wave than were being decelerated and thus corresponds to wave damping.
They occurred during periods of weaker amplitudes of 10–20 mV/m. Events
1, 3, and 4 had more electrons decelerating than accelerating corresponding
to wave growth. At these times the wave amplitudes were near 100 mV/m or
greater.

Following the analysis of Sect. 13.2, the value of µ can be calculated using
the observed electric field amplitude of 80 mV/m, the inferred wavelength
λ = 12.8 m, and observed the plasma frequency of 1.4 MHz along with a value
for kL. For these events, kL was estimated to be of the order of kL = 30
which yields a value of µ = 0.09. This is consistent with the linear analysis for
a short wave packet which predicts the observation of the resistive component
of the electron perturbation because in this regime, the resistive perturbation
is generally larger than the reactive perturbation as illustrated in Fig. 13.2.

13.4.2 Measurements of the Reactive Component

Further improvement in the measurement of the phase of electron bunching in
Langmuir waves in the auroral zone was achieved using a new phase correlator
developed at the University of Iowa (UI) in the late 1990’s. Figure 13.7 shows
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Fig. 13.7. The UI wave-particle correlator uses a phase-locked loop (PLL) locked to
the measured waveform with a clock derived from master voltage-controlled oscilla-
tor (VCO) running at 16 times the frequency. This master clock subdivides the wave
in 16 phase bins. Electron counts are sorted into the bins as they arrive to produce
a map of phase bunching (Reprinted with permission from American Geophysical
Union)

the principle of operation. The correlator used a voltage-controlled oscillator
(VCO) running at 16 times the expected frequencies for Langmuir waves.

The VCO clock signal was divided by 16 to provide a signal which was
then aligned to the measured AC parallel electric field through the use of a
phase-locked loop (PLL). The PLL output a signal which indicated when the
loop was properly locked and also the frequency of the locked signal which is
then compared with the analog waveform data to ensure that the PLL was
locked to signals of interest. Because the VCO master clock runs at 16 times
the frequency of the wave to which the PLL is locked, it provides a highly
accurate means of sub-dividing the measured wave into 16 phase bins. As elec-
trons are counted by the detectors, they are sorted into the appropriate phase
bin associated with their arrival time. Calibration of the detector, wave, and
correlator electronics verified the accuracy of the phase bins and determined
the timing delays through the system. The timing delays cause the absolute
bin number which corresponds to 0◦ phase shift (as well as other phase angles)
to shift as a function of input wave frequency. For example, at 1.6 MHz, 0◦

phase shift between the wave and the electrons occurs between correlator bins
8 and 9. The bottom of Fig. 13.7 shows the calibrated phase angles of the bins
at a frequency of 1.6 MHz.

The UI correlator was flown on a rocket flight which was launched from
Poker Flat, Alaska in February 6, 2002. Strong Langmuir waves were observed
as the rocket traversed an auroral form near the poleward boundary of the
auroral precipitation. The Langmuir waves were associated with a burst of
field-aligned electrons at energies below 1 keV and well below the inverted-V
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Fig. 13.8. Two examples of significant correlation of Langmuir waves with electrons
at 468 eV. For each of the 16 phase bins, the count level is shown in terms of standard
deviations away from the average number of counts that would be expected for a bin
for the total number of counts received (Reprinted with permission from American
Geophysical Union)

peak energy of 5 keV. During this period of Langmuir emission, two intervals
of stronger emission with amplitudes of 60–200 mV/m were observed. Each of
these intervals were of the order of 50 ms in duration. During both intervals,
the field-aligned wave power was 8.5–11 times that of the perpendicular power
indicating field-aligned waves. Because the payload telemetered continuous
waveform data, it was possible to determine that the Langmuir waves were
remarkably monochromatic with little or no variation in frequency. During
each of the two larger amplitude bursts, the amplitudes varied slowly over
hundreds of wave periods.

During each of the two bursts of strong Langmuir waves, significant wave-
particle correlation was found as shown in Fig. 13.8.

Each set of panels shows four consecutive sets of correlator measurements
of electrons with energy of 468 eV and which were sampled every millisecond.
Data are plotted as standard deviations away from the expected average count
rate in each phase bin. To be regarded as significant, we require a correlation
level of at least 3.5σ. Although there is frequent variation of the order of 2σ
shown in Fig. 13.8, these are not considered significant because the proba-
bility of 2σ variation is once in 22 samples as discussed above. With this in
mind, in the left set of panels, the first and third panels show notable correla-
tion. The first panel shows a weakly significant correlation with three adjacent
phase bins with ∼2σ levels of correlation corresponding to a 3.3σ variation.
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However, the third panel from the top has two consecutive phase bins with
phase bunching above 3σ. The combined probability of two such bins occur-
ring together exceeds that of a single 4σ event. The bins in which the phase
bunching occurs are those at 90◦ with respect to the wave electric field (pos-
itive away from the ionosphere) for the wave frequency of 1.6 MHz.

The second example shown in the right set of panels in Fig. 13.8 shows a
second event with similar high levels of significance in the top three panels.
Initially, a single channel with more than 4σ significance occurs at 90◦. In
the second panel, this feature broadens and shifts to somewhat larger phase
shift with four phase bins above 2σ representing a combined significance of
more than 4σ. The calculated probability of random occurrence of the counts
represented by the four phase bins centered around 90◦ is one in 932,068
suggesting that this is a highly significant correlation. The third panel shows
further advance to larger phase angles, with most significant set of signals now
showing more than -4σ (5 channels at −2σ each) between 270◦ and 0◦.

Figure 13.9 shows three sequential distribution function plots from imme-
diately before, during and immediately after the first correlation event. The
times given above each plot correspond to the center time of each 40 ms en-
ergy sweep. As can be seen, at the time of the correlation, a small, downward
electron beam parallel to the magnetic field is measured at the same energy
as the correlated electrons. This is indicated by a small arrow at the velocity
corresponding to 468 eV. The isolated beam is not present in the distribution
function measured before the correlation or in the distribution measured after
the correlation. Although the time resolution of these measurements is much
lower than for the correlator, this suggests that the correlation arises from
this beam.

The brief increase in electron phase space density at the energy of corre-
lated electrons illustrated in Fig. 13.9 was also seen for the second correlation
event. In both cases the preceding and following energy sweeps did not show
this feature, suggesting that the resonant electrons were only briefly in the
detectable energy range. From the energy of the correlated electrons (468 eV)
and the frequency of the waves (1.6 MHz), we can derive the wavelength
of the Langmuir waves as 8.2 m, similar to the results of the UC Berkeley
measurements.

The waveform data makes it possible to estimate the packet parameters
to aid in the interpretation of correlation events. Figure 13.10 shows 15 ms of
data which includes the interval of the second set of correlations.

The interval during which the correlations were observed is indicated by a
heavy line above the waveform data. As can be seen, the correlations occurred
during the largest wave amplitudes. If we assume a background thermal energy
of 0.2 eV and use the inferred wavelength of 8.2 m along with the observed
Langmuir frequency of 1.6 MHz, then the group velocity for Langmuir waves,
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∂ω
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=
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Fig. 13.9. Sequential distribution functions from before, during, and after the cor-
relation event shown in the left panel of Fig. 13.8. The velocity corresponding to
the correlated electrons is indicated with an arrow in the middle panel and shows
that a field-aligned beam is present at this time (Reprinted with permission from
American Geophysical Union)

gives the value of vg = 8.02 km/s = 8 m/ms. If the wave is traveling down the
field line, then the amount of the wave packet above the correlation observa-
tions extends from the time of the correlations in Fig. 13.10 to the end of the
packet some 3 ms later. This yields a length of the wavepacket above rocket
payload of 24.1 m at the time of the correlations and corresponds to a value
of kL = 18.5. A rough average for the amplitude of the electric field during
this interval is 130 mV/m. Combining this with the estimate of kL gives a
value of µ = 0.12, consistent with the linear theory and similar to the value
used in Fig. 13.2.

It should be pointed out, however, that the usual limitations of single
point spacecraft measurements apply to this interpretation. With the data at
hand, we cannot rule out a scenario in which the electron beam has suddenly
appeared and the wave packet has grown over time at the spacecraft loca-
tion. Indeed, such a scenario would be consistent with the quasi-exponential
increase in amplitude of the packet in the 10 ms preceding the correlation
observations. In this case, there is no way to ascertain the amount of wave
packet above the payload, but the shape of the packet suggests that the cor-
relations were observed shortly after the linear growth phase ended and some
type of non-linear saturation began to operate. The group velocity calculation
still applies, but now becomes a lower bound on the length of the packet. By
observing the packet for 3 ms we know that it extended at least 24 m above
the rocket, but it may have extended much further, and then disappeared due
to temporal effects in the driving electron distribution. A third alternative is
that the payload may have moved into and then out of a pre-existing region
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Fig. 13.10. Langmuir waveform data which includes the interval of the second set
of correlation events. The correlation interval is indicated by the solid bar above the
waveform

of Langmuir waves such that the observed wave envelope is determined by
the spatial structure of the Langmuir waves along the rocket track. However,
given the rocket velocity of roughly 1 km/s, this latter scenario would require
a rather small wave packet and does not seem likely.

13.5 Discussion

The electron correlator observations reported by the UC Berkeley were pre-
dominantly resistive, that is, in-phase or 180◦ out-of-phase with the wave
electric field. Although they had expected to see the reactive component, the
observations of the resistive component prompted the analysis developed in
Sect. 13.2 and led to the conclusion that they had observed electrons which
were bunched by relatively short wave packets with kL of the order of 50–100.
This result was also consistent with the value for µ that was determined which
suggested that thee observed waves were in the linear regime.

As shown in the middle panel of Fig. 13.2, for µ = 0.09, the perturbation
to the density and hence, to the electron distribution, is dominated by the
resistive component for small values of µ. Although the reactive component is
present, as shown in Fig. 13.1, its bipolar character requires relatively narrow
response electron detectors so as not to average the positive and negative
perturbation together, yielding no perturbation. The detectors which made
these resistive correlator measurements had ∆v/v � 16% and as shown in
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Fig. 13.1, this is broader than the expected perturbation relative to the phase
velocity.

The electron phase bunching observed by the UI group was predominantly
90◦ out-of-phase with the electric field, suggesting a trapped population of
electrons. The wave field in which the phase-bunched electrons were observed
was long-lived in terms of wave periods, monochromatic, and showed slow
modulation of the wave envelope. As discussed above, using the assumption
that the wave packet moved past the payload due the group velocity of the
waves yields a low value of µ which would suggest that the linear analysis
also applies to this case. In examining Fig. 13.2, it is seen that although
the overall perturbation to the density has a greater resistive component than
reactive component, the reactive component does exist. On closer examination
of Fig. 13.2, however, it can be seen that for a narrow range of velocities of
the order of ∆v/v = 5%, on either side of the phase velocity, the reactive
component is more dominant. This is seen in the shifting of the perturbed
distribution toward being in phase with the potential for velocities above the
phase velocity and a shift toward 180◦ out-of-phase for velocities below the
phase velocity. Because the UI electron detectors had a comparably narrow
velocity response ∆v/v � 5%, they are capable of capturing one or the other
side of the perturbation and could measure a reactive perturbation even for a
short wave packet.

In the case that the envelope of the observed waves is predominantly due
to temporal evolution, then it is likely that the wave packet extends a signif-
icant distance above the rocket payload. This is suggested by the fact that
the electron distribution will be unstable over a wide range of altitudes and
would be expected to grow waves over a region of many wavelengths in extent.
The character of the wave envelope also suggests a transition away from the
linear stage of growth. Taken together, these two arguments suggest that an
alternative explanation is that the correlations indicate trapping and thus the
BGK analysis is appropriate. As shown in the right hand panel of Fig. 13.3,
when the electron-Langmuir wave interaction becomes nonlinear, the density
perturbation shifts toward a purely reactive phase as the electrons become
trapped. Indeed the bunching of the electrons observed by the UI group is
such that the positive perturbation was that of trapped electrons.

To resolve this ambiguity will require future experiments which provide
adjacent energy channels with narrow response so that the full character of
the perturbed distribution function can be revealed. This would allow one
to see if both reactive pieces, that is the positive perturbation below the
phase velocity and the negative perturbation above the phase velocity shown
in Fig. 13.1, are observed side-by-side as the linear model would suggest or
if only a single reactive perturbation is observed, consistent with the BGK
analysis.
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13.6 Conclusions

Multiple spacecraft observations have confirmed the ubiquitous nature of
Langmuir waves in the presence of auroral electrons. Early observations have
shown clear evidence that the electrons show variations consistent with bunch-
ing at or near the Langmuir frequency. Linear analysis of the interaction of
a finite Gaussian packet of Langmuir waves shows that there are two compo-
nents to the perturbation to the electron distribution function, one in-phase
(or 180◦ out-of-phase) with respect to the electric field called the resistive
component and one which is 90◦ (or 270◦) out-of-phase with respect to the
electric field. For small wave packets, the resistive perturbation dominates.
For longer wave packets, a non-linear analysis is appropriate which suggests
that the electrons have interacted long enough to become trapped and the
reactive phase becomes dominant.

Rocket observations of the phase bunching of the electrons using wave-
particle correlators have measured both components. The UI observations
[Kletzing et al., 16] differ from those of the UC Berkeley observations [Ergun
et al., 7, 9] in that a purely reactive phase bunching was observed as compared
to a predominantly resistive perturbation. The resistive phase results of the
UC Berkeley group were interpreted as arising from a short wave packet.
The UI observations of the reactive phase can be explained by either a long,
coherent train of Langmuir waves or that the narrower velocity response of
the UI detectors made it possible to capture only one side of the reactive
component of the perturbed distribution function for a short wave packet in
the linear regime. Future wave-particle correlator experiments should be able
to resolve these questions by providing more examples with better velocity
space coverage.
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