Solar Physics (2006) 239: 337–392 DOI: 10.1007/s11207-006-0132-3

© Springer 2006

PROPERTIES OF STREAM INTERACTIONS AT ONE AU DURING 1995 – 2004

L. JIAN

Institute of Geophysics and Planetary Physics, University of California, Los Angeles, 595 Charles E. Young Dr. East, 6862 Slichter, Los Angeles, CA 90095, U.S.A. (e-mail: jlan@igpp.ucla.edu)

C.T. RUSSELL

Institute of Geophysics and Planetary Physics, University of California, Los Angeles, 595 Charles E. Young Dr. East, 6869 Slichter, Los Angeles, CA 90095, U.S.A. (e-mail: ctrussel@igpp.ucla.edu)

J.G. LUHMANN

Space Sciences Laboratory, University of California, Berkeley, CA 94720, U.S.A. (e-mail: jgluhman@ssl.berkeley.edu)

and

R.M. SKOUG

Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A. (e-mail: rskoug@lanl.gov)

(Received 10 January 2006; accepted 23 October 2006; Published online 6 December 2006)

Abstract. A stream interaction region (SIR) forms when a fast solar stream overtakes a slow stream, leading to structure that evolves as an SIR moves away from the Sun. Based on *Wind* (1995–2004) and ACE (1998–2004) *in situ* observations, we have conducted a comprehensive survey of SIRs at one AU, including a separate assessment of the longer-lasting corotating interaction regions (CIRs) that recur on more than one solar rotation. In all there are 196 CIRs, accounting for about 54% of the 365 SIRs. The largest proportion of CIRs to SIRs (64%) appears in 1999, and the smallest proportion (49%) is in 2002. Over the ten years, the annual number of SIR events varies little, from 32 up to 45. On average, the occurrence rate of shocks at SIRs at one AU is about 24%. Seventy percent of the SIRs with shocks have only forward shocks, more than twice the percentage of SIRs with only reverse shocks. This preponderance of forward shocks is consistent with the deflections of forward and reverse shocks relative to the ecliptic plane. In order to help address the effect of SIRs and CIRs on geomagnetic activity, we determine the solar-cycle variation of the event duration, scale size, the change in velocity from slow stream to fast stream, and the solar-cycle variation of the maximum magnetic field, peak total perpendicular pressure, and other properties. These statistics also provide a baseline for future studies at other heliocentric distances and for validating heliospheric models.

1. Introduction

The coronal magnetic structure modulates the solar wind structure (*e.g.*, Pneuman and Kopp, 1971). For much of the solar cycle, the magnetic field in the corona, well above the photosphere, is roughly that of a dipole, tilted with respect to the rotation axis of the Sun (*e.g.*, Gosling and Pizzo, 1999). As the solar magnetic

field evolves in the course of the Sun's 11-year solar activity cycle, this tilt varies, producing a change in the configuration of the heliospheric current sheet. The dipole tends to be nearly aligned with the rotation axis near solar-activity minimum (*e.g.*, Hundhausen, 1977), whereas it tends to be inclined substantially relative to the solar-rotation axis in the declining phase of the solar cycle. Near the activity maximum, the solar magnetic field is complex, but recent *Ulysses* work concluded that the dipole approximation is reasonable throughout the solar cycle (*e.g.*, Jones, Balogh, and Smith, 2003).

Fast and tenuous streams originate in coronal holes (Krieger, Timothy, and Roelof, 1973), while the relatively slow and dense streams arise in the streamer belt (Feldman *et al.*, 1981; Gosling *et al.*, 1981). They are quite distinct in their kinetic properties. Because the slow stream and fast stream are radially aligned and originate from different positions on the Sun at different times, their frozen-in magnetic fields are different, preventing the two streams from interpenetrating (Gosling and Pizzo, 1999). Therefore, when they move away from the Sun, the fast stream collides with the slow stream ahead, while simultaneously outrunning the slow stream and a rarefaction on the trailing edge of the fast stream, as indicated in Figure 1 (*e.g.*, Parker, 1963; Sarabhai, 1963; Carovillano and Siscoe, 1969; Gosling *et al.*, 1972; Hundhausen, 1972; Siscoe, 1972), denoted as the acceleration phase and deceleration phase respectively in Section 5.

If the flow pattern emanating from the Sun is roughly time-stationary, then the stream interaction regions form spirals in the solar equatorial plane that corotate with the Sun and are commonly called corotating interaction regions (CIRs) (Smith and Wolfe, 1976; Gosling and Pizzo, 1999). Because of the temporal variability in the solar-wind structures, a fast stream coming from a given point may vanish before the Sun rotates completely and not produce a periodic stream interaction. Even stream interactions with poor recurrence, though, may still be strong while they exist and affect geomagnetic activity (*e.g.*, Bobrov, 1983). Following the suggestion of Gosling *et al.* (2001), in this study we use the term "stream interactions. In the following sections, we provide a comprehensive examination of the statistics of the SIRs properties (with CIRs specified separately) at one AU over the period 1995–2004.

The boundary separating the originally fast, tenuous, and hot wind of the fast stream from the slow, dense, and cold stream, was first studied by Belcher and Davis (1971). In 1974, Burlaga named this boundary the "stream interface" (SI), and subsequently it was examined in detail by Gosling *et al.* (1978). They found that the SI is distinguished as an abrupt drop in particle density accompanied by a simultaneous rise in proton temperature. Intriligator and Siscoe (1994) noted that this signature was that of a relatively abrupt increase in specific entropy. More recently, Wimmer-Schweingruber, von Steiger, and Paerli (1997, 1999) used the data from the solar-wind ion-composition spectrometer (SWICS)/*Ulysses* instrument, to show additional evidence that the stream interface separates plasmas originating in

Figure 1. Schematic illustrating 2-D corotating stream structure in the solar equatorial plane in the inner heliosphere (after Pizzo, 1978).

different coronal and chromospheric regions. Later, Gosling and Pizzo (1999) pointed out that the plasma pressure within a CIR peaks in the vicinity of the stream interface, where there is a large shear in the flow.

The interaction between fast and slow streams starts in the inner heliosphere (e.g., Richter and Luttrell, 1986), and the interaction region broadens with increasing heliocentric distance. Far out in the heliosphere, the SIRs eventually coalesce.

2. Total Perpendicular Pressure

Magnetic field and plasma both contribute to the pressure, but the magnetic field cannot exert a gradient pressure force parallel to the field. The total perpendicular pressure (P_t) is the sum of the magnetic pressure and plasma thermal pressure perpendicular to the magnetic field [$B^2/(2\mu_0) + \sum_j n_j kT_{perp,j}$, where *j* represents proton, electron, and α particle] (estimated as total pressure in Gosling *et al.*, 1987, 1994; Gosling, 1990). Since it is the gradient of the combined pressure that drives the evolution of solar-wind structures, much simpler signatures arise in P_t than in the signatures of the constituent components.

L. JIAN ET AL.

This simple pressure pattern that we exploit herein has been demonstrated in earlier work, *e.g.*, Gosling (1990), Gosling and Pizzo (1999). The pressure reaches a maximum at the stream interface. The peak pressure is equal to the dynamic pressure of the flow on either side of the SI resolved along the normal to the boundary and in the boundary reference frame. Since the variations of the individual plasma properties may not occur simultaneously, the maximum pressure point provides a robust and quick means to identify the SI passage time (Jian *et al.*, 2005a).

Generally, irregularities in P_t are smoothed by compressional waves that radiate away pressure inhomogeneities. However, when the velocity change across the plasma interface exceeds the compressional wave speed, shocks arise and produce discontinuities in pressure (converted from the dynamic pressure of the flow in the discontinuity frame) because they are supersonic, and cannot mitigate the steep gradient with small amplitude waves.

3. Criteria of Stream Interaction Regions

A stream interaction region can occur only if a fast stream overtakes a slower stream, ensuring that the solar-wind velocity increases across the stream interface. A P_t gradient arises to deflect the plasma flow that, in the SI frame, flows toward the interface from both sides. In other words, the dynamic pressure of the flow on both sides of the interface expressed in the interface frame is balanced by P_t centered on the interface.

So, our criteria for SI identification are first that the solar-wind speed must be increasing and second that P_t reaches a maximum. Other characteristics such as the compression of proton number density and magnetic field at the interface are also required, and the flow deflection and temperature increase at the interface give additional assurance of a correct identification.

In order to distinguish SIRs from interplanetary coronal mass ejections (ICMEs), we describe some features of ICMEs briefly. For more details, please refer to our parallel study of ICME properties at one AU during 1995 – 2004 (Jian *et al.*, 2006). First, ICMEs are characterized by a high-density sheath of compressed solar wind, followed by a normal to low-density and low- β region, with low variance, and often a large magnitude and rotating magnetic field that lasts one day or two. Second, in contrast to the SIR's peak with a slow increase and decrease of pressure on its two sides, ICMEs usually can be characterized as having three types of P_t behavior (Jian *et al.*, 2005b, 2006; Russell, Shinde, and Jian, 2005): a broad pressure maximum near the event center, a sharp rise followed by a gradual, possibly exponential, decay, respectively. We think they may represent the impact parameter of the spacecraft relative to the central flux rope.

A minority of ICMEs and SIRs have irregular P_t profiles, usually caused by interactions of more than one event. Nevertheless, since our identification is done

by eye, rather than by a numerical algorithm, the specific and thorough examination of the velocity, proton temperature, magnetic field and other features as well as the background solar wind content, makes us confident in our identification.

In addition, the variations of SIRs appearance may be partially caused by transient components of the slow solar wind associated with either slow coronal-mass ejections (CMEs) at the Sun, plasmoids formed at the edges of the coronal streamer belt, or by transients associated with the temporally evolving boundaries of the openfield source regions of the solar wind. All of these transient structures presumably become part of the slow-wind belt, and can affect it differently at different times and locations. In this study, we do not attempt to determine whether an SIR is affected by one or more of these structures because there is no straightforward way to unambiguously identify their contributions. However, it is important to appreciate that such differences exist in some SIRs, and may affect their P_t behavior and other features.

4. List of Stream Interaction Regions

From the *Ulysses* observations at southern latitudes during its first orbit (1992), the onset of the recurrent high-speed stream occurred at a solar latitude of -13° and marked the exit from the streamer-belt-dominated region at around five AU (Bame *et al.*, 1993). Nevertheless, the solar wind is often more complex than was observed during the first *Ulysses* orbit (*e.g.*, McComas *et al.*, 2006). In this study, we use *Wind* (1995–2004) and *Advanced Composition Explorer* (ACE) (1998–2004), which are both close to the equatorial plane at about one AU.

Proton data are nearly always available. However, the electron temperature (T_e) , α temperature, the ratio of α number density to proton density, and the anisotropy of these particles' temperature, are less often available. Consistent with the high thermal conductivity of electrons and the low correlation of $T_{\rm e}$ with other solarwind parameters (e.g., Newbury et al., 1998, and references therein), we assume a constant and isotropic $T_{\rm e}$. Because the average value of electron core temperature varies from \sim 123 000 K in 1996 around up to \sim 144 000 K in 2001 near solar maximum (Issautier et al., 2005), herein we set the electron perpendicular temperature as 130 000 K for all ten years. This value is close to the median electron temperature in Newbury et al. (1998) from 18 months' continuous observation of the Interna*tional Sun-Earth Explorer* (ISEE)-3. Considering the relatively minor effects of α particles and the ion-temperature anisotropy on the P_t , we also assume a constant 4% composition (by number) of α particles with a temperature four times that of the protons, and the isotropy of ion temperature. The discrepancy between these assumptions and the real values will slightly affect the $P_{\rm t}$ profiles; nevertheless it should make little change in our statistics.

Under these assumptions, we have calculated P_t for the entire *Wind* [SWE (Ogilvie *et al.*, 1995) and MFI (Lepping *et al.*, 1995), both in 93-second time resolution] solar-wind data set and ACE [validated Level 2 of SWEPAM (McComas

et al., 1998) and MAG (Smith *et al.*, 1998), both in 64-second time resolution] solar-wind data set. Because *Wind* has been gathering data longer, we started our list of events by examining the *Wind* data. When *Wind* is in the magnetospherically susceptible region, or has data gaps or noisy data, we use ACE data to provide a more complete survey of SIR events. Using a time window of one solar-rotation cycle, *i.e.* 25-29 days, we determine the recurrence of stream interactions. If an SIR recurs on two or more solar rotations, it is also a CIR in this study. All SIR events are listed in the Appendix^{*}, with those SIRs that are also CIRs indicated in the CIR column.

Since the *Wind* trajectory changes from an L_1 orbit into a series of Earth orbits, while ACE stays near the L_1 point, the combination of the two spacecraft introduces a difference in the timing of the signature of the order of one hour. Because the SIRs are large in spatial scale (also demonstrated by the mean size of SIRs from our survey in Section 7), the observations of the two spacecraft are otherwise similar, as long as *Wind* is not too close to the Earth where its measurement can be affected by the Earth's magnetosphere. In addition, we do not consider evolution over the rather short separation between the two spacecraft, nor would we expect any significant evolution. Thus, we do not make the lists from *Wind* or ACE separately, but rather identify the data source as "ACE" in comments if it is from ACE data.

During 1995 - 1997, only *Wind* observations are available. There are gaps in the solar-wind data for periods of only about 3.8%, 7.6%, and 3.7% in each of these years, respectively. Since these outages are smaller than the expected statistical variability, we feel we do not need to make significant corrections to our following statistics.

Through the study, we define the boundary from a consensus of the available signatures described in Section 3, with an emphasis on the central maximum above the ambient solar wind in the composed P_t profile, *i.e.* the interval covers where the pressure structure emerges from and decays back to the background. Often, the rapid jump in P_t and other parameters is a good separator of the SIR from the background.

We record ΔP as the instantaneous change of P_t across a discontinuity, P_{max} and B_{max} as the peaks of P_t and $|\mathbf{B}|$, R_V as the ratio of V_{max} to V_{min} , ΔV as the change in the solar-wind speed magnitude, which is important to the evolution of the stream interaction, D_{before} as the duration between the start time and the stream interface (SI), D_{after} as the duration between the SI and the end time, R_d as the ratio of D_{before} to D_{after} to imply the temporal asymmetry relative to SI for each event. Lastly, we estimate the SIR scale size based on the measured duration and the average velocity, the latter being the mean of V_{max} and V_{min} . Because the P_t in the background solar wind is typically only 20-30 pPa, and the relative interaction strength between events is of primary interest, we can just consider the P_{max} magnitude rather than the difference between it and the background P_t .

*Electronic Supplementary Material Supplementary material is available for this article at http://dx.doi.org/10.1007/s11207-006-0132-3

In addition, we note some SIRs have an irregular P_t profile, with several small spikes, or are relatively flat, like a plateau. For these events, we determine the SI crossing from the consensus of P_t peak and also the characteristic variations in other parameters, such as N_P , T_P , and so on. As commented in the Appendix, some SIRs do not have sharp interfaces between slow and fast streams, but gradual transitions, where N_P , T_P , and other parameters change gradually.

For a discontinuity simply indicated by P_t , we examine V_P , N_P , T_P , and **B** one by one, and when necessary, also use the high-time-resolution *Wind* 3DP (Lin *et al.*, 1995) and MFI, ACE SWEPAM, and magnetometer data from CDAWeb, to determine whether it is a forward or reverse shock. As is well known, at forward shocks, the solar-wind speed increases, while simultaneously N_P and T_P both are enhanced; at reverse shocks, solar-wind speed again increases, while N_P and T_P both decline. We have double-checked our shock identification with the shock lists from Kasper (*http://space.mit.edu/home/jck/shockdb/shockdb.html*), the ACE team (*http://www-sg.sr.unh.edu/mag/ace/ACElists/obs_list.html*), *etc.*

5. Examples of SIR Events

Figures 2 and 3 display two interesting SIR examples. They are in the same format. The first three panels $(B_x/B, B_y/B, B_z/B)$, are the direction cosines of the interplanetary magnetic field (IMF) in geocentric solar magnetospheric (GSM) coordinates. In the following panels: $|\mathbf{B}|$ is the magnetic-field strength; V_P is the solar-wind speed magnitude; N_P is the proton number density; T_P is the proton temperature; β is the ratio of plasma thermal pressure to the magnetic pressure, and P_t is the total perpendicular pressure, in the unit of pico-Pascal (pPa).

We do not use cone angle, $\arccos(B_x/B)$, and clock angle, $\arctan(B_y/B_z)$ of IMF, because the use of these angles assumes a particular symmetry around the direction to the Sun which is not present in SIRs. We conduct the statistical study using scalar parameters, independent of coordinates (*e.g.*, GSE *vs.* GSM). However, any future geoeffectiveness study requires GSM coordinates. Thus, we use GSM coordinates.

Figure 2 illustrates an SIR without shocks, indicated by the dashed lines *a* and *c*. The P_t profile is simple: an increase and then a decrease of P_t both occurring during an increasing speed profile, individually corresponding to an acceleration phase of slow stream, and a deceleration phase of fast stream. The components vary in a complex way. Within about half a day before the stream interface, B_x/B , B_y/B , B_z/B shift their polarities distinctly, possibly due to a nearby sector boundary. There is a varying magnetic field strength, a constant temperature, and a density rise in the acceleration phase; and a sharp density drop around the SI, marked by the dashed line *b*; then the density and temperature both gradually decline in the deceleration phase. The SI separating the fast and slow streams, is relatively thin and not resolved by these data.

Figure 2. SIR event without shocks, from *Wind* data. From top to bottom: direction cosines of IMF in GSM coordinates, magnetic-field strength, solar-wind speed, proton density, proton temperature, β , and total perpendicular pressure. Dashed lines *a* and *c* indicate the boundaries of the SIR; dashed line *b* marks the stream interface (SI).

Figure 3. SIR event with a pair of forward – reverse shocks, following the same format as described for Figure 2. Dashed lines a and c mark the pair of forward and reverse shocks bounding the SIR; dashed line b indicates the stream interface (SI).

On the low-speed (left-hand) side of the interface, there is no correlation of the magnetic-field strength, density, and temperature as one might expect in the compression region, so clearly marked by the pressure rise, had it been formed in uniform plasma. Clearly on the slow-stream side, a structured source region dominates compression in creating the observed structure at the interface. On the high-speed side, there is a better, but not complete, correlation between the field strength, the density, and the temperature, suggesting greater uniformity in the source region of this flow.

Figure 3 shows an SIR with a P_t enhancement bounded by a pair of forwardreverse shocks (dashed lines *a* and *c*). Here the component variations are more complex. The acceleration phase of the slow stream has a temperature decrease while P_t increases. The deceleration phase of the fast stream has a declining N_P and T_P , and $|\mathbf{B}|$ mimics P_t . β fluctuates greatly in the interaction region.

Over about four hours before the SI, B_x/B , B_y/B , and B_z/B are relatively quiet, respectively staying negative, positive, and positive, for hours. But within the following four hours, B_x/B changes from negative to positive, and then fluctuates back and forth frequently; B_y/B changes from positive to negative; and B_z/B varies from positive to negative, and back to positive quickly. At about 4:30 UT, quite close to the SI, B_y/B and B_z/B change polarities again, sharply and simultaneously.

We believe the above behavior of the magnetic field is associated with a nearby sector boundary and is also affected by an ICME-like structure ahead. The variation of the magnetic field direction between dashed lines *a* and *b* is much less sinusoidal than what we would expect for a typical magnetic cloud. Moreover, the very noisy fluctuations of the magnetic field closely after the interface and an increasing speed profile mark this as an SIR. Our identification is confirmed by the absence of a halo CME within nine days before the occurrence of this event from the Large Angle and Spectrometric Coronagraph (LASCO) (Brueckner *et al.*, 1995) CME catalogue (*http://cdaw.gsfc.nasa.gov/CME_list/*).

For this event, assuming that the wave propagates perpendicularly to the magnetic field, we find the fast magnetoacoustic wave speed to be 63 km s⁻¹ at 00:33 UT on May 18, and 82 km s⁻¹ at 19:48 UT on the same day. Using the shock-coplanarity assumption and tangential-discontinuity normal, respectively, we can get the normal direction to the interface, and then calculate the normal solar-wind velocity jump of 116 km s⁻¹ at 00:33 UT and of 100 km s⁻¹ at 19:48 UT. So the fast Mach numbers are respectively 1.84 and 1.23, at the two discontinuities. These pressure jumps are indeed consistent with being a forward – reverse shock pair.

Again, the low-speed side of the interface is poorly correlated between magnetic field, density, and temperature, even ignoring the obvious shock-heating spike. The high-speed side shows at least qualitative correlation. Once again it appears that the structure in the slow stream is imposed at the source while the structure in the fast stream is more consistent with the compression of an originally more uniform region.

The plasma heating at the two shocks is quite evident here and can be used to estimate how long before the shocks formed. The leading (forward) shock has been acting on the plasma for some time although it was weaker earlier, judging from the temperature profile that decreases smoothly as the interface is reached. The trailing (reverse) shock is weaker than the leading shock, and makes a thin region of enhanced temperature, suggesting that the shock only recently formed.

6. Shock-Association Rate of SIRs during the Period 1995-2004

Solar cycle 23 started in May 1996 when the monthly sunspot number (SSN) reached a low of 8.0 and reached a maximum in April 2000 of 120.8. Rather than confining our study to only solar cycle 23, we use all the data available from *Wind* that includes one and a half years of data in 1995 and 1996 from solar cycle 22. With the *Wind* and ACE data, we have identified 365 SIRs in all, 196 of them being CIRs. Excluding data gaps and noisy data, the average annual SIR event number is about 37.

From the observations by *Ulysses, Pioneer*, and *Voyager*, we know that shocks typically form beyond \sim three AU due to the steepening of quasi-stationary, fast solar-wind streams (*e.g.*, Gosling, Hundhausen, and Bame, 1976; Hundhausen and Gosling, 1976; Smith and Wolfe, 1976; Gosling *et al.*, 1993). Few CIRs are revealed bounded by shocks at one AU (*e.g.*, Gosling *et al.*, 1972; Ogilvie, 1972). Reverse shocks have been observed at one AU associated with fast streams in the absence of associated forward shocks (Formisano and Chao, 1972; Burlaga, 1974; Gosling *et al.*, 1978). However, the above claim is mostly based on observations around the early 1970s. It is possible that the relatively low quality of the early data set has allowed some shocks to be missed, although some prominent fast shocks with ICMEs and reverse shocks associated with SIRs were reported. In addition, the earlier literature was based on studies covering a part of solar cycle 20, and some discrepancy may arise between our study and the earlier work, because the solar-activity strength may differ from solar cycle to solar cycle.

In this analysis, where we quantify these statistics, we find that 88 SIRs are associated with shock(s) among the 365 SIRs observed over the ten years, *i.e.* that the SIR shock-association rate is 24% at one AU. Excluding the 41 hybrid events, among the remaining 324 "pure" SIRs, 68 events have shocks, for a 21% occurrence. There are 60 CIRs with shocks, or in other words, 31% of all CIRs. Though it is well known that shocks can form with SIRs within one AU (*e.g.*, Gosling *et al.*, 1978), this is still an unexpectedly large number. The shock-association rate is higher for CIRs than SIRs, partially due to the stronger stream interaction in CIRs, which is, in turn, caused by the usually faster and larger streams in CIRs, as documented in our survey.

Moreover, some events are associated with more than one shock, especially for hybrid events consisting of complex solar-wind structure. Though in some events, there are two or more forward shocks occurring with one SIR, we only count leading shocks once in this study. If the two or more forward shocks are associated with one reverse shock, we only count it as one pair of forward – reverse shocks, and do not count it again as one event with only a forward shock. We have not found any events associated with two or more reverse shocks. We recall that the current solar-activity strength may differ from that of solar cycle 20 when the early observations are conducted.

Table I gives the yearly numbers and percentages of SIRs, CIRs, SIRs with shocks, SIRs with only forward shock(s), or only a reverse shock, or with a forward – reverse shock pair. In all, among the 88 SIRs with shocks, 62 SIRs, *i.e.* 70% are associated with only a forward shock, while another 21 events, *i.e.* 24%, occur with only a reverse shock. That is, more than twice as many SIRs are associated with forward shocks than with reverse shocks. Among the 60 shocks associated with CIRs, 61% have only a forward shock, while 31% have only a reverse shock.

Following Gosling and Pizzo (1999), the forward shocks propagate antisunward, westward, and equatorward, while the reverse shocks propagate sunward, eastward, and poleward in both hemispheres. The *Wind* and ACE spacecraft are both near the ecliptic plane, so we expect to see more forward shocks than reverse ones at one AU if both types of shocks form near one AU, and we do. This observation is therefore consistent with the expected configuration of the stream interaction deflections. As the observation point moves outward, if the two types of shocks bounding SIRs are well formed, we might observe more reverse shocks than forward shocks. However, where and when the forward and reverse shocks form is still an open issue.

Our preponderance of forward shocks is controversial because before this study conventional wisdom, derived from SIR modeling (J.T. Gosling, private communication, 2005), had suggested that the forward and reverse shocks form at about the same time but at different distances from the Sun. Thus, SIR-associated reverse shocks would have to form closer to the Sun than forward shocks, leading us to expect to see more reverse shocks than forward shocks in the shock-growth region at one AU.

Hundhausen's (1973) 1-D gas-dynamic simulation appears to suggest that the forward shocks are formed farther away from the Sun than reverse shocks, albeit the spacing between the illustrated time steps in this simulation is large. In addition, Hu's (1993) MHD model, as an example, has a reverse shock that emerges at 1.03 AU and becomes fully developed near 1.6 AU; while the forward shock occurs later at a farther distance from the Sun (1.3 AU) and becomes fully developed near 1.8 AU, eventually becoming stronger than the reverse shock. Such simulations are challenged by our observational results.

The three columns (dark gray, white, light gray) in Figure 4, respectively, show the solar-cycle variation of occurrence rates of SIRs with only a forward shock, with only a reverse shock, and with a pair of forward – reverse shocks, among all SIRs over the ten years. The sum of the three is the SIR shock-association rate. Every year, the fraction of SIRs with only forward shocks is larger than the one with only reverse shocks. For the precise number, see Table I.

SIR No. 35 34 36 33 36 32 32 41 CIR No.CIR No. 20 17 15 18 23 18 20 CIR No.CIR straction among SIRs 57.14 50.00 41.67 54.55 63.89 56.25 54.32 20 On of SIR with shock(s) 11 6 11 13 13 6 12 10 No. with only forward shock 8 5 10 8 9 4 8 6 No. with only forward shock 8 5 10 8 9 4 8 6 No. with only reverse shock 3 1 1 4 2 2 3 3 No. with a pair of forward -reverse shocks 31.43 17.65 30.56 39.39 36.11 18.75 37.50 24.4 $\%$ with only forward shock 8.57 2.94 2.78 12.12 5.56 6.25 9.38 7.7 $\%$ with only reverse shocks 8.57 2.94 2.78 12.12 5.56 6.25 9.38 7.7 $\%$ with only reverse shock 8.57 2.94 2.78 12.12 5.56 6.25 9.38 7.7 $\%$ with only reverse shock 8.57 2.94 2.78 12.12 5.56 6.25 9.38 7.7 $\%$ with only reverse shock 7.73 8.33 90.91 61.54 69.23 6667 667 60.7 60.7	Year	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	All
CIR No. 20 17 15 18 23 18 18 20 CIRs fraction among SIRs 57.14 50.00 41.67 54.55 63.89 56.25 $48.$ No. of SIR with shock(s) 11 6 11 13 13 6 12 10 No. with only forward shock 8 5 10 8 9 4 8 6 No. with only forward shock 3 1 1 1 4 2 2 3 No. with only reverse shock 3 1 1 4 2 2 3 3 No. with only reverse shock 3 1 1 4 2 2 3 3 No. with only forward block 3 17.65 30.56 39.39 36.11 18.75 37.50 $24.$ $\%$ with shock(s) 31.43 17.65 30.56 39.39 36.11 18.75 37.50 $24.$ $\%$ with only reverse shock 8.57 2.94 2.78 12.12 5.56 6.25 9.38 $7.$ $\%$ with only reverse shock 8.57 2.94 2.78 12.12 5.56 9.38 $7.$ $\%$ with only reverse shock 7.73 83.33 90.91 61.54 69.23 66.67 60.7 $\%$ with only reverse shock 72.73 83.33 90.91 61.54 69.23 66.67 60.7 60.7 $\%$ with only reverse shock 27.27 16.67 9.0	SIR No.	35	34	36	33	36	32	32	41	45	41	365
CIRs fraction among SIRs 57.14 50.00 41.67 54.55 63.89 56.25 $48.$ No. of SIR with shock(s)11611131361210No. with only forward shock8510894861210No. with only reverse shock311422333No. with only reverse shock311422333No. with only reverse shock317.6530.5639.3936.1118.7537.5024. $\%$ with shock(s)31.4317.6530.5639.3936.1118.7537.5024. $\%$ with only reverse shock8.572.942.77824.2425.0014.7525.666.259.387. $\%$ with only reverse shock8.572.942.77812.125.566.259.387. $\%$ with only reverse shock8.572.942.7812.125.566.259.387. $\%$ with only reverse shock7.27383.3390.9161.5469.2366.6760.360.6760.3 $\%$ with only reverse shock7.2716.679.0930.7715.3833.3325.0030.	CIR No.	20	17	15	18	23	18	18	20	25	22	196
No. of SIR with shock(s)11611131361210No. with only forward shock 8 5 10 8 9 4 8 6 No. with only reverse shock 3 1 1 4 2 2 3 3 No. with a pair of forward - reverse shocks 3 1 1 4 2 2 3 3 No. with a pair of forward - reverse shocks 3 17.65 30.56 39.39 36.11 18.75 37.50 $24.$ $\%$ with shock(s) 31.43 17.65 30.56 39.39 36.11 18.75 37.50 $24.$ $\%$ with only reverse shock 8.57 2.94 2.778 24.24 25.00 $14.$ $7.$ $\%$ with a pair of forward - reverse shock 8.57 2.94 2.78 12.12 5.56 6.25 9.38 $7.$ $\%$ with only reverse shock 7.73 83.33 90.91 61.54 69.23 66.67 66.7 $60.$ $\%$ with only reverse shock 7.771 83.33 90.91 61.54 69.23 66.67 $60.$ $30.$ $\%$ with only reverse shock 27.27 16.67 9.09 30.77 15.38 33.33 25.00 $30.$	CIRs fraction among SIRs	57.14	50.00	41.67	54.55	63.89	56.25	56.25	48.78	55.56	53.66	53.70
No. with only forward shock851089486No. with only reverse shock 3 1 1 4 2 2 3 3 No. with a pair of forward - reverse shocks 3 1 1 4 2 2 3 3 No. with a pair of forward - reverse shocks 31.43 17.65 30.56 39.39 36.11 18.75 37.50 $24.$ % with shock(s) 31.43 17.65 30.56 39.39 36.11 18.75 37.50 $24.$ % with only forward shock 22.86 14.71 27.78 24.24 25.00 12.50 $14.$ % with only reverse shock 8.57 2.94 2.78 12.12 5.56 6.25 9.38 $7.$ % with a pair of forward - reverse shock 72.73 83.33 90.91 61.54 69.23 66.67 66.7 60.7 % with only reverse shock 72.71 16.67 9.09 30.77 15.38 33.33 25.00 $30.$	No. of SIR with shock(s)	11	9	11	13	13	9	12	10	4	2	88
No. with only reverse shock 3 1 1 4 2 2 3 3 No. with a pair of forward - reverse shocks 1.4 1 2 2 3 3 3 No. with a pair of forward - reverse shocks 31.43 17.65 30.56 39.39 36.11 18.75 37.50 $24.$ $\%$ with shock(s) 31.43 17.65 30.56 39.39 36.11 18.75 37.50 $24.$ $\%$ with only forward shock 22.86 14.71 27.78 24.24 25.00 12.50 $24.$ $\%$ with only reverse shock 8.57 2.94 2.78 12.12 5.56 6.25 9.38 $7.$ $\%$ with a pair of forward - reverse shock 8.57 2.94 2.78 12.12 5.56 6.03 $2.$ $\%$ with only forward shock 72.73 83.33 90.91 61.54 69.23 66.67 60.7 $\%$ with only reverse shock 27.27 16.67 9.09 30.77 15.38 33.33 25.00 $30.$	No. with only forward shock	8	5	10	8	6	4	8	9	ю	1	62
No. with a pair of forward - reverse shocks1211Of all SIRsOf all SIRs11.4317.65 30.56 39.39 36.11 18.75 37.50 $24.$ % with shock(s) 31.43 17.65 30.56 39.39 36.11 18.75 37.50 $24.$ % with only reverse shock 22.86 14.71 27.78 24.24 25.00 12.50 $24.$ % with only reverse shock 8.57 2.94 2.78 12.12 5.56 6.25 9.38 $7.$ % with a pair of forward - reverse shock 72.73 83.33 90.91 61.54 69.23 66.67 66.7 $60.$ % with only reverse shock 72.71 16.67 9.09 30.77 15.38 33.33 25.00 $30.$	No. with only reverse shock	3	1	1	4	2	7	З	3	1	1	21
Of all SIRs % with shock(s) 31.43 17.65 30.56 39.39 36.11 18.75 37.50 24. % with only forward shock 22.86 14.71 27.78 24.24 25.00 12.50 25.00 14. % with only reverse shock 8.57 2.94 2.78 12.12 5.56 6.25 9.38 7. % with a pair of forward - reverse shocks 8.57 2.94 2.78 12.12 5.56 6.25 9.38 7. % with a pair of forward - reverse shocks 7.73 83.33 90.91 61.54 69.23 66.67 60.03 2. % with only reverse shock 72.77 16.67 9.09 30.77 15.38 33.33 25.00 30.	No. with a pair of forward-reverse shocks				1	2		1	1			5
% with shock(s) 31.43 17.65 30.56 39.39 36.11 18.75 37.50 24. % with only forward shock 22.86 14.71 27.78 24.24 25.00 12.50 25.00 14. % with only reverse shock 8.57 2.94 2.78 12.12 5.56 6.25 9.38 7. % with a pair of forward-reverse shocks 8.57 2.94 2.78 12.12 5.56 6.25 9.38 7. % with a pair of forward-reverse shocks 7.73 83.33 90.91 61.54 69.23 66.67 60.3 2. % with only forward shock 72.73 83.33 90.91 61.54 69.23 66.67 60.3 30. % with only reverse shock 27.27 16.67 9.09 30.77 15.38 33.33 25.00 30.	Of all SIRs											
% with only forward shock 22.86 14.71 27.78 24.24 25.00 12.50 25.00 14. % with only reverse shock 8.57 2.94 2.78 12.12 5.56 6.25 9.38 7. % with only reverse shock 8.57 2.94 2.78 12.12 5.56 6.25 9.38 7. % with a pair of forward - reverse shocks 3.03 5.56 6.25 9.38 7. 0f SIRs with shock(s) 3.03 90.91 61.54 69.23 66.67 60. % with only reverse shock 27.27 16.67 9.09 30.77 15.38 33.33 25.00 30.	% with shock(s)	31.43	17.65	30.56	39.39	36.11	18.75	37.50	24.39	8.89	4.88	24.11
% with only reverse shock 8.57 2.94 2.78 12.12 5.56 6.25 9.38 7. % with a pair of forward – reverse shocks 3.03 5.56 0.03 2. % with shock(s) 3.03 5.56 6.25 9.38 7. % with only forward shock 72.73 83.33 90.91 61.54 69.23 66.67 60. % with only reverse shock 27.27 16.67 9.09 30.77 15.38 33.33 25.00 30.	% with only forward shock	22.86	14.71	27.78	24.24	25.00	12.50	25.00	14.63	6.67	2.44	16.99
% with a pair of forward - reverse shocks 3.03 5.56 0.03 2. Of SIRs with shock(s) 3.03 90.91 61.54 69.23 66.67 60.7 % with only forward shock 27.27 16.67 9.09 30.77 15.38 33.33 20.0 30.	% with only reverse shock	8.57	2.94	2.78	12.12	5.56	6.25	9.38	7.32	2.22	2.44	5.75
Of SIRs with shock(s) 72.73 83.33 90.91 61.54 69.23 66.67 60. % with only forward shock 27.27 16.67 9.09 30.77 15.38 33.33 25.00 30.	% with a pair of forward-reverse shocks				3.03	5.56		0.03	2.44			1.37
% with only forward shock 72.73 83.33 90.91 61.54 69.23 66.67 60. % with only reverse shock 27.27 16.67 9.09 30.77 15.38 33.33 25.00 30.	Of SIRs with shock(s)											
% with only reverse shock 27.27 16.67 9.09 30.77 15.38 33.33 25.00 30.	% with only forward shock	72.73	83.33	90.91	61.54	69.23	66.67	66.67	60.00	75.00	50.00	70.45
	% with only reverse shock	27.27	16.67	9.09	30.77	15.38	33.33	25.00	30.00	25.00	50.00	23.86
% with a pair of forward – reverse shocks 7.69 15.38 0.08 10.	% with a pair of forward-reverse shocks				7.69	15.38		0.08	10.00			5.68

TABLE I	nce rates of SIRs CIRs and shocks bounding

Figure 4. Occurrence rates of SIRs with shocks.

The SIR shock-association rate roughly increases with solar activity, except for 1998 and 2000. It reaches the maximum, 39%, in 1998. And it is as low as 19% in 2000. The minimum appears in 2004: \sim 5%. But the SIR association rate with only forward shocks has no clear trend over the ten years.

In contrast, from a survey of *Pioneer Venus Orbiter* (PVO) solar-wind data at 0.72 AU during 1979–1988, Lindsay *et al.* (1994) found that only 10% of stream interactions produced interplanetary shocks (without forward or reverse specified therein) during the declining phase of the solar cycle, while no stream interactions produced shocks near solar minimum. The small number of cases of interplanetary shocks (six) associated with stream interactions results in some statistical uncertainty in their estimate. Though the studies are conducted over different solar cycles, the comparison between our survey with their study suggests that many of the shocks form in the region from 0.72 AU to 1.0 AU.

Another approach is to calculate the expected Mach number on either side of the SIR. Assuming the wave propagates perpendicular to **B**, the fast magnetoacoustic wave speed is $(V_A^2 + C_s^2)^{1/2}$. The density (N_P) is higher in the acceleration phase of a slow stream (indicated by 1) than in the deceleration phase of a fast stream (indicated by 2); while the plasma temperature (T_1) is lower than T_2 . Thus the magnetoacoustic wave speed (V_{MA1}) , is smaller than V_{MA2} . Therefore, for the same change of velocity along the SI normal, it would be easier to produce a Mach number larger than one in the acceleration region of the slow stream than in the deceleration region of the fast stream. Again, this line of reasoning is consistent with our observations.

Of the 365 SIRs, only five events (1%) are associated with a pair of forward – reverse shocks. One of them is a hybrid event in 2001, and the other four are all CIRs. It is very rare for spacecraft to observe shock pairs with SIRs at one AU. In contrast, at distance greater than about two to three AU and at low heliographic latitudes,

CIRs and presumably most SIRs, are commonly bounded by forward-reverse shock pairs (*e.g.*, Gosling and Pizzo, 1999), *e.g.*, during *Ulysses*' second polar orbit, about half of the well-defined SIRs observed poleward of S9.8° were bounded by forward-reverse shock pairs (Gosling *et al.*, 2001).

In addition, averaged over the SIRs having reverse shocks, these shocks occur 13 hours later than the stream interface, consistent with the MHD simulation of Pizzo (1989) and Hu (1993). They concluded that the shocks form at an angle of $7 - 10^{\circ}$ in heliocentric azimuth on either side of the stream interface, which corresponds to 12 - 17 hours in corotation time. From the survey, the average decrease of P_t is 61 pPa across the reverse shock.

7. Properties of Stream Interaction Regions

Table II lists the annual averages of seven parameters (duration, R_D , size, P_{max} , B_{max} , R_V , and ΔV) as well as their probable errors of the mean, indicated in parentheses. The last three rows in this table provide the corresponding averages as well as their probable errors of the mean, the maximum, and the minimum, based on all the 365 SIRs. The five panels in Figure 5 respectively show the solar-cycle variations of annual number of SIRs, size, P_{max} , B_{max} , and ΔV of SIRs from 1995 to 2004, with the error bars presenting the corresponding probable errors of the mean in each year. We see that P_{max} and ΔV vary up to about 1.5 times the minima, but none of these five parameters changes as much as those of ICMEs (Jian *et al.*, 2006) over the ten years.

During the declining phase of solar cycle 23, there are a few more SIRs than at other times, with a maximum occurrence of 45 events in 2003; the second highest value (41), occurs in both 2002 and 2004. The fewest (32), occurs in 2000 and 2001, around solar maximum. Thus the SIR occurrence rate changes with the variation in the solar magnetic configuration during the period under study, although to a much smaller extent than ICMEs. This change is somewhat out of phase with the ICME occurrence-rate variation.

From Table I, we can see that the CIR occurrence rate has no simple solar-cycle dependence, except for being roughly larger in the descending phase. In 1999, the occurrence rate of CIRs (64%) is slightly higher; but we are aware of some uncertainty caused by identification errors, data gaps, or changes in viewing location, *etc.*, so the high CIRs fraction in 1999 is not necessarily statistically significant.

Similarly, for the inner heliosphere, Lindsay *et al.* (1994) found that the streaminteraction occurrence observed at 0.72 AU varied out of phase with the solar cycle, with an average of about 31 prior to solar maximum (1986 – 1987), and of only about 16 around the maximum of solar cycle 21 (1979 – 1981). The SIRs occurrence rate at 0.72 AU changes more over 1979 – 1988 than we found in solar cycle 23 possibly because of their emphasis on CIRs.

Averaged over all 365 events, SIR events last 36.7 ± 0.9 hours, and the duration before the peak is about 1.21 ± 0.07 times larger than that after. This observation is consistent with similar geometries on either side of the interface considering

				TABLE II SIR statistics.			
Year	<pre>{Duration} (\delta^a D) [hr]</pre>	$egin{array}{l} \langle R_{ m D} = D_{ m before} \ \langle \delta R_{ m D} angle \ \langle \delta R_{ m D} angle \end{array}$	$\langle Size \rangle (\delta S)$ [AU]	$\langle P_{ m max} \rangle \left(\delta P_{ m max} ight)$ [pPa]	$\left< B_{ m max} \right> \left(\delta B_{ m max} ight)$ [nT]	$\langle \boldsymbol{R}_{\mathrm{V}} = V_{\mathrm{max}} \ / V_{\mathrm{min}} \rangle \; (\delta \boldsymbol{R}_{\mathrm{V}})$	$\langle \Delta V \rangle (\delta \Delta V)$ [km s ⁻¹]
1995	37.24 (2.95)	1.03 (0.17)	0.40(0.03)	229.86 (22.00)	17.36 (0.97)	1.81 (0.06)	262.06 (18.14)
1996	35.82 (2.92)	0.92(0.12)	0.37~(0.03)	130.85 (8.44)	12.90 (0.48)	1.55 (0.02)	192.71 (9.32)
1997	26.97 (1.85)	1.26 (0.22)	0.27 (0.02)	145.86 (12.77)	13.16 (0.57)	1.49(0.03)	164.61 (9.15)
1998	43.15 (2.99)	1.16(0.16)	0.46 (0.03)	169.15 (12.73)	15.63(0.63)	1.67 (0.05)	220.97 (14.81)
1999	38.30 (3.06)	0.95(0.15)	0.43 (0.03)	209.92 (19.19)	17.55 (1.08)	1.74(0.06)	251.19 (17.93)
2000	32.48 (2.04)	1.46(0.24)	0.37 (0.02)	198.09 (28.43)	16.30(1.03)	1.72 (0.05)	249.53 (17.80)
2001	34.60 (3.10)	1.03(0.18)	0.38 (0.03)	170.47 (16.12)	15.59 (0.76)	1.66(0.05)	221.38 (13.11)
2002	35.74 (2.05)	1.60(0.34)	0.40 (0.02)	214.78 (22.01)	16.82 (0.92)	1.68(0.05)	234.51 (16.63)
2003	37.64 (2.67)	0.99 (0.12)	0.49 (0.04)	167.00 (13.45)	15.67 (0.61)	1.67(0.04)	263.80 (12.89)
2004	44.08 (3.30)	1.59(0.36)	0.49 (0.04)	129.78 (7.18)	13.73 (0.53)	1.65 (0.05)	229.02 (14.85)
All	36.73 (0.89)	1.21 (0.07)	0.41 (0.01)	176.22 (5.63)	15.47 (0.26)	1.66 (0.02)	229.95 (4.89)
Max	92.00	13.23	1.24	850	41.0	2.96	603
Min	6.75	0.05	0.06	52	7.2	1.17	61

 $^a\delta$ presents the probable error of the mean for the corresponding parameter.

Figure 5. Annual statistics of some properties of SIRs during the period 1995 - 2004. (a) Occurrence rates of SIRs. (b) Scale size of each SIR. (c) Peak pressure. (d) Maximum magnetic field. (e) Change in the solar-wind velocity from slow stream to fast stream. The probable error of the mean is shown.

the different velocities on the two sides. The scale size of SIRs varies from 0.06 to 1.24 AU, with a mean of 0.41 ± 0.01 AU, the same scale of our ICME events (Jian *et al.*, 2006). It is largest in 2003 and 2004, during the declining phase of the solar cycle.

The average P_{max} of SIRs is 176 ± 6 pPa, a smaller value than that of ICMEs, suggesting that the average strength of stream interaction is weaker than the interaction of ICMEs with ambient solar wind at one AU. The P_{max} apparently declines from 2002 to 2004, meaning that the interaction weakens as the solar activity declines. Over the ten years, B_{max} has a variation similar to P_{max} , with an average of 15.5 ± 0.3 nT.

Since annual averages of R_V and ΔV have similar solar-cycle variations, we only show the latter in Figure 5. They have no clear solar-cycle dependence, reaching maxima in 2003. They both reach a minimum in 1997, just after the SSN minimum, but can reach high values around solar maximum and in the solar-cycle declining phase. This behavior may be attributed to the fact that over the ten years, V_{min} is almost constant, while V_{max} varies greatly. In 2001, all five parameters in Figure 5 are relatively low. Near solar minimum, we are presumably seeing the equatorial extent of the large polar coronal holes. While around solar maximum, it is likely that we are observing smaller coronal holes, which may also occur at lower latitudes. Certainly, the solar-wind speed has been found to be a function of coronal hole size, so it makes sense that pressure and magnetic field might be too (*e.g.*, Nolte *et al.*, 1976; McComas, Elliott, and von Steiger, 2002). Our result partially represents the properties of the plasma originating from the two kinds of coronal holes. On average, V_{max} is 1.66 ± 0.02 times V_{min} , and the former is 230 ± 5 km s⁻¹ larger than the latter. The values of R_{V} and ΔV are both larger than those of ICMEs, consistent with the SIR's role in the interaction of fast streams with slow streams.

The two panels in Figure 6 individually show the probability distributions of P_{max} and ΔV , one on a quasi-logarithmic scale (the bin values are successively raised by the power 1.06 to distribute the data well across the bins), and the other on a linear scale. Roughly, they are all centrally distributed. The P_{max} varies from 52 to 850 pPa, and is distributed mostly around 140 pPa, where about 24% of SIRs fall. The velocity change varies from 61 to 603 km s⁻¹, centered on 200 km s⁻¹, and approximately 22% of the 365 SIRs have a ΔV between 175 and 225 km s⁻¹.

8. Summary

Total perpendicular pressure (P_t) can assist in the identification of different interaction types. A pressure peak with gradual slopes on both sides is the characteristic feature of the stream interaction region (SIR). From 1995 to 2004, *Wind* and ACE observed 365 SIRs in all, 54% of them being CIRs. The SIR occurrence rate has little solar-cycle dependence. The CIR occurrence rate varies more with solar cycle than the SIR rate, from 15 in 1997 up to 25 in 2003. Due to other temporal variations in the solar wind, such as ICMEs, and partially because of data gaps, on average we can only detect 1.7 CIRs per Carrington rotation.

On average about 24% of SIRs are associated with shocks, and around 31% of CIRs occur with shocks. Among the SIRs with shocks, 70% have only forward shocks, and 24% have only reverse shocks. Hence, at one AU, only about 1% of all SIRs occur with a pair of forward-reverse shocks. The SIR shock-association rate is much larger than the rate found by Lindsay *et al.* (1994) based on PVO data at 0.72 AU, suggesting that some forward or reverse waves bounding the interaction region may have steepened into shocks from 0.72 to 1.0 AU.

Defining the stream interface where the P_t reaches the maximum, the average duration of an SIR at one AU is 36.7 ± 0.9 hours, and the leading portion of the interaction before the interface lasts about 1.21 ± 0.07 times longer than the trailing portion, indicating a temporal asymmetry. In addition, the average scale size of SIR is 0.41 ± 0.01 AU, as large as ICMEs; peak pressure (P_{max}) is 176 ± 6 pPa, and the average ΔV is 230 ± 5 km s⁻¹. In contrast, the CIRs last 36.8 ± 1.2 hours, with a size of 0.44 ± 0.02 AU, a P_{max} of 214 ± 9 pPa, and a ΔV as high as 285 ± 6 km s⁻¹.

Figure 6. Probability distribution: P_{max} and ΔV of SIRs (1995–2004).

The CIRs are typically larger and stronger SIRs. Our statistics should also provide some needed guidance for simulation work on stream interactions.

The properties (size, P_{max} , B_{max} , R_V , ΔV , etc.) of SIRs have no simple solarcycle dependence. They reach low values around solar maximum, probably because around solar minimum, a larger fraction of fast streams emanate from the highheliolatitude coronal holes, and the properties of such fast streams differ from the ones originating in the low-heliolatitude coronal holes near solar maximum. The solar-cycle variations of the CIRs properties mimic those of SIRs, except that CIRs often last longer, and have stronger interactions. This demonstrates that SIRs and CIRs involve the same physical mechanisms, with the only exception being that SIRs have low recurrence.

Since single-point observations are definitely not sufficient to study the temporal and spatial evolution of stream interactions, the launch of the *Solar-Terrestrial Relations Observatory* (STEREO), will add two more observation points on either side of the *Wind*/ACE pair, enabling stream interaction to be probed only a day or so apart, and determine how steady SIRs are, especially their forward and reverse shocks.

							Stream						
		Start UT [mm/dd	End UT [mm/dd	Discontinuity UT [mm/dd	F/R ^a	ΛP^{b}	interface (SI) UT [mm/dd	Pmov	Vmax	Vmin	ΛV^{c}	Buov	
SIR #	CIR #	hhmm]	hhmm]	bhmm]	Shock	(pPa)	hhmm]	(pPa)	$(\mathrm{km}\mathrm{s}^{-1})$	(km s ⁻¹)	(km s ⁻¹)	(nT)	Comments
1995													
1	1	01/01 1937	01/03 2000	01/01 1937	ц	$33 \rightarrow 88$	55 01/02 0556	173	720	320	400	16.3	<i>P</i> _t plateau-like and irregular
7	7	01/17 0200	01/18 2000	01/17 1918	/	125 ightarrow 160	35 01/17 2323	240	536	330	206	19	
3		01/22 0400	01/23 0200				01/22 1300	110	435	335	100	11	
4	\mathfrak{c}	01/28 1800	01/30 1100	01/30 1000	/	85 ightarrow 47	-38 01/29 1520	290	747	290	457	20.5	$P_{\rm t}$ zigzag
5	4	02/10 2200	02/13 1400				02/11 0600	170	710	330	380	14	$P_{\rm t}$ irregular
9	S	02/25 2000	02/28 2000	02/26 0256	ц	$90 \rightarrow 130$	40 02/26 0325	180	640	262	378	14.6	Long-time
													plateau after P _{may}
				02/26 0718	/	$150 \rightarrow 112$	-38						
7*	9	03/25 2200	03/27 2100				03/26 1013	207	520	290	230	18.5	After an ICME ^d
&	٢	04/06 1100	04/07 2200	04/07 2025	К	$110 \rightarrow 28$	-82 04/07 1240	580	763	300	463	28	Catching up
													with an ICME-like
													structure
6		04/22 0200	04/25 0400				04/22 1823	130	510	300	210	13	$P_{\rm t}$ plateau-like
10	8	04/26 0800	04/27 0900				04/26 2110	250	720	420	300	17.6	
11	6	05/01 2000	05/03 0030	05/02 2357	-	$90 \rightarrow 50$	-40 05/02 0350	240	745	360	385	17	A trough of $P_{\rm t}$, two steps
											e	Contin	ued on next page)

356

L. JIAN ET AL.

							Stream						
		Start UT	End UT	Discontinuity			interface (SI)	_					
		[mm/dd	[mm/dd	UT [mm/dd	$\mathrm{F}/\mathrm{R}^{\mathrm{a}}$	$\Delta P^{ m b}$	UT [mm/dd	P_{\max}	V_{\max}	$V_{ m min}$	ΔV^{c}	$B_{ m max}$	
SIR #	CIR #	# hhmm]	hhmm]	[mmh]	Shock	(pPa)	[mmhh	(pPa)	(km s ⁻	¹) (km s ⁻¹) $(km s^{-1})$	(nT) (Comments
12*		05/15 1700) 05/16 2200				05/16 0542	300	520	310	210	25	Containing an ICME
13	10	05/23 0300	05/24 0600	05/24 0440	/	$110 \rightarrow 60$	-50 05/24 0045	230	680	330	350	17	
14	11	05/29 0300	05/31 0600				05/30 0638	225	700	380	320	19.8	$P_{\rm t}$ irregular
15)000 60/90	06/10 2200				06/10 0745	100	420	295	125	13	$P_{\rm t}$ irregular
16	12	06/19 000(06/19 2000	06/19 1330	/	$200 \rightarrow 80$	-120 06/19 1230	440	740	340	400	25	$P_{\rm t}$ noisy
17	13	06/25 0600) 06/26 0343	8 06/26 0343	R	$73 \rightarrow 32$	-41 06/25 2327	180	570	373	197	15.7	Two peaks of $P_{\rm t}$,
01							0000 01700	110		270	5	ç	uguon
18		0.1/12 0.00	0//14 0000				0//13 0200	110	320	C0 2	19	17	
19	14	07/16 0918	3 07/17 0400	07/16 0918	/	$40 \rightarrow 66$	26 07/16 2105	260	069	358	332	20	
20		07/24 0225	3 07/25 1000	07/24 0223	Ц	$24 \rightarrow 87$	63 07/24 0923	180	510	318	192	19.4	Some rotations of B
21		3060 208/07	5 08/09 1000	08/07 0905	-	$35 \rightarrow 78$	43 08/07 1240	140	620	340	280	12	P _t irregular, several neals
				08/07 1407	/	$110 \rightarrow 63$	-47						and hand
22	15	08/13 1300	08/14 1800				08/14 0308	90	660	360	300	11.2	Weak, T _P not high
23		08/24 2212	2 08/25 1100	08/24 2212	Ц	$65 \rightarrow 130$	65 08/25 0105	220	446	318	128	14.6	
24	16	09/02 0800	09/06 0500	09/06 0230	Я	$150 \rightarrow 68$	-82 09/05 1920	320	630	310	320	21	
25		09/10 123(09/11 0600				09/10 1820	140	580	397	183	13.2	
26		10/01 2000	0 10/03 1200				10/02 1341	155	490	300	190	12	Followed by a strong SIR
												(Cont	inued on next page)

(Continued)

PROPERTIES OF STREAM INTERACTIONS AT ONE AU DURING 1995 – 2004

)	(
	Start UT	End UT	Discontinuity			Stream interface (SI)	-					
	[mm/dd	[mm/dd	UT [mm/dd	$\mathrm{F}/\mathrm{R}^{\mathrm{a}}$	$\Delta P^{ m b}$	UT [mm/dd	P_{\max}	$V_{ m max}$	$V_{ m min}$	ΔV^{c}	$B_{ m max}$	
SIR # CI	R # hhmm]	hhmm]	hhmm]	Shock	(pPa)	[mmhh]	(pPa)	(km s ⁻¹) (km s ⁻¹) $(km s^{-1})$	(nT) (Comments
27 17	10/04 000	0 10/04 2030	10/04 1943	/	$57 \rightarrow 30$	-27 10/04 0740	400	720	383	337	22	15-min extremely high <i>P</i> t
28*	10/18 104	2 10/20 1400	10/18 1042	ц	$30 \rightarrow 200$	170 10/19 1823	410	578	300	278	29	Containing an ICME
			10/18 1900	/	226 ightarrow 182	-44						
			10/19 1751	Ц	$200 \rightarrow 360$	160						
29 18	10/30 010	0 11/01 1800	10/30 0927	ц	$42 \rightarrow 65$	23 10/30 1322	108	640	300	340	13	<i>P</i> t irregular, plateau
30	$11/04\ 080$	0 11/06 0600				11/05 1430	162	610	380	230	15	
31	11/21 160	0 11/24 0000				11/22 0720	72	367	303	64	7.2	Weak, T _P not high
32 19	11/27 000	0 11/27 2000				11/27 1120	530	526	260	266	30	Quite classic slow
33*	12/15 043	7 12/17 1800	12/15 0437	ĹŢ	$38 \rightarrow 88$	50 12/15 1425	123	440	310	130	12.5	ICME in SIR
			12/15 1457	/	$110 \rightarrow 80$	-30						
			12/16 0450	/	$93 \rightarrow 68$	-25						
34 20	12/24 060	0 12/24 1600	12/24 0600	ц	$53 \rightarrow 210$	157 12/24 0835	470	580	330	250	27	One reverse shock at 12/25 2305
			12/24 0845	/	$470 \rightarrow 265$ -	-205						
35	12/31 000	0 12/31 2100				12/31 0620	110	510	330	180	11.6	V _P does not monotonically increase
											(Con	tinued on next page)

358

L. JIAN ET AL.

		^{nax} T) Comments		.5 Little heating of plasma		Irregular $P_{\rm t}$.5	Irregular P _t			.5 No sharp $T_{\rm P}$	increase, small peaks of P _t	.5 Following an ICME	.5	.3 $P_{\rm t}$ plateau, $N_{\rm P}$ and $T_{\rm P}$ do not change exactly simultaneously	Continued on next page)
		a^{-1} $B_{\rm n}$		11	18	12	13		6	11	11		6		16	14	10	3
		ΔV^{-1}) (km		200	270	145	290		185	250	210		175		130	160	135	
		V_{\min} ¹) (km s ⁻		370	370	385	340		305	400	290		310		340	320	290	
		$V_{\rm max}$ (km s ⁻¹		570	640	530	630		490	650	500		485		470	480	425	
	_	P _{max} (pPa)		90	250	120	160		110	130	105		99		200	135	80	
Continued)	Stream interface (SI	UT [mm/dd hhmm]		01/02 1929	01/14 1701	01/19 2235	8 02/11 0525	-40	11 03/03 0300	03/20 2012	53 04/08 1339	45	05/20 0100		05/29 0140	06/06 0400	-38 06/15 1345	
))		$R^a \Delta P^b$ ock (pPa)					$34 \rightarrow 42$	$90 \rightarrow 50$	36 ightarrow 47		$47 \rightarrow 100$	55 ightarrow 100					$95 \rightarrow 57$	
	Ŋ	F/I Shc					-	/	Ц		ц	Ц					~	
	Discontinui	UT [mm/dd hhmm]		0	0	0	0 02/10 0120	02/11 0820	0 03/02 2032	0	0 04/08 0241	04/08 1310	0		0	0	0 06/16 0419	
	End UT	[mm/dd hhmm]		0 01/03 120	0 01/15 000	0 01/21 020	0 02/11 200		0 03/04 200	0 03/22 000	0 04/09 170		0 05/21 100		0 05/30 050	0 06/06 180	0 06/16 120	
	Start UT	[mm/dd [!] hhmm]		01/02 140	01/14 100	01/19 140	02/10 012		03/02 040	03/20 000	04/07 200		05/18 200		05/28 220	06/05 140	06/14 180	
		CIR #		-	5		ю			4								
		SIR #	1996	1	2	3	4		5	9	٢		8		9*	10	11	

PROPERTIES OF STREAM INTERACTIONS AT ONE AU DURING 1995 – 2004 359

		Commonts	Comments			Containing an ICME		$P_{\rm t}$ plateau,	maybe a	recurrence of	event 11, but	fast stream	with not quite	high speed								No sharp T _P	IIICICASC		inued on next page)
		Bmax	(TU) (.	19		14		11.5							12.3		15	6	10.3	11	11.8	13.6		10.5	(Conti
		$\Delta V^{\rm c}$	-) (kms	170		230		140							90		220	85	180	220	172	240		130	
		V _{min}) (km s	380		320		300							305		360	330	360	370	360	380		310	
		$V_{\rm max}$	(kms	550		550		440							395		580	415	540	590	532	620		440	
	_	P _{max}	(pra)	280		110		80							110		170	80	90	110	130	150		70	
Stream	interface (SI)	UT [mm/dd	ſuuuuu	06/19 0145		07/02 0420		07/13 0000							07/28 1415	5	07/31 0240	0080 60/80	08/14 0930	08/16 0755	08/23 0425	08/29 0140		09/04 2300	
				17	-100	20	22								45	1				50	17				
		$\Delta P^{ m b}$	(pra)	65 ightarrow 82	$260 \rightarrow 160$	$20 \rightarrow 40$	$63 \rightarrow 85$								$45 \rightarrow 90$	92 ightarrow 77				55 ightarrow 105	$17 \rightarrow 34$				
		F/R ^a	Shock	Ц	/		/								ц	/				Ц	/				
	Discontinuity	UT [mm/dd	ſuuuuu	0 06/18 2236	06/19 0157	0 07/01 1220	07/01 1417	C							0 07/28 1215	07/28 1747	C	C	C	0 08/16 0745	0 08/22 1310	0		0	
	End UT	[mm/dd	umnn	06/19 1000		07/04 020		07/13 180							07/29 1800		07/31 1200	08/10 1200	08/15 060	08/17 1200	08/23 1800	08/29 150		000 20/60 (
	Start UT	[mm/dd	f nnmm f	06/18 2000		07/01 1220		07/11 0600							07/28 0800		07/30 1500	08/08 0000	08/14 0000	08/16 0200	08/22 1310	08/28 1500		09/03 1800	
		# 90				S											9			L		8			
		# CID	DIK #	12		13^{*}		14							15		16	17	18	19	20	21		22	

L. JIAN ET AL.

		Start UT	End UT	Discontinuity			Stream interface (SI)						
STR #	CIP #	[mm/dd	[mm/dd	UT [mm/dd hhmm ¹	F/R ^a Shock	$\Delta P^{ m b}$	UT [mm/dd	P _{max}	$V_{\rm max}$	V_{\min}	$\Delta V^{\rm c}$	B_{\max}	Commente
# VIIC			ſııııııı	ſııııııı	SHOCK	(pra)	ſıııııı	(pra)					COMMENTS
23	6	09/19 0400	09/20 2200				09/19 1645	100	069	450	240	11	
24	10	09/26 1400	09/26 2200	09/26 2136	R	70 ightarrow 20	-50 09/26 1830	200	685	440	245	18.6	
25	11	10/01 1800	10/03 0000				10/02 1255	180	560	330	230	17.5	
26		10/08 1200	10/09 1600				10/09 0500	130	540	350	190	12.5	$P_{\rm t}$ and $V_{\rm P}$
													irregular
27	12	10/17 1400	10/18 0900				10/17 2238	115	615	390	225	12	
28	13	10/21 2000	10/23 0800				10/23 0000	150	700	390	310	14.5	
29	14	10/27 2000	10/28 1200				10/28 0300	150	620	370	250	14.8	
30		11/03 1200	11/04 1800	11/03 2300	/	50 ightarrow 110	60 11/04 0000	123	450	320	130	12.3	
				11/04 0205	/	105 ightarrow 80	-25						
31	15	11/13 1250	11/14 1200	11/13 1250	/	32 ightarrow 54	22 11/13 2105	125	500	365	135	14.6	
32	16	11/24 0000	11/25 0600				11/24 0830	125	480	310	170	11.5	Followed by
													long V _P increase
33	17	12/09 1600	12/10 1200	12/09 1850	_	$60 \rightarrow 90$	30 12/09 2310	160	550	350	200	16	Irregular $T_{\rm P}$ and $P_{\rm t}$
34 1997		12/14 0817	12/16 1557				12/15 1600	65	580	380	200	8.5	
-		01/06 1800	01/07 1600				01/07 0150	110	460	346	114	11	Two peaks of $P_{\rm t}$
2^*	-	01/10 0052	01/11 0900	01/10 0052	ц	15 ightarrow 65	50 01/11 0200	500	590	375	215	24.2	ICME + SIR
Э	0	01/25 1830	01/26 1730				01/26 1000	215	600	320	280	18	A trough of $P_{\rm t}$
											9	Continı	ued on next page)

(Continued)

	Comments	Weak, near contact with previous SIR		Relatively neat, short	V _P does not increase	monotonically, containing an ICME	Followed by another V _P enhancement	V _P increases in two steps	Short	Noisy plateau of P_t after the P_t peak	Weak	inued on next page)
	$B_{\max}^{}$ 1) (nT)	12	11.5	16	12.8		11	16.5	11.7	13.5	8.8	(Cont
	$\Delta V^{\rm c}$) (km s ⁻	225	155	220	115		115	190	105	230	171	
	V _{min}) (km s ⁻¹	460	315	380	320		320	440	320	295	420	
	$V_{\rm max}$ (km s ⁻¹	685	470	600	435		435	630	425	525	591	
	P _{max} (pPa)	120	95	233	110		120	165	130	215	LL	
ontinued)	Stream interface (SI) UT [mm/dd hhmm]	-43 01/28 0855	02/05 2100	-80 02/08 1313	02/17 1743		02/21 0820	13 02/28 0050	43 03/05 1547	03/12 0210	03/26 1150	
(C	$\Delta P^{\rm b}$ ϵ (pPa)	$80 \rightarrow 37$		$200 \rightarrow 120$				$13 \rightarrow 26$	$37 \rightarrow 80$			
	, F/R ^a Shocł	К		~				ц	ц			
	Discontinuity UT [mm/dd hhmm]	0 01/28 0854	0	0 02/08 1327	0		Q	0 02/27 1729	0 03/05 1255	Q	0	
	End UT [mm/dd hhmm]	0 01/28 130	0 02/06 200	0 02/08 174	0 02/18 060		0 02/22 010	9 02/28 120	5 03/06 040	0 03/12 160	0 03/27 000	
	Start UT [mm/dd # hhmm]	01/27 120	02/05 0300	02/08 082	02/17 030		02/20 180	02/27 172	03/05 125:	03/11 200	03/26 020	
	CIR #			б				4		2		
	SIR #	4	5	9	*Ľ		8	6	10	11	12	

L. JIAN ET AL.

		Comments		Closely	following an SIR. interface	is thick ~ 2 hours		Classic		Two peaks,	irregular	Weak, data gap	after it	$P_{\rm t}$ irregular	Neat	Classic	2-hr data gap,	following a	previous and	Saw-peak	A small trough of $P_{\rm t}$ peak	ued on next page)
		B _{max} (nT)	15.5	10			19.5	15.5	16	9.5		6		12	12.3	13.5	14			10.7	17	(Contin
		$\Delta V^{\rm c}$	140	78			140	240	305	130		120		160	190	120	110			120	195	
		V _{min} (km s ⁻	350	370			310	310	330	320		290		270	360	335	340			360	305	
		$V_{\rm max}$ (km s ⁻¹)	490	448			450	550	635	450		410		430	550	455	450			480	500	
		P _{max} (pPa)	160	90			260	180	170	95		98		170	110	140	125			140	165	
ontinued)	Stream interface (SI)	UT [mm/dd hhmm]	04/01 0530	04/04 0110			50 04/10 2000	45 04/16 1700	57 05/01 1745	-35 06/06 0953		06/15 1705		40 06/22 0337	06/27 1030	07/07 1605	07/09 2130			0,1/24 0,500	07/31 0300	
(<i>C</i> ¢	-	ε ^a Δ <i>P</i> ^b ock (pPa)					70 ightarrow 120	65 ightarrow 110	40 ightarrow 97	$95 \rightarrow 60$				55 ightarrow 95								
	Ś	F/F Shc					Ц	Ц	Ц	/				-								
	Discontinuit	UT [mm/dd hhmm]	0	0			0 04/10 1300	0 04/16 1220	0 05/01 1203	0 06/06 0953		0		0 06/22 0245	0	0	0			0	0	
	End UT	[mm/dd hhmm]	0 04/02 100	0 04/04 140			0 04/11 020	0 04/17 140	3 05/02 030	0 06/07 220		0 06/16 110		0 06/23 060	0 06/27 180	0 07/08 010	0 07/10 060			0 10 <2//0 0	0 07/31 160	
	Start UT	[mm/dd # hhmm]	03/31 160	04/03 190			04/10 130	04/16 080	05/01 120	06/05 180		06/14 180		06/22 000	06/27 020	07/06 220	080 60/L0			0//24 000	07/30 200	
		CIR #					9	٢	8						6							
		SIR #	13	14			15^{*}	16	17	18		19		20	21	22	23		ò	24	25	

PROPERTIES OF STREAM INTERACTIONS AT ONE AU DURING 1995 – 2004

	Comments	Irregular $P_{\rm t}$ Followed by another $P_{\rm t}$ peak	Irregular <i>P</i> _t Containing an ICME	Weak, lasting longer before the SI	Weak VP does not monotoni- cally increase, followed by another SIR	$P_{\rm t}$ irregular	An interpeak trough before it, short
	B _{max} (nT)	11 8.6	14.3 18	11.2	10.7 11.5	13 12.8	12.3 (Contir
	ΔV^{c} (km s ⁻¹	135 215	160 258	180	115 120	150 145	160
	V_{\min} (km s ⁻¹)	335 350	300 312	330	315 290	325 360	300
	$V_{ m max}$ (km s ⁻¹	470 565	460 570	510	430 410	475 505	460
	P _{max} (pPa)	80 76	110 195	95	95 130	150 130	133
ntinued)	Stream interface (SI) UT [mm/dd hhmm]	08/09 0715 08/13 0525	08/28 0400 50 09/04 0007	55 09/28 0030	10/08 0030 30 10/23 1520	50 11/01 0632 11/18 0625	45 11/30 0750
(Co)	$\Delta P^{ m b}$ (pPa)		$37 \rightarrow 87$	$65 \rightarrow 120$	32 → 62	$82 \rightarrow 132$	$50 \rightarrow 95$
	F/R ^a Shock		ц	ц	Ц	ц	ц
	Discontinuity UT [mm/dd hhmm]		09/02 2238	09/03 0838	10/23 0810	0 11/01 0615	0 11/30 0715
	End UT [mm/dd hhmm]) 08/10 0300) 08/14 0100) 08/28 1400) 09/04 0500) 09/28 0900	0 10/08 1000) 11/01 2300) 11/19 0400	5 11/30 1400
	Start UT [mm/dd # hhmm]	08/09 050(08/12 160(08/27 120(09/02 220(09/26 1500	10/06 180 10/23 073(10/31 2300 11/17 1600	11/30 071:
	CIR #	10	11 12	13	14	15	
	SIR #	26 27	28 29*	30	31 32	33 34	35

L. JIAN ET AL.

	Comments	Weak, noisy		Classic, but not a CIR		V _P irregular,	noisy, catching up	with an ICME		P_t peaks not where T_P sharply rises	Voisy, trough in the center	Three peaks of $P_{\rm t}$	Containing a flux rope structure		Voisy	ted on next page)
	B _{max} (nT) (8.7		14	17.8	14.5			10.3	15	23.5 1	16	13	13	13	Continu
	ΔV^{c} (km s ⁻¹)	105		100	180	150			190	205	295	330	160	100	350	Ĵ
	V _{min} (km s ⁻¹	310		280	290	330		000	390	310	270	310	350	300	320	
	V _{max} (km s ⁻¹)	415	0	380	470	480			580	515	565	540	510	400	570	
	P _{max} (pPa) (64 ,	0	130	180	170		Ċ	80	150	300	160	100	120	100	
ntinued)	Stream interface (SI) UT [mm/dd hhmm]	12/04 1902		01/16 1804	01/19 1400	90 01/31 2345			02/11 1520	02/28 1415	03/10 1015	03/21 1100	03/26 0256	04/04 1530	23 04/16 2350	
(Cor	1 Δ <i>P</i> ^b ck (pPa)					$60 \rightarrow 150$									$40 \rightarrow 17$ –	
	y ${ m F/R}^a$ Shoc					ц									R	
	Discontinuit UT [mm/dd hhmm]	(-		01/31 1553			•				0		2 04/18 1522	
	End UT [mm/dd hhmm]	0 12/06 1400		0 01/17 1200	0 01/20 2000	0 02/01 1500			0 02/11 2300	0 03/03 0000	0 03/11 0400	0 03/22 1200	0 03/27 2300	0 04/05 0600	0 04/18 1522	
	Start UT [mm/dd ^t hhmm]	12/04 080		01/16 090	01/18 060	01/31 140			02/10 180	02/28 000	03/09 210	03/19 200	03/24 100	04/03 220	04/15 140	
	CIR #										1	0			\mathfrak{S}	
	SIR #	36	1998	-	7	С		-	4	Ś	9	L	∞*	6	10	

PROPERTIES OF STREAM INTERACTIONS AT ONE AU DURING 1995 – 2004

	Comments	T _P increases in	steps Two obviously different streams, containing an ICME	Sharp interface 3-hr data gap	A trough Following an ICME	P _t plateau, no sharp T _P increase	Followed by an ICME	Two obviously different streams	ued on next page)
	B _{max}	19.2 13.5	17	20.6 13	14 12	16	14	22.5	(Contin
	ΔV^{c} (km s ⁻¹	147 210	320	390 125	310 130	220	270	340	
	V _{min}) (km s ⁻¹	323 480	320	340 395	350 312	300	400	300	
	$V_{\rm max}$ (km s ⁻¹ .	470 690	640	730 520	660 442	520	670	640	
) P _{max} (pPa)	330 210	143	320 120	125 90	180	200	340	
utinued)	Stream interface (SI UT [mm/dd hhmm]	100 04/23 2133 40 100 05/08 0952	58 05/16 0310	190 05/29 1525 06/03 1127	06/06 1920 06/15 0500	06/19 1300	95 07/05 0417	-75 07/16 0457	
(Cor	$\Delta P^{\rm b}$. (pPa)	$50 \rightarrow 150$ $230 \rightarrow 270$ $50 \rightarrow 150$	$32 \rightarrow 90$	$110 \rightarrow 300$			55 ightarrow 150	$90 \rightarrow 15$	
	y F/R ^a Shock	F / F	Ľ,	Ц			Ц	К	
	Discontinuity UT [mm/dd hhmm]	0 04/23 1729 04/23 2210 0 05/08 0923	0 05/15 1353	0 05/29 1515 0	0 0	0	0 07/05 0352	4 07/17 0024	
	End UT [mm/dd hhmm]	9 04/25 000 0 05/08 180	3 05/17 180	0 05/30 160 0 06/04 060	0 06/07 120 0 06/16 100	0 06/20 120	0 07/06 180	0 07/17 002	
	Start UT [mm/dd ‡ hhmm]	04/23 172 05/07 080	05/15 135	05/28 140 06/03 060	06/05 000 06/14 140	06/18 180	07/04 180	07/15 120	
	CIR #	4	Ś	9	L	8	6	10	
	SIR #	11 12	13*	14 15	16 17*	18	19*	20*	

366

L. JIAN ET AL.

		×	Comments								ACE ^e , a trough of	<i>P</i> _t , 18-hr data gap of <i>Wind</i>			ACE, two peaks of $P_{\rm t}$	ACE				ACE, Wind data	gaps	ntinued on next page)
		$B_{ m max}$	⁻¹) (nT)	15.5	16.6	22	13.5		9.5	20	15		12.5	16	17.3	13	11	22	17.2	19.3		(Co
		ΔV^{c}) (km s ⁻	165	380	190	300		180	175	260		280	210	80	170	160	220	265	270		
		V_{\min}	(km s ⁻¹	335	360	350	280		330	300	340		350	310	330	370	340	320	310	330		
		V_{\max}	$(\mathrm{km}\mathrm{s}^{-1})$	500	740	540	580		510	475	600		630	520	410	540	500	540	575	600		
		P_{\max}	(pPa) (163 2	240	225	140		80	210 4	148		95 (150	180 4	103	80	220	170	230		
ontinued)	Stream	interface (SI) UT [mm/dd	hmm]	07/21 0510	-60 07/23 0307	110 08/06 0828	30 08/22 1445	-40	09/12 1552	09/18 1340	23 10/07 1630		10/28 2100	11/23 1630	60 12/11 2014	12/16 0445	12/20 0000	-45 12/25 2000	01/06 1421	65 01/13 2100		
(C		$\Delta P^{ m b}$	(pPa)		$120 \rightarrow 60$	70 ightarrow 180	$45 \rightarrow 75$	$80 \rightarrow 40$			$23 \rightarrow 46$				$60 \rightarrow 120$			$110 \rightarrow 65$		$40 \rightarrow 105$		
		$^{\prime}$ F/R ^a	Shock		К	Ц	ц	R			/				Ц			Я		Ц		
		Discontinuity UT [mm/dd	[mmhh	(07/23 1302	08/06 0715	08/22 0211	08/23 1023			0 10/06 1533				0 12/11 1934			+ 12/26 0414	-	01/13 1000		
		End UT [mm/dd	hhmm]	0 07/22 0000	0 07/23 2000	0 08/08 0400	0 08/23 2200		0 09/13 0800	0 09/19 0800	3 10/08 0000		0 10/30 0000	0 11/24 0300	0 12/12 1200	0 12/16 1100	0 12/21 0000	0 12/26 0414	0 01/07 1400	0 01/15 0700		
		Start UT [mm/dd	t hhmm]	07/20 200	07/22 120	08/05 200	08/22 000		09/11 020	09/17 120	10/06 153		10/27 060	11/23 100	12/10 120	12/15 180	12/19 120	12/25 020	01/05 180	01/13 080		
			: CIR #		11		12				13		14	15		16	17	18	1	7		
			SIR #	21	22	23	24		25	26	27		28	29	30	31	32	33 1999	1	0		

PROPERTIES OF STREAM INTERACTIONS AT ONE AU DURING 1995 – 2004

			P, ind			Ę	ц <u>т</u>	py		~ ¹			e ce		age)
	Comments	Long, weak, noisy	A trough of <i>T</i> no reverse shock, ambiguous shock in <i>W</i> data	$P_{\rm t}$ plateau		Neugebauer	<i>et al.</i> (200 has differer	view, entroj hole		A trough of <i>H</i>	ACE		Big disturban of <i>V</i> _P befor the event	Classic	inued on next p
	B_{\max}	6	25.5	13	22	12.2			15.5	13	13	10	19	28	(Cont
	$\Delta V^{\rm c}$ (km s ⁻¹	155	112	308	200	190			240	250	190	250	135	360	
	$V_{\rm min}$ (km s ⁻¹	325	368	370	370	390			320	350	470	400	380	340	
	V _{max} (km s ⁻¹	480	480	678	570	580			560	600	660	650	515	700	
	P _{max} (pPa)	LL	320	110	300	130			150	115	130	85	190	360	
ontinued)	Stream interface (SI) UT [mm/dd hhmm]	01/27 1230	30 02/11 1840	02/15 0125	48 03/01 1317	03/04 0810			03/29 0617	04/10 0630	04/20 1635	04/29 1500	05/13 0602	25 05/18 0549	
(Cc	$\Delta P^{ m b}$ (pPa)		$45 \rightarrow 75$		85 ightarrow 133									$38 \rightarrow 163$ 1	
	F/R ^a Shock		Ľ		ц									Ц	
	Discontinuity UT [mm/dd hhmm]		02/11 0749		02/28 2144	-							_	: 05/18 0032	
	End UT [mm/dd hhmm]	0 01/30 1200	10 02/12 0710	0 02/15 1800	4 03/02 0300	0 03/04 2000			0 03/30 1948	0 04/10 2230	0 04/20 2310	0 04/30 1100	0 05/13 2000	32 05/18 1948	
	Start UT [mm/dd hhmm]	01/26 160	02/11 074	02/14 130	02/28 214	03/03 190			03/28 120	04/10 023	04/20 130	04/28 100	05/12 22(05/18 003	
	CIR #		\mathfrak{c}		4				5	9		٢		8	
	SIR #	3	4	5	9	٢			8	6	10	11	12	13	

L. JIAN ET AL.

		Comments		A trough of $P_{\rm t}$			$P_{\rm t}$ plateau, a	small trough of $P_{\rm t}$ in the center	ICME + SIR	A small trough	1 7 10	ACE, followed	by several ICMEs		Following an ICME			tued on next page)
		B _{max}) (nT)		9.6	15	12.2	11		25	9.7	19.6	24		12.4	14.5	21.6		(Contir
		$\Delta V^{\rm c}$ (km s ⁻¹		132	205	320	130		603	126	265	290		178	135	340		
		$V_{\rm min}$ (km s ⁻		380	400	340	280		307	300	275	380		322	300	340		
		$V_{\rm max}$ (km s ⁻		512	605	660	410		910	426	540	670		500	435	680		
		P _{max} (pPa)		75	240	132	87		460	80	220	285		112	132	270		
ntinued)	Stream interface (SI)	UT [mm/dd hhmm]	-60	05/23 0847	-50 05/25 0426	06/08 0746	06/15 1211		85 06/26 1937 275	07/15 0000	07/22 0900	07/30 1912		08/06 1020	08/11 0156	73 08/15 2054	-45	
(Co		$\Delta P^{\rm b}$ (pPa)	$80 \rightarrow 20$		70 ightarrow 20				$65 \rightarrow 150$							50 ightarrow 123	$80 \rightarrow 35$	
		F/R ^a Shock	К		R				цц	-						ц	R	
	Discontinuity	UT [mm/dd hhmm]	05/18 1948	0	0 05/25 1008	0	0		0 06/26 0232	0	0	0		0	0	6 08/15 1033	08/17 0216	
	End UT	[mm/dd hhmm]		0 05/23 193	0 05/25 103	0 06/09 053	0 06/18 000		0 06/28 100	0 07/15 223	0 07/22 220	0 07/31 000		08/06 220	0 08/12 020	3 08/17 021		
	Start UT	[mm/dd † hhmm]		05/23 003	05/24 090	06/08 000	06/15 060		06/26 020	07/14 120	07/21 1300	07/30 060		08/06 050	08/09 213	08/15 103		
		CIR #			6	10			11		12	13				14		
		SIR #		14	15	16	17		18^*	19	20	21^{*}		22	23*	24		

PROPERTIES OF STREAM INTERACTIONS AT ONE AU DURING 1995 – 2004

			ax D Comments		<i>P</i> ₁ increases in steps, closely following an	ICME		5 Neugebauer et al. (2004)	$V_{\rm P}$ and $P_{\rm t}$	irregular				5	ICME + SIR, a	trough of $P_{\rm t}$ in the center	3 ACE, weak	V _P irregular		3 $T_{\rm P}$ and $V_{\rm P}$	irregular, SIR + ICME	ntinued on next page)
		ţ	-1) (nT	~	16			14.	15		18			17.	38		14.	18		16.		(Co
			$\Delta V^{\rm c}$	~ ~	158			182	252		350			305	373		113	348		160		
		;	¹) (km s ⁻	~	380			353	410		340			380	347		360	315		350		
		;	V _{max} (km s ⁻	,	538			535	662		069			685	720		473	663		510		
		_	P _{max} (nPa)	7	150			157	185		280			300	610		135	270		200		
ontinued)	Stream		UT [mm/dd hhmm]	,	41 08/23 1721		40	09/07 0750	51 09/12 1613		57 09/26 1934	65	-70	10/10 1336	310 10/22 0638		$-40\ 10/31\ 1010$	29 11/07 1415	-64	41 11/22 0156		
(C		4	$\Delta P^{\rm o}$	< ,	$40 \rightarrow 81$		75 ightarrow 115		$36 \rightarrow 87$		$100 \rightarrow 157$	167 ightarrow 232	205 ightarrow 135		$73 \rightarrow 383$		$85 \rightarrow 45$	$38 \rightarrow 67$	$110 \rightarrow 46$	85 ightarrow 126		
			F/R ^d Shock		Ц		Ц		Н		ц	/	/		ц		R	ц	/	-		
			U'I' [mm/dd hhmm]	,	0 08/23 1211		08/23 1542	00	0 09/12 0358		0 09/26 1456	09/26 1851	09/26 2015	00	0 10/21 0221		0 11/01 0609	0 11/05 2003	11/08 0134	0 11/21 1713		
	ц.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		[mm/dd hhmm]	-	0 08/24 200			00 80/60 0	8 09/13 190		0 09/27 180			0 10/11 070	1 10/22 130		0 11/01 090	3 11/09 000		0 11/24 064		
	E11 #270		[mm/dd # hhmm]	,	08/23 060			010 20/00	09/12 035		09/26 080			10/09 160	10/21 022		10/31 000	11/05 200		11/21 140		
			SIR # CIR		25* 15			26	27 16		28 17			29 18	30^{*} 19		31	32 20		33*		

L. JIAN ET AL.

	e sto gap	Q	e 1 ath	, ap		ш	_	vage)
nents	ا B ormally ormally its, two ks, close ks, close ks, close	classic, d close t	SI in the ter, <i>Wine</i> in the ynetoshe	high N _F d data g	c	an ICMI	, atter ar 1E	on next p
Comn	ACE Wind, abno high poir poir Eart	ACE, Win Eart	ACE, cent was mag	ACE, Win	Classi	After	Weak, ICN	tinued o
B _{max}) (nT)	21 33	19	22.3	31	19.7	17.5	11.3	(Con
$\Delta V^{\rm c}$ (km s ⁻¹	420 383	350	280	430	328	410	160	
$V_{ m min}$ $^{1})~({ m km~s^{-}}$	330 264	370	320	320	372	350	310	
V _{max} (km s ⁻	750 647	720	600	750	700	760	470	
) P _{max} (pPa)	240 330	240	310	650	320	285	86	
Stream interface (SI UT [mm/dd hhmm]	12/04 0506 12/24 0644	12/31 0016	30 01/11 1400	80 01/27 1820	28 02/05 2114	95 02/24 0936	03/06 0655	
			→ 260 1	→ 480 2	→ 55	→ 35 -1		
a ∆ <i>P</i> b :k (pPa)			130 -	200 -	- 27 -	230 -		
y F/R ⁶ Shoc			Ц	ц	ц	Я		
ontinuit [mm/dd m]			1 1340	7 1357	5 1527	4 1416		
Disc UT hhm	Q Q	0	0 01/1	0 01/2	0 02/0	5 02/2	2	
End UT [mm/dd hhmm]	12/05 000	0 12/31 190	01/12 100	01/28 090	02/07 000	02/24 141	03/07 060	
Start UT [mm/dd hhmm]	12/02 060(12/23 1142	12/30 1030	01/10 1200	01/27 0500	02/05 1527	02/23 0400	03/05 1300	
CIR #	21 22	23		7	3	4		
SIR #	34 35	36 2000		7	3	4 v	Ś	

PROPERTIES OF STREAM INTERACTIONS AT ONE AU DURING 1995 – 2004 371

(Continued)

	Comments	/p does not monotoni- cally increase	/p is noisy and does not monotoni- cally increase	Voisy	Voisy and plateau				ACE, ICME with SIR	sig deflection of V _P , containing a tiny flux rope	wed on next page)
	B _{max}) (nT) C	16.2	12.3 V	23 N	9.2 N	13	17.8		12.3 <i>F</i>	16 H	(Contin
	ΔV^{c}) (km s ⁻¹	152	66	255	300	140	260		165	480	
	V _{min} (km s ⁻¹	310	272	340	490	355	270		395	420	
	$V_{ m max}$ $({ m kms^{-1}})$	462	338	595	062	495	530		560	006	
	P _{max} (pPa)	170	105	330	54	100	240		90	113	
ntinued)	Stream interface (SI) UT [mm/dd hhmm]	03/12 1130	03/17 1120	03/22 1606	03/24 0545	04/01 1615	16 04/16 2005 -30	-32	04/19 1610	25 05/02 1047	
(Cor	$^{2}/\mathrm{R}^{\mathrm{a}}$ ΔP^{b} Shock (pPa)						$34 \rightarrow 50$ $110 \rightarrow 80 -$	3 $57 \rightarrow 25 -$		$40 \rightarrow 65$	
	uuity dd F S						35 / 30 /	15 F		15 /	
	Discontin UT [mm/ hhmm]	00	0	00	0	00	5 04/14 193 04/16 103	04/17 10]	0	0 05/01 13⁄	
	End UT [mm/dd hhmm]	0 03/12 23(2 03/18 000	0 03/22 190	0 03/24 193	0 04/02 13(0 04/17 101		0 04/20 02(5 05/02 22(
	Start UT [mm/dd # hhmm]	03/11 230	03/16 105	03/22 010	03/23 220	03/31 180	04/15 140		04/18 160	05/01 134	
	CIR #			5			9			٢	
	SIR #	9	\sim	8	6	10	11		12^{*}	13*	

L. JIAN ET AL.

(Continued)	StreamnityStreamId $F/R^a \Delta P^b$ UT [mm/dd P_{max} V_{min} ΔV^c B_{max} Shock (pPa)hhmm](pPa) (km s^{-1}) (km s^{-1}) (mT) Comments	7 / $113 \rightarrow 90 -23$ 05/13 0342 186 610 300 310 17.3 CRf think it is followed by an ICME	05/18 0000 106 640 470 170 13.2 Noisy 05/24 0140 800 700 520 180 36 ACE, very strong, with ICME	05/29 1617 260 720 330 390 19 30-min data gap 06/14 2000 200 700 410 290 14.5 Classic 07/04 1247 96 595 320 275 11.7 07/04 1213 105 535 363 172 13	08/24 0851 135 440 300 140 15.5 A peak before 08/28 1610 130 650 332 318 12 Irregular <i>P</i> ₁ 09/12 1831 100 455 330 125 11.3	09/16 2310 175 588 350 238 17 Followed by an ICME 09/24 2202 110 580 380 200 13.2 (Continued on next page)
(Com	Start UT End UT Discontinuity $[mm/dd [mm/dd UT [mm/dd F/R^a \Delta P^b]$ SIR # CIR # hhmm] hhmm] Shock (pPa)	$05/02 \ 1047 \ / \ 113 \rightarrow 90 -2$ $14 \ 8 \ 05/12 \ 1500 \ 05/13 \ 2300$	15 05/17 2000 05/18 1200 16* 9 05/23 1400 05/24 1400	17 10 05/29 0700 05/30 0300 18 11 06/14 0800 06/15 1700 19 07/03 1000 07/05 0000 20 07/31 1500 08/02 0200	21 08/23 2200 08/25 0600 22 12 08/27 1400 08/29 0500 23 09/11 1000 09/13 1200	24 13 09/16 1830 09/17 1100 25 14 09/24 1200 09/25 0400

PROPERTIES OF STREAM INTERACTIONS AT ONE AU DURING 1995 – 2004

		Comments	Closely following an SIR	Weak, after an ICME	A trough of $P_{\rm t}$	A trough of $P_{\rm t}$		Noisy, BDE ^g	BDE		Toughs of $T_{\rm P}$ and $P_{ m f}$				Little heating of	plasma To irreoular	$V_{\rm P}$ and $P_{\rm f}$	irregular		ntinued on next page)
		B_{\max}^{1}) (nT)	10.8	10.5	15.6	23.7	14.3	15	16.5		14		12.2	19.5	16.7	16	15			(C01
		ΔV^{c}) (km s ⁻	166	160	240	390	250	340	205		170		160	230	188	275	210			
		$V_{\rm min}$ (km s ⁻¹	460	462	355	320	300	340	295		270		330	310	300	315	420			
		$V_{\rm max}$ (km s ⁻¹)	626	622	595	710	550	680	500		440		490	540	488	540	630			
		P _{max} (pPa)	83	85	125	320	140	160	170		130		105	240	200	205	160			
ontinued)	Stream interface (SI)	UT [mm/dd hhmm]	09/25 1354	10/16 0000	10/22 2320	160 11/04 0345	11/24 1600	12/08 0835	13 12/25 0230		18 01/04 1440	25	31 01/10 2052	01/21 2200	01/29 0135	02/06 0625	23 02/13 0532		70	
(C		$\Delta P^{\rm b}$ (pPa)				$75 \rightarrow 235$			$44 \rightarrow 57$		$35 \rightarrow 53$	$40 \rightarrow 65$	$27 \rightarrow 58$				$27 \rightarrow 50$		70 ightarrow 140	
		F/R ^a Shock				Ц			/		ц	Ц	Ц				/		/	
	Discontinuity	UT [mm/dd hhmm]				0 11/04 0225) 12/24 0825		01/02 1305	01/04 0114	01/10 1609				02/12 2131		02/13 0428	
	End UT	[mm/dd hhmm]	0 09/26 0400	0 10/16 1200	0 10/23 0800	0 11/05 1800	0 11/25 0000	0 12/09 0400	0 12/26 1200		5 01/05 0400		9 01/11 1000	0 01/22 1800	0 01/29 2000	0.02/07 1000	0 02/14 0000			
	Start UT	[mm/dd # hhmm]	09/25 060	10/15 180	10/22 050	11/03 200	11/23 220	12/06 150	12/24 080		01/02 130		01/10 160	01/21 060	01/28 103	02/02 200	02/12 210			
		CIR #		15	16	17		18						1		<i>с</i>	1			
		SIR #	26	27	28	29	30	31	32^*	2001	-		7	3	4	v	9			

374

L. JIAN ET AL.

		Start UT	End UT	Discontinuity 11T [mm/Ad	/ F/Da) da v	<i>Continued</i>) Stream interface (SI ITT Imm/AA		2	A	A 1/C	~	
SIR #	CIR	# hhmm]	hhmm]	hhmm]	r/n Shock	ک <i>ر</i> : (pPa)	hhmm]	r max (pPa)	^v max (km s ⁻¹	$^{\nu \min}$ (km s ⁻	¹) (km s ⁻¹	Dmax (nT)	Comments
L		02/26 0400	02/27 1800) 02/27 1222	~	$170 \rightarrow 30$	-140 02/27 0552	200	400	260	140	14	Noisy, 16-hr data gap of ACE
8	б	02/28 0400	02/28 1600	(02/28 0732	125	550	330	220	13.2	Noisy
*		03/03 090(0 03/06 0000	0 03/03 1040	Ц	$17 \rightarrow 60$	43 03/05 1355	130	600	440	160	14.5	ACE, containing an ICME without BDEs (03/04 0400-03/05 0140), a trough of $P_{\rm t}$
				03/05 2135	R	$53 \rightarrow 22$	-31						
10		05/08 060(05/09 2025	5 05/08 1109	Ц	$37 \rightarrow 87$	50 05/08 1116	90	580	350	230	12.3	Noisy deflections of V _P
11	4	05/12 040(0 05/12 2200) 05/12 1003	ц	$83 \rightarrow 128$	45 05/12 1235	200	660	380	280	19	N _P compression is not obvious
12		05/13 1100	0 05/14 0500	0			05/13 2220	100	625	480	145	13	Close to the previous SIR, noisy, no big deflection of V
13*	Ś	05/22 000() 05/25 2000) 05/23 0422	SR ^g		05/23 0250	178	640	295	345	17	Containing an ICME-like structure in the leading part
												(Con	tinued on next pag

PROPERTIES OF STREAM INTERACTIONS AT ONE AU DURING 1995 – 2004 375

			Comments		A trough of $P_{\rm t}$	$P_{\rm t}$ irregular,	containing a 13-hr ICME-like	structure	Followed by another V _P	increase, obvious	$V_{\rm P}$ deflection	No sharp SI, $V_{\rm P}$, NP, and $T_{\rm P}$ all	gradually change	Noisy, no big <i>V</i> _P deflection			No big deflection,	rt piateau	ntinued on next page)
		ç	<i>B</i> max 1) (nT)	22	12.5	17			14			14		11	19.5	10	11		(Cc
		J I V	∆V ⁵)(km.s [–]	264	280	450			67			235		240	305	137	270		
) (km s ⁻¹	306	360	300			383			390		360	320	343	390		
		1	$V_{\rm max}$ (km s ⁻¹	570	640	750			450			625		600	625	480	660		
		ĥ	P _{max} (pPa)	242	110	200			135			120		06	250	90	75		
(Continued)	Stream	interface (SI)	UT [mm/dd hhmm]	-65 06/01 2130	06/09 0410	06/18 1310			07/14 0135			07/16 1520		07/25 0000	07/31 0400	08/10 0210	08/21 2245		
J		ीत ≜ ति	F/K" ΔP° Shock (pPa)	/ $115 \rightarrow 50$															
		Discontinuity	UT [mm/dd hhmm]	0 06/02 1240	0	0			0			0		0	0	0	0		
	-	End UT	[mm/dd hhmm]	0 06/02 140	0 06/10 040	0 06/20 050			0 07/14 070			0 07/17 090		0 07/26 000	0 07/31 230	0 08/10 140	0 08/22 120		
		Start UI	tmm/dd # hhmm]	06/01 070	06/08 120	06/18 000			07/13 210			07/16 050		07/24 000	07/30 160	08/09 180	08/21 000		
			CIR #	9	٢	8						6		10	11		12		
			SIR #	14	15	16^*			17			18		19	20	21	22		

L. JIAN ET AL.

						Stream						
	Start UT	End UT	Discontinuity	٧		interface (SI)	_					
	[mm/dd	[mm/dd	UT [mm/dd	$\mathrm{F}/\mathrm{R}^{\mathrm{a}}$	$\Delta P^{ m b}$	UT [mm/dd	P_{\max}	V_{\max}	$V_{ m min}$	ΔV^{c}	$B_{ m max}$	
SIR # CIR	# hhmm]	[mmhh]	[mmhh]	Shocl	k (pPa)	[hhmm]	(pPa)	$(\mathrm{km}\mathrm{s}^{-1})$) (km s ⁻¹	¹) (km s ⁻¹	() (nT)	Comments
23	08/25 0600	08/27 010	0			08/25 2100	110	460	342	118	12.6	Troughs of $T_{\rm P}$ and $V_{\rm P}$
24 13	09/02 160(09/04 040	0			09/03 1140	06	560	320	240	10.5	ACE, <i>Wind</i> data gap 09/09 1200–09/11 1200
25* 14	09/14 1800	09/15 1900	0 09/14 2059	SR^g	$65 \rightarrow 60$	-5 09/15 0505	100	610	400	210	11.5	ACE, ICME with SIR
26 15	09/23 0300	09/24 0700	0			09/23 0919	230	585	340	245	18.5	
27	10/08 0400	0 10/09 160	0 10/08 1305	ц	$70 \rightarrow 112$	42 10/08 1445	140	485	340	145	14.6	No big deflection, several data
												gaps during 11/01 – 11/16,
												some data gaps at SIRs in Nov.
												and Dec.
28* 16	10/11 162(0 10/12 090	0 10/11 1620	ц	$80 \rightarrow 340$	260 10/11 2210	480	600	360	240	28	ACE, SIR + ICME, short
												interval for ICME,
												~ 6 hours,
												BDE for over three days
											(Con	tinued on next page)

PROPERTIES OF STREAM INTERACTIONS AT ONE AU DURING 1995 – 2004 377

(Continued)

						(C	ontinued)						
		Start UT	End UT	Discontinuity			Stream interface (SI)	-					
SIR #	CIR⊧	[mm/dd # hhmm]	[mm/dd hhmm]	UT [mm/dd hhmm]	F/R ^a Shock	$\Delta P^{\rm b}$ (pPa)	UT [mm/dd hhmm]	P _{max} (pPa)	V _{max} (km s ⁻¹	$V_{\rm min}$) (km s ⁻¹	$\Delta V^{\rm c}$) (km s ⁻¹	B _{max}) (nT)	Comments
29		12/02 0800	0 12/04 1800				12/03 2147	180	550	330	220	18.5	ACE, although it is associated with BDEs
30	17	12/14 210() 12/16 1212	2 12/16 1212	R	$86 \rightarrow 40$	-46 12/15 1647	420	570	280	290	26	Irregular and noisy $P_{\rm t}$
31		12/21 1000) 12/22 0600	0 12/21 1410	Ц	58 ightarrow 78	20 12/21 1446	100	480	325	155	12.5	
32	18	12/23 233(0 12/24 1300	0 12/23 2330	ц	$47 \rightarrow 90$	43 12/24 0630	210	590	320	270	18.8	BDEs near the forward shock, a low-latitude coronal hole close to disk center on 12/21
2002 1		060 /07 0900	0010 60/10 (0			01/08 0825	115	475	320	155	13	$P_{\rm t}$ plateau and noisy
0	1	01/10 1100	01/11 0500	01/10 1627	/	120 ightarrow 320	200 01/10 1706	400	673	390	283	22	
3		01/19 0500	01/21 1800	0			01/19 0907	223	523	288	235	19	A trough of $P_{\rm t}$
4		01/24 2100	0000 01/27 0000	0			01/25 1427	95	500	315	185	12.2	
S	0	02/04 1800	02/06 0600	02/06 0448	R	$113 \rightarrow 53$	-60 02/05 2303	420	715	308	407	22	
9		02/10 2000	02/12 1300	0			02/11 0210	60	600	410	190	9.8	ACE
												(Cont	inued on next page)

378

L. JIAN ET AL.

(Continued)	Stream UT Discontinuity interface (SI)	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	05 0800 03/03 2338 SR ^h 03/04 1730 320 750 340 410 22.8 Following an ICME	2 1500 03/11 1831 140 520 335 185 14.5 Noisy	\$1 1600 03/29 2215 F $80 \rightarrow 190$ 110 03/30 0023 350 800 314 486 23.5 Two steps of $V_{\rm P}$ enhancement	03/311551 / $90 \rightarrow 35$ -55 Not a reverse shock due to noisy $V_{\rm P}$	07 1900 04/07 0620 70 445 320 125 9.7 Entropy hole before the SI	(2 1200 04/11 0102 140 550 283 267 14.3 SIR with ICME (04/12-04/13) (04/12-04/13) 1530)	28 0700 04/27 1850 90 540 390 150 11.8 ACE, V _P noisy deflections	05/07 1100 78 415 310 105 10.2 Two peaks of <i>P</i> ₁ (<i>Continued on next page</i>)
	End UT Discontinuit	[mm/dd UT [mm/dd hhmm] hhmm]	02/17 2000 02/16 1140 02/17 0332	03/05 0800 03/03 2338	03/12 1500	03/31 1600 03/29 2215	03/31 1551	04/07 1900	04/12 1200	04/28 0700	05/08 0200
	Start UT	[mm/dd # CIR # hhmm]	7 02/16 1100	8 3 03/03 1900	9 03/11 1000	0 4 03/29 2000		1 04/06 2100	2* 04/10 0000	3 04/27 0800	4 05/05 1800
		SIR				-		1	-	1	-

	x Comments	ICME $(05/11)$ 1618 - 05/12 0100, $T_{\rm P}$ not 10w) + SIR				$P_{\rm t}$ plateau	A small trough of $P_{\rm t}$		ACE, apparent deflection of V _P	ACE, very noisy Wind data, sharp changes at SI	Noisy tinued on next page)
	$B_{ m max}$	23	14 11.7	15.5 12.5	16.7	14	16.6	10.3	9.6	11.2	19.2 (Coni
	ΔV^{c} (km s ⁻	150	490 180	150 105	270	230	210	105	150	310	165
	V_{\min} (km s ⁻¹	400	400 320	290 323	350	333	380	330	390	420	330
	V _{max}) (km s ⁻	550	890 500	440 428	620	563	590	435	540	730	495
	P _{max} (pPa)	320	130 95	170 125	210	210	235	112	85	90	230
ontinued)	Stream interface (SI) UT [mm/dd hhmm]	210 05/11 1122 -24	05/27 1232 06/02 2014	60 06/08 1128 06/16 0533	06/19 0322	07/06 0858	07/12 1107	07/16 0828	08/11 1015	08/15 1900	-31 09/04 0720
(C	$\Delta P^{\rm b}$ ϵ (pPa)	$60 \rightarrow 270$ $48 \rightarrow 24$		$80 \rightarrow 140$							$56 \rightarrow 25$
	/ F/R ^a Shoc l	н ~		Ц							~
	Discontinuity UT [mm/dd hhmm]	0 05/11 1030 05/12 0234	0 0	0 06/08 1028 0	0	0	0	0	0	0	0 09/04 1842
	End UT [mm/dd hhmm]	0 05/12 140	0 05/28 020 0 06/03 180	0 06/09 000 000 000 000 000 000 000 000 000	0 06/19 180	0 07/06 113	0 07/12 190	0 07/16 170	5 08/11 220	0 08/17 000	0 09/04 190
	Start UT [mm/dd # hhmm]	05/11 100	05/26 190 06/01 130	06/08 003 06/15 160	06/18 100	07/05 020	07/11 230	07/15 190	08/11 024	08/14 080	09/03 020
	CIR ∉		S	9	٢	×	6			10	
	SIR #	15*	16 17	18 19	20	21	22	23	24	25	26

L. JIAN ET AL.

			Comments	V _P noisy		ICME in SIR		SIR + SIR	Noisy, following an SIR		From ACE, <i>Wind</i> data gap				Seem to contain a flux rope			ACE, ICME + SIR	ACE, irregular <i>P</i> _t		nued on next page)
		$B_{ m max}$	⁻¹) (nT)	15	14.5	26.5	14.8	20	19	18	12.5	19.8			41	18	15	23	21.5	16.8	(Conti
		ΔV^{c}) (km s ⁻	162	180	245	198	180	195	370	100	370			435	260	273	200	230	377	
		$V_{ m min}$) (km s ⁻¹	390	340	290	340	260	405	420	400	340			350	370	342	340	370	383	
		$V_{\rm max}$	$(\mathrm{kms^{-1}})$	552	520	535	538	440	600	790	500	710			785	630	615	540	600	760	
	-	P_{\max}	(pPa)	180	120	340	130	213	310	220	130	340			850	310	180	300	220	250	
ntinued)	Stream interface (SI)	UT [mm/dd	hhmm]	09/11 1507	09/16 1434	220 09/30 2100	10/07 1250	10/14 1439	10/15 1918	10/24 1212	11/02 1342	25 11/11 1227	87	-40	162 11/21 0200	12/07 0908	12/14 2110	-32 12/19 0519	80 12/22 2127	12/26 2323	
(Co		${f a}_{a} \Delta P^{{f b}}$	ock (pPa)			$140 \rightarrow 360$						25 ightarrow 50	48 ightarrow 135	90 ightarrow 50	$63 \rightarrow 225$			$75 \rightarrow 43$	$120 \rightarrow 200$		
	Ŷ	F/R	Sho			Ц						Ц	ц	Я	ц			Ч	~		
	Discontinuit	UT [mm/dd	hhmm]			09/30 0755						0 11/09 1725	11/09 1827	11/13 0457	0 11/20 1050			0 12/19 1852	12/22 1217		
	End UT	[mm/dd	hhmm]	09/12 0500	09/16 2300	0 10/02 1200	0 10/08 0600	0 10/15 0300	0 10/16 0400	0 10/25 0000	0 11/03 1200	0 11/11 1800			0 11/21 1300	0 12/07 1900	0 12/15 1500	0 12/19 2100	0 12/23 1030	0 12/27 1500	
	Start UT	[mm/dd	# hhmm]	09/11 050	09/16 050	06/30 0700	10/07 000	10/14 020	10/15 030	10/23 2000	11/01 060	11/09 160			11/20 100	12/06 1100	12/13 1900	12/17 223	12/22 070	12/26 1400	
			CIR ∉	11	12		13		14	15		16			17	18	19			20	
			SIR #	27	28	29*	30	31	32	33	34	35			36*	37	38	39*	40	41	

PROPERTIES OF STREAM INTERACTIONS AT ONE AU DURING 1995 – 2004

C C C C C C C C C C C C C C C C C C C	Start UT [mm/dd # hhmm] 01/02 160 01/09 120 01/17 000 02/13 160 02/19 120 02/19 120 02/19 120 02/19 120 02/13 180 03/13 180	End UT [mm/dd hhmm] 0 01/04 0700 0 01/11 1200 0 01/20 0000 0 02/15 1600 0 02/15 1600 0 02/15 1600 0 02/15 1600 0 02/15 1600 0 02/15 1600 0 02/15 1000 0 03/04 1400 0 03/15 0000	Discontinuity UT [mm/dd hhmm] 02/26 2225 02/27 1335	, Shock R	ΔP^{b} (pPa) $210 \rightarrow 165$ $120 \rightarrow 40$	Stream interface (SI UT [mm/dd hhmm] 01/10 0720 01/10 0720 01/18 2226 02/04 0537 02/14 0842 02/14 0842 00/14 0	P _{max} P _{max} (pPa) (pPa) 150 115 116 116 1100 210 210 95 95 130	V _{max} (km s ⁻¹ (km s ⁻¹ 500 640 640 640 675 675 673 673 610 610 650 650	V _{min}) (km s ⁻) (km s ⁻) (km s ⁻) 360 370 350 460 400 330 330 330 330 330 330 330 330 33	$\begin{array}{c} \Delta V^{c} \\ 1) \ (\mathrm{km s^{-1}} \\ 330 \\ 320 \\ 320 \\ 315 \\ 315 \\ 220 \\ 220 \\ 240 \\ 120 \\ 190 \end{array}$	<i>B</i> _{max} (nT) (11) 15.5 15.5 15.5 11 11 11 11 12 15 15 15	Comments A trough of <i>P</i> _t 6-hr data gap No sharp SI Noisy ACE, three peaks of <i>P</i> _t T _P irregular, troughs of <i>T</i> _P and <i>P</i> _t Noisy Noisy Noisy Noisy Noisy at different places
	03/26 140	0 03/28 0000	03/26 1640		$31 \rightarrow 54$	23 03/27 0032 30	130	550	370	180	12	No <i>V</i> P big deflection
٢	03/29 180	0 03/31 0000	03/27 0032	_	$130 \rightarrow 100$	-30 03/30 0049	150	650	380	270	14	Two stages of VP increase

L. JIAN ET AL.

tinued on next page)	(Con												
Closely following an ICME	13.5	140	410	550	120	08/06 0046			500	0 08/06 16	08/05 180		27*
Closely following a CIR	12	270	550	820	100	07/28 1255			300	0 07/29 08	07/28 060		26
						-150	$175 \rightarrow 25$	/	07/27 0512				
	35	460	340	800	650	120 07/26 2155	550 ightarrow 670	/	700 07/26 1940	0 07/27 07	07/26 060	14	25
	17	340	340	680	170	-55 07/11 1632	$80 \rightarrow 25$	/	000 07/12 0847	0 07/12 20	07/11 000	13	24*
	12	360	460	820	130	07/03 2208			200	0 07/04 12	04/03 090		23
	17	250	500	750	175	06/26 1335			300	0 06/27 13	06/26 060	12	22
one noisy													
one stream													
After an ICME,	19	200	450	650	180	73 06/18 1018	$70 \rightarrow 143$	Ц	400 06/18 0442	2 06/19 04	06/18 044		21^{*}
Irregular $V_{\rm P}$	18	150	450	600	200	-65 06/14 2115	$130 \rightarrow 65$	/	400 06/14 2240	0 06/15 02	06/14 080		20
Quite noisy	12	320	580	900	125	06/01 2326			500	0 06/03 06	06/01 000	11	19
	12.5	320	450	770	110	05/27 2100			500	0 05/28 15	05/27 000		18
Irregular $T_{\rm P}$	14.5	180	400	580	120	05/21 1915			300	0 05/22 08	05/21 070		17
	17	390	360	750	210	10 05/05 1840	$46 \rightarrow 56$	/	200 05/04 1911	0 05/06 12	05/04 190	10	16
Noisy	11.5	180	430	610	90	04/24 1335			100	0 04/25 01	04/24 080		15
A trough of $P_{\rm t}$	14	350	440	790	110	04/14 1600			300	0 04/16 18	04/13 180	6	14
A trough of $P_{\rm t}$	18	380	370	750	250	100 04/08 0855	$60 \rightarrow 160$	Ц	200 04/08 0020	0 04/11 02	04/07 060	8	13
Comments	¹) (nT)	¹) (km s ⁻	¹) (km s ⁻) (km s ⁻	(pPa	hhmm]	k (pPa)	Shoc]	hhmm]	hhmm]	# hhmm]	CIR	SIR #
	$B_{ m max}$	ΔV^{c}	$V_{ m min}$	$V_{\rm max}$	$P_{ m max}$	UT [mm/dd	$\Delta P^{ m b}$	F/R^{a}	UT [mm/dd	[mm/dd	[mm/dd		
					_	interface (SI)			Discontinuity	End UT	Start UT		
						Stream							

PROPERTIES OF STREAM INTERACTIONS AT ONE AU DURING 1995 – 2004 383

(Continued)

		stages	rease gzag		stages rease	ovious		t no	ly, <i>V</i> P greatly	lowed er SIR	t of VP	next page)
	C	Comments Noisy, two	of $V_{\rm P}$ inc ACE, $P_{\rm t}$ zi		ACE, two s of V _P inc	ACE, no ot SI	Irregular P ₁	Classic, but sharp <i>T</i> _P increase	<i>V</i> _P and <i>T</i> _P increase irregularl deflects g	Closely fol by anothe	Irregular increases and T _P	ontinued on
	Bmax	(111) (14	16.2	12.5	13.7	11.2	16	23	18.5	14.2	14	<u>(C</u>
	ΔV^{c}	340 (kms	335	210	178	230	295	430	220	110	270	
	Vmin	-) (kms 460	435	430	392	470	375	350	280	360	380	
	Vmax	800 800	770	640	570	700	670	780	500	470	650	
	P_{\max}	(pra) 130	170	100	115	75	250	280	150	140	140	
ontinued)	Stream interface (SI UT [mm/dd	08/08 0425	08/21 0840	08/29 2030	09/01 0441	09/04 0800	09/09 1855	0 09/16 2017	10/01 2300	10/05 2312	10/06 2030	
(C	$1/R^a \Delta P^b$	nock (pra)						$30 \rightarrow 70^{-2}$				
	Discontinuity UT [mm/dd F							09/15 1945 /				
	End UT [mm/dd	0 08/08 1000	0 08/22 0700	0 08/30 0200	0 09/02 1200	0 09/04 2300	0 09/10 0400	0 09/17 1900	0 10/03 1800	0 10/06 0900	0 10/07 0100	
	Start UT [mm/dd	4 08/07 080	08/20 100	08/29 070	08/31 220	09/03 140	09/08 130	09/15 190	10/01 120	10/05 123	10/06 090	
	Ē	15	16			17	18	19	20		21	
		28 28	29	30	31	32	33	34	35	36	37	

L. JIAN ET AL.

	 Comments 	ACE, data gap (10/28 1300 – 10/31 0100)	ACE	ACE	ACE, no sharp SI, parameters gradually change	ACE, no sharp T _P increase	ACE, <i>V</i> _P big deflection	ACE, no sharp SI	ACE, sharp SI	ACE, gradual transition between two streams	ontinued on next page)
	$B_{ m max}$	20	14	16.5	17	18.5	15	22	13.5	14.7	<u>C</u>
	ΔV^{c} (km s ⁻	320	193	330	118	220	400	332	210	215	
	V_{\min} (km s ⁻¹	430	407	450	382	340	400	308	370	425	
	$V_{\rm max}$ (km s ⁻	750	600	780	500	560	800	640	580	640	
	P _{max} (pPa)	285	140	160	190	220	150	270	115	140	
tinued)	Stream interface (SI) UT [mm/dd hhmm]	10/14 1852	11/08 1515	11/10 2325	5 11/30 0404	12/05 0443	0 12/07 1408	12/20 1225	2 12/27 0912	01/03 0231	
(Con	$\Delta P^{\rm b}$: (pPa)				$70 \rightarrow 105 35$		40 → 130 90		$48 \rightarrow 120 \ 72$		
	' F/R ^a Shock				~		Ц		~		
	Discontinuity UT [mm/dd hhmm]				11/30 0246		12/07 1342		12/27 0911		
	End UT [mm/dd hhmm]	0 10/15 0900	0 11/09 1900	0 11/11 2100	0 11/30 1900	0 12/06 0500	0 12/10 1200	0 12/22 0000	0 12/29 0600	0 01/03 2000	
	Start UT [mm/dd # hhmm]	10/14 070	11/08 040	11/10 090	11/29 223	12/04 180	12/07 100	12/20 000	12/26 180	01/02 150	
	SIR # CIR #	38 22	39	40 23	41	42	43 24	44 25	45 2004	1 1	

PROPERTIES OF STREAM INTERACTIONS AT ONE AU DURING 1995 – 2004

						2)	ntmuea)						
		Start UT	End UT	Discontinuity			Stream interface (SI)	_					
	Ę	[mm/dd	[mm/dd	UT [mm/dd	F/R ^a	$\Delta P^{\rm b}$	UT [mm/dd	P _{max}	V_{\max}	Vmin	ΔV^{c}	B_{\max}	c
SIK #	CIK≇	# hhmm]	hhmmJ	lmmh	Shock	(pPa)	hhmmJ	(pPa)	(km s ⁻¹) (km s	') (km s	(III) (Comments
ы		01/06 1926	01/07 1600	01/06 1926	ц	$30 \rightarrow 90$	60 01/06 2214	160	780	580	200	18	ACE, $V_{\rm P}$ is noisy
б	0	01/15 0000	01/17 0000	-			01/15 1445	85	660	420	240	12.7	ACE
4	б	01/29 2025	01/30 1700				01/30 0818	163	700	410	290	17	ACE
S		01/31 0200	01/31 1845				01/31 0730	68	660	420	240	10.2	ACE, weak, P _t
													plateau, no
													sharp S1,
													closely following
													another SIR
9		02/05 0600	02/06 1200	-			02/05 2300	54	620	460	160	8.5	ACE, weak
Г	4	02/11 0130	02/12 1400				02/12 0230	230	700	350	350	21.3	ACE, classic
8	S	02/26 1930	02/29 2000				02/27 2016	160	750	300	450	17.8	ACE, Wind was in
													magnetosphere
6	9	03/09 1030	03/10 1400	03/10 0741	/	$135 \rightarrow 80$ -	-55 03/09 2050	200	780	400	380	18	
10	٢	03/25 0800	03/27 2200				03/25 2150	125	006	350	550	14.8	
11		03/28 1600	03/29 1830				03/29 0617	150	560	320	240	15.5	Excluding an ICME
12*	×	04/05 0800	04/07 0000				04/05 2102	200	633	370	263	19.3	ICME + SIR, nice rope
13	6	04/22 0300	04/25 2000				04/23 1117	120	560	370	280	13.5	
												(Co)	ntinued on next page)

L. JIAN ET AL.

		$B_{ m max}$	(nT) Comments	9.8 ACE, no sharp SI	6	13 ACE, two stages	of V _P		15.3 Two peaks of $P_{\rm t}$	11 A trough of P_t	13 Containing an ICME-like	structure	17.5	16 No sharp SI,	wave has not	been	compressed	into shock at	the	discontinuity	18 Disturbances of T_5	8.8 ACE, weak	(Continued on next page)
		ΔV^{c}	¹) (km s ⁻¹)	190	103	245			280	130	240		300	315							205	210	
		$V_{ m min}$	¹) (km s ⁻	410	332	400			300	420	320		320	285							370	360	
		$V_{ m max}$	$(\mathrm{kms^{-}})$	600	435	645			580	550	560		620	600							575	570	
		P_{\max}	(pPa)	63	75	130			140	95	130		200	170							160	52	
Continued)	Stream interface (SI	UT [mm/dd	[hhmm]	04/28 1630	05/04 0133	05/05 1817			05/20 1045	05/30 2245	06/15 0935		06/29 0406	-70 07/12 0125							07/17 0030	07/19 1515	
))		$F/R^a \Delta P^b$	Shock (pPa)											/ $110 \rightarrow 40$									
	Discontinuity	UT [mm/dd	hhmm]	0	0	0			0	0	0		0	0 07/12 0455							0	0	
	End UT	[mm/dd	hhmm]	04/29 040	05/04 070	05/06 040			0 05/22 230	05/31 100	06/15 200		06/29 100	07/12 050							07/17 120	07/20 160	
	Start UT	[mm/dd	t hhmm	04/28 000(05/03 1900	05/05 020(05/19 1100	05/28 000(06/13 000(06/27 220(07/10 020(07/16 030(02/19 080(
			CIR #			10		ļ	11	12	13		14	15									
			SIR #	14	15	16		ļ	17	18	19*		20	21							22	23	

PROPERTIES OF STREAM INTERACTIONS AT ONE AU DURING 1995 – 2004

		Comments	Followed by another SIR			Closely after an ICME	7-hr data gap	No big increase of <i>T</i> _P	Weak	T _P irregular		No big increase of $T_{\rm P}$		$T_{\rm P}$ irregular	ntinued on next page)
		B _{max} () (nT)	15	14	10	11.5	13	9.5	10	12	11.5	11	10.3	10	(Co)
		ΔV^{c} (km s ⁻¹	145	220	165	150	170	98	113	170	167	180	183	138	
		$V_{\rm min}$ (km s ⁻¹	330	350	310	390	300	322	280	380	293	340	297	332	
		$V_{\rm max}$ (km s ⁻¹)	475	570	475	540	470	420	393	550	460	520	480	470	
		P _{max} (pPa)	160	110	75	90	86	75	95	120	110	130	100	100	
ontinued)	Stream interface (SI)	UT [mm/dd hhmm]	08/07 0918	08/10 0337	08/26 1820	08/31 0735	09/05 1500	09/28 0500	10/08 1722	10/13 1236	10/20 1016	10/25 0451	10/29 2127	11/03 2332	
(C		F/R ^a $\Delta P^{\rm b}$ Shock (pPa)													
	Discontinuity	UT [mm/dd hhmm]													
	End UT	[mm/dd hhmm]	08/07 2200	08/10 2100	08/27 1600	09/01 0800	0090 20/60	09/29 0700	10/09 0700	10/14 1300	10/21 1600	10/25 1700	10/31 1800	11/05 0300	
	Start UT	[mm/dd hhmm]	08/06 1400	08/09 1500	08/25 0400	08/31 0100	09/04 1800	09/27 0100	10/07 2200	10/12 2130	10/18 0800	10/23 2000	10/29 0500	11/02 1400	
		CIR #		16		17				18		19			
		SIR #	24	25	26	27*	28	29	30	31	32	33	34	35	

	Start UT	End UT	Discontinuity			Stream interface (SI)						
	[mm/dd	[mm/dd	UT [mm/dd	F/R ^a	$\Delta P^{\rm b}$	UT [mm/dd	Pmax	$V_{\rm max}$	V_{\min}	ΔV^{c}	Bmax	Ţ
SIR # CIR ³	# hhmm]	hhmm	hmmJ	Shock	(pPa)	[mmh	(pPa)	(km s ⁻¹) (km s ⁻	⁻¹) (km s ⁻¹	(nT) (Comments
36 20	11/19 1200	0 11/21 0100	11/21 0042	R	$93 \rightarrow 32$ –	-61 11/19 1730	200	640	340	300	18.2	Two stages of interaction, a
												trough of $P_{\rm t}$
37 21	11/28 1000	0 11/30 1500				11/29 0057	200	710	360	350	17.8	
38 22	12/15 1400	0 12/17 2100				12/17 0109	150	680	340	340	11.5	A trough of $P_{\rm t}$
39	12/21 0300	0 12/21 1200				12/21 0720	165	490	350	140	17.2	Closely
												followed by another SIR
40	12/21 2200	0 12/22 1800				12/22 0542	165	550	385	165	14.2	
41	12/24 1800	0 12/27 2200	_			12/25 1110	120	560	350	210	13.6	
^a F/R Shock ^b ΔP : instan ^c ΔV : chang ^d ICME: inte ^e ACE: from fCR: from tl ^g BDE: bidir ^b SR: slow re [*] Hybrid cas	: forward/rev taneous chan e in solar-wij erplanetary cc ACE data. he list of Can ectional sola everse shock, e consisting e	erse shock. ige in total pe nd velocity n oronal mass e e and Richau r-wind electr , from Kaspe of more than	erpendicular pr nagnitude durii ejection. rdson (2003) au on strals. rr's shock list o	ressure ng one (nd priva	(<i>P</i> ₁) across t event. ate communi (<i>http://space</i>	he discontinuity, ication in 2006. 2.mit.edu/home/j	, in the , <i>ck/shoc</i>	unit of p kdb/shoc	ico-Pasce skdb.html	al (pPa), "/	, means	s not a shock.

Acknowledgements

This work is supported by the IGPP branch at Los Alamos National Lab (LANL). We have used the *Wind* plasma and magnetic-field data throughout. We thank the MIT and Goddard plasma team (A.J. Lazarus and K.W. Ogilvie), 3DP plasma team (R.P. Lin), and the magnetometer team (R.P. Lepping) for making these data available. We have incorporated ACE data in this study. We are grateful to the PIs of the plasma analyzer (D.J. McComas) and the magnetometer (C.W. Smith) for making these data publicly available, and also thank J.T. Steinberg for collaboration at LANL. Work at Los Alamos was performed under the auspices of the U.S. Department of Energy, with financial support from the NASA ACE program. To identify the shocks, we have used the higher time resolution data in CDAWeb. We thank CDAWeb and the original PIs for making the data available.

References

- Bame, S.J., Goldstein, B.E., Gosling, J.T., Harvey, J.W., McComas, D.J., Neugebauer, M., and Phillips, J.L.: 1993, *Geophys. Res. Lett.* 20(21), 2323, doi: 10.1029/93GL02630.
- Belcher, J.W. and Davis, L., Jr.: 1971, J. Geophys. Res. 76, 3534.
- Bobrov, M.S.: 1983, Planet Space Sci. 31, 865.
- Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., and Eyles, C.J.: 1995, *Solar Phys.* 162, 357.
- Burlaga, L.F.: 1974, J. Geophys. Res. 79, 3717.
- Cane, H.V. and Richardson, I.G.: 2003, J. Geophys. Res. 108(A4), 1156, doi: 10.1029/2002JA009817.
- Carovillano, R.L. and Siscoe, G.L.: 1969, Solar Phys. 8, 401.
- Feldman, W.C., Asbridge, J.R., Bame, S.J., Fenimore, E.E., and Gosling, J.T.: 1981, *J. Geophys. Res.* **86**, 5408.
- Formisano, V. and Chao, J.K.: 1972, in K. Schindler (ed.), *Cosmic Plasma Physics*, Plenum, New York, p. 103.
- Gosling, J.T.: 1990, in C.T. Russell, E.R. Priest, and L.C. Lee (eds.), *Physics of Magnetic Flux Ropes*, *Geophys. Monogr. Ser.* 58, AGU, Washington, DC, p. 343.
- Gosling, J.T. and Pizzo, V.J.: 1999, Spa. Sci. Rev. 89, 21.
- Gosling, J.T., Hundhausen, A.J., and Bame, S.J.: 1976, J. Geophys. Res. 81, 2111.
- Gosling, J.T., Hundhausen, A.J., Pizzo, V., and Asbridge, J.R.: 1972, J. Geophys. Res. 77, 5442.
- Gosling, J.T., Asbridge, J.R., Bame, S.J., and Feldman, W.C.: 1978, J. Geophys. Res. 83, 1401.
- Gosling, J.T., Borrini, G., Asbridge, J.R., Bame, S.J., Feldman, W.C., and Hansen, R.F.: 1981, J. Geophys. Res. 86, 5438.
- Gosling, J.T., Baker, D.N., Bame, S.J., Feldman, W.C., Zwickl, R.D., and Smith, E.J.: 1987, *J. Geophys. Res.* 92, 8519.
- Gosling, J.T., Bame, S.J., McComas, D.J., Phillips, J.L., Pizzo, V.J., Goldstein, B.E., and Neugebauer, M.: 1993, *Geophys. Res. Lett.* 20, 2789.
- Gosling, J.T., McComas, D.J., Phillips, J.L., Weiss, L.A., Pizzo, V.J., Goldstein, B.E., and Forsyth, R.J.: 1994, *Geophys. Res. Lett.* 21, 2271.
- Gosling, J.T., McComas, D.J., Skoug, R.M., and Forsyth, R.J.: 2001, Space Sci. Rev. 67, 189.

391

Hu, Y.Q.: 1993, J. Geophys. Res. 98, 13201.

- Hundhausen, A.J.: 1972, Coronal Expansion and Solar Wind, Springer-Verlag, New York.
- Hundhausen, A.J.: 1973, J. Geophys. Res. 78, 1528.
- Hundhausen, A.J.: 1977, in J.B. Zirker (ed.), *Coronal Holes and High Speed Wind Streams*, Colorado Assoc. Univ. Press, Boulder, p. 225.
- Hundhausen, A.J. and Gosling, J.T.: 1976, J. Geophys. Res. 81, 1436.
- Intriligator, D.S. and Siscoe, G.L.: 1994, Geophys. Res. Lett. 21, 1117.
- Issautier, K., Perche, C., Hoang, S., Lacombe, C., Maksimovic, M., Bougeret, J.-L., and Salem, C.: 2005, *Adv. Space Res.* 35, 2141.
- Jian, L., Russell, C.T., Gosling, J.T., and Luhmann, J.G.: 2005a, in B. Fleck, T. H. Zurbuchen, and H. Lacoste (eds.), *Proceedings of Solar Wind 11-SOHO 16, Connecting Sun and Heliosphere*, SP-592 ESA, Noordwijk, The Netherlands, p. 491.
- Jian, L., Russell, C.T., Gosling, J.T., and Luhmann, J.G.: 2005b, in B. Fleck, T. H. Zurbuchen, and H. Lacoste (eds.), *Proceedings of Solar Wind 11-SOHO 16, Connecting Sun and Heliosphere*, SP-592 ESA, Noordwijk, The Netherlands, p. 731.
- Jian, L., Russell, C.T., Luhmann, J.G., and Skoug, R.: 2006, *Solar Phys.*, doi: 10.1007/s11207-006-0133-2.

Jones, G.H., Balogh, A., and Smith, E.J.: 2003, Geophys. Res. Lett. 30(19), 8028.

- Krieger, A.S., Timothy, A.F., and Roelof, E.C.: 1973, Solar Phys. 29, 505.
- Lepping, R.P., Acuna, M.H., Burlaga, L.F., Farrell, W.M., Slavin, J.A., Schatten, K.H., Mariani, F., Ness, N.F., Neubauer, F.M., Whang, Y.C., Byrnes, J.B., Kernnon, R.S., Panetta, P.V., Scheifele, J., and Worley, E.M.: 1995, *Space Sci. Rev.* 71, 207.
- Lin, R.P., Anderson, K.A., Ashford, S., Carlson, C., Curtis, D., Ergun, R., Larson, D., McFadden, J., McCarthy, M., Parks, G.K., Reme, H., Bosqued, J.M., Coutelier, J., Cotin, F., D'Uston, C., Wenzel, K.P., Sanderson, T.R., Henrion, J., Ronnet, J.C., and Paschmann, G.: 1995, *Space Sci. Rev.* 71, 125.
- Lindsay, G.M., Russell, C.T., Luhmann, J.G., and Gazis, P.: 1994, J. Geophys. Res. 99, 11.
- McComas, D.J., Elliott, H.A., and von Steiger, R.: 2002, Geophys. Res. Lett. 29, 1314.
- McComas, D.J., Bame, S.J., Barker, P., Feldman, W.C., Phillips, J.L., Riley, P., and Griffee, J.W.: 1998, *Space Sci. Rev.* 86, 563.
- McComas, D.J., Elliott, H.A., Gosling, J.T., and Skoug, R.M.: 2006, *Geophys. Res. Lett.* 33, L09102.
- Neugebauer, M., Liewer, P.C., Goldstein, B.E., Zhou, X., and Steinberg, J.T.: 2004, *J. Geophys. Res.* **109**, doi: 10.1029/2004JA010456.
- Newbury, J.A., Russell, C.T., Phillips, J.L., and Gary, S.P.: 1998, J. Geophys. Res. 103(A5), 9553.
- Nolte, J.T., Krieger, A.S., Timothy, A.F., Gold, R.E., Roelof, E.C., Vaiana, G., Lazarus, A.J., Sullivan, J.D., and McIntosh, P.S.: 1976, *Solar Phys.* 46, 303.
- Ogilvie, K.W.: 1972, in P.J. Coleman, C.P. Sonett, and J.M. Wilcox (eds.), *Proceedings of Solar Wind*, NASA SP-308, Washington, DC, p. 430.
- Ogilvie, K.W., Chornay, D.J., Fritzenreiter, R.J., Hunsaker, F., Keller, J., Lobell, J., Miller, G., Scudder, J.D., Sittler, E.C.Jr., Torbert, R.B., Bodet, D., Needell, G., Lazarus, A.J., Steinberg, J.T., Tappan, J.H., Mavretic, A., and Gergin, E.: 1995, *Space Sci. Rev.* 71, 55.

Parker, E.N.: 1963, Interplanetary Dynamical Processes, Wiley, New York.

- Pizzo, V.J.: 1978, J. Geophys. Res. 83, 5563.
- Pizzo, V.J.: 1989, J. Geophys. Res. 94, 8673.
- Pneuman, G.W. and Kopp, R.A.: 1971, Solar Phys. 18, 258.
- Richter, A.K. and Luttrell, A.H.: 1986, J. Geophys. Res. 91, 5873.
- Russell, C.T., Shinde, A.A., and Jian, L.: 2005, Adv. Space Res. 35, 2178.
- Sarabhai, V.: 1963, J. Geophys. Res. 68, 1555.
- Siscoe, G.L.: 1972, J. Geophys. Res. 77, 27.

Smith, E.J. and Wolfe, J.H.: 1976, J. Geophys. Res. 3, 137.

Smith, C.W., L'Heureux, J., Ness, N.F., Acuña, M.H., Burlaga, L.F., and Scheifele, J.: 1998, Space Sci. Rev. 86, 613.

Wimmer-Schweingruber, R.F., von Steiger, R., and Paerli, R.: 1997, *J. Geophys. Res.* **102**, 17407. Wimmer-Schweingruber, R.F., von Steiger, R., and Paerli, R.: 1999, *J. Geophys. Res.* **104**, 9933.