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ABSTRACT. A radio frequency interference (RFI) excision algorithm based on spectral kurtosis, a spectral
variant of time-domain kurtosis, is proposed and implemented in software. The algorithm works by providing a
robust estimator for Gaussian noise that, when violated, indicates the presence of non-Gaussian RFI. A theoretical
formalism is used that unifies the well-known time-domain kurtosis estimator with past work related to spectral
kurtosis, and leads naturally to a single expression encompassing both. The algorithm accumulates the first two
powers of M power spectral density (PSD) estimates, obtained via Fourier transform, to form a spectral kurtosis
(SK) estimator whose expected statistical variance is used to define an RFI detection threshold. The performance
of the algorithm is theoretically evaluated for different time-domain RFI characteristics and signal-to-noise ratios
h. The theoretical performance of the algorithm for intermittent RFI (RFI present in R out of M PSD estimates)
is evaluated and shown to depend greatly on the duty cycle, . The algorithm is most effective ford p R/M

, but cannot distinguish RFI from Gaussian noise at any h when . The expected efficiencyd p 1/(4 � h) d p 0.5
and robustness of the algorithm are tested using data from the newly designed FASR Subsystem Testbed radio
interferometer operating at the Owens Valley Solar Array. The ability of the algorithm to discriminate RFI against
the temporally and spectrally complex radio emission produced during solar radio bursts is demonstrated.

1. INTRODUCTION

The quality of radio astronomy scientific data can be greatly
affected by radio frequency interference (RFI) contaminating
the natural radio emission produced by astrophysical objects.
With the increasing demand for wireless communication sys-
tems operating in frequency bands of scientific interest, the RFI
environment becomes ever more hostile. At the same time,
astronomers seek to observe over an ever broader part of the
radio spectrum, both for increased sensitivity and to exploit
spectral continuum diagnostics. These trends make it necessary
to find efficient and robust methods that are able to discriminate
and excise the RFI contamination, while preserving as much
of the underlying useful information as possible.

There is no universal solution for the problem of RFI mit-
igation, and one must find or develop methods that are most
suitable for a particular instrument and the RFI environment
in which it operates (Fridman & Baan 2001). Among these
methods, RFI mitigation algorithms based on higher moments
of the distribution function in both the time domain (Ruf et al.
2006) and the frequency domain (Fridman 2001; Fridman &
Baan 2001) have become increasingly popular in recent years,

due to the feasibility of their implementation using field-pro-
grammable gate arrays (FPGAs), equipped on many modern
digital instruments.

Although relatively new in the context of RFI mitigation for
astrophysical radio instruments, the idea of using higher order
statistics in the spectral domain was originally proposed more
than two decades ago by Dwyer (1983) in the context of un-
derwater acoustic signals. Pointing out that the real and imag-
inary parts of the digital Fourier transform (DFT) for a Gaussian
signal separately obey Gaussian distributions, he proposed us-
ing the kurtosis of the real part of the DFT as a tool for non–
Gaussian signal detection. He named this estimator “frequency-
domain kurtosis” to distinguish it from the traditional time-
domain kurtosis estimator. However, as Dwyer (1983) himself
pointed out, a similar estimator can be defined for the imaginary
part of the DFT, which should be considered for obtaining a
complete description of the signal. Since the work of Dwyer
(1983), others have investigated the statistical properties of
power spectral density (PSD) estimates by treating both the
real and imaginary parts of the DFT, and a theory of circular
random complex variables has even emerged from such efforts
(see Amblard et al. 1996a, 1996b, and references therein). In
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a more recent work, Vrabie et al. (2003) provided a compre-
hensive study, from both the theoretical and practical points of
view, of the newly emerged concept that they call spectral
kurtosis (SK), and provided a cumulant-based SK estimator
(Kenney & Keeping 1962) and its expected variance, as well
as the theoretical expectations for the SK parameter corre-
sponding to some particular types of stationary time-domain
signals. In a subsequent study, Vrabie et al. (2004) revisited
the subject and presented a practical application of the SK
estimator in detecting bearing faults in induction motors. More
recently, Antoni (2006) refined the theoretical definition of the
SK parameter, provided a direct link of this parameter with the
classical time-domain kurtosis parameter, and pointed out its
value as an estimator of non-stationary time-domain signals.
Subsequently, Antoni (2007) proposed an algorithm for SK
estimation based on a multirate filter-bank structure, and pre-
sented some experimental results related to the detection of
transient faults in mechanical systems.

Despite its general applicability, the extent to which the fre-
quency-domain statistical analysis has been implemented as a
RFI detection tool in astrophysical radio instruments is rather
modest, possibly due to the lack of a clear and unifying picture
of the subject. In our opinion, such a picture should be theo-
retically rigorous, but free of unnecessary mathematical so-
phistication, and focused on the practical aspects of its imple-
mentation. This study attempts to provide a general framework
that should be useful across disciplines, before applying it to
the specific problem of RFI mitigation.

Another reason that there has not been more rapid progress
in radio astrophysics may be the lack of existing instruments
that are technically able to perform broadband spectral analysis
with the temporal and frequency resolution needed for efficient
implementation and testing of such RFI excision algorithms.
Such instruments are useful in setting design requirements for
the new generation of radio instruments, such as the Frequency-
Agile Solar Radiotelescope (FASR; Bastian 2003). From this
perspective, the newly designed FASR Subsystem Testbed
(FST; Liu et al. 2007), operating in parallel with three of the
radio antennas of the Owens Valley Solar Array (OVSA; Gary
& Hurford 1999), offers a unique test bed capability. Its design
allows the direct comparison of various RFI excision algorithms
by playing back in a simulated real-time mode the data recorded
with full 1 ns temporal resolution, which provides a 500 MHz
instantaneous bandwidth that can be tuned anywhere in the
1–9 GHz frequency band.

This paper brings together what is known about spectral-
domain statistical methods from the broader literature, places
it in context with the somewhat better known time-domain
statistical methods, and develops a unitary framework of prac-
tical use in RFI excision. In § 2, the statistical properties of
the PSD estimate are derived in a transparent and rigorous
manner, a statistical RFI discriminator is derived, and its equiv-
alence with both the preexisting spectral and classical (time

domain) kurtosis statistical parameters is demonstrated. In § 3,
a practical estimator is defined, and its statistical fluctuations,
important for establishing a reliable detection threshold, are
rigorously determined. The expected performance of the pro-
posed estimator as a detection tool for RFI signals is also
presented. In § 4, we propose an efficient real-time RFI excision
algorithm that is suitable for radio spectrographs or interfer-
ometers. A software implementation of the algorithm is used
to demonstrate its efficiency and robustness using RFI-contam-
inated data recorded by the FST instrument while observing
the solar radio emission in both quiet-Sun and solar radio burst
conditions. We summarize our conclusions in § 5.

2. STATISTICAL PROPERTIES OF POWER
SPECTRA ESTIMATES

One of the commonly used methods for obtaining PSD es-
timates for a real-time signal sampled at a constant rate 1/Dt
is the discreet Fourier transform, which is almost invariably
implemented using the fast Fourier transform (FFT) algorithm.

A legitimate question that always arises with respect to this
method is “How good is such a PSD estimate?” More-or-less
mathematically involved discussions on this subject are part of
almost any textbook devoted to the frequency-domain analysis
of digital signals. The common answer to the above question,
which may sound striking when heard for the first time, is that
“the uncertainty of a DFT-based PSD estimate at any given
frequency bin is as high as 100% of its computed value” (Press
et al. 1989). However, this is strictly correct only for a particular
type of time-domain signal, stationary Gaussian noise. The
uncertainty of the PSD estimate may have a different behavior
for time-domain signals governed by other probability distri-
butions. Although the uncertainty is significantly reduced in
practice by means of averaging, either in time or frequency, it
is its magnitude before averaging that proves to be a very useful
property in the context of this study, and therefore worthy of
more detailed analysis in this section.

If the nonaveraged PSD estimate1 corresponding to theP̂k

frequency bin is characterized by its mean andˆf m p AP Sk k k

variance , we can quantify its relative statis-2 2 2ˆ ˆj p AP S � AP Sk k k

tical fluctuation by defining the dimensionless magnitude

2jk2V p , (1)k 2mk

where is the coefficient of dispersion (Kenney & KeepingVk

1962). We further refer to , at least for the moment, by the2Vk

more descriptive term “spectral variability.”
The expectation value of the spectral variability depends on

the underlying probability distribution of the time-domain sig-

1 Throughout this paper, we use a “hat” notation to indicate an estimator of
a quantity to distinguish it from the quantity itself.
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nal from which the PSD estimate is derived. Since our goal is
to distinguish departures of the signal from natural noise, we
first examine the expected spectral variability in the particular
case of a time-domain signal governed by a Gaussian
distribution.

2.1. Spectral Variability of a Gaussian Time-Domain
Signal

We assume that the digitized time-domain signal {x(t )} {n

is characterized by the following properties:{x }n

1. The time-domain data samples are random variables drawn
from the same Gaussian parent population characterized by a
zero mean, , and a constant variance .2 2Ax S p 0 j p Ax Sn x n

2. The time-domain data samples are uncorrelated random
variables; i.e., they have null covariance, .Cov (x , x ) p 0n m

3. The signal has a natural or artificial bandwidth limitation
exactly bounded by the frequency interval , where[0, f ] f pc c

is the Nyquist frequency associated with the sampling1/2Dt
rate .Dt

4. The test signal does not carry any spectral information;
i.e., it is a band-limited Gaussian white noise.

To obtain a PSD estimate of a time-domain signal, one has
to compute first the complex DFT coefficients given by

N�1

�2pikn/NX p w x e , k p 0, … , N � 1, (2)�k n n
np0

where is a set of N real coefficients of an arbitrary time{w }n

window such as usually employed in order to reduce the spec-
tral leakage among the PSD frequency bins (Press et al. 1989).
Although the use of a time-domain window is a common prac-
tice, its potential influence on the statistical properties of the
PSD estimates is ignored in most theoretical studies addressing
this subject, yet we show below that the concept of an arbitrary
window plays a central role in our generalized results.

The DFT coefficients obtained from a windowed stationary
time-domain Gaussian signal can be regarded as corre-{x }n

sponding to a nonwindowed DFT of a modified time sequence
, which, being a linear combination of Gaussian random{w x }n n

variables, should also obey a Gaussian distribution whose time-
domain variance is (Kenney & Keeping 1962)

N�112 2 2j p w j . (3)�wx n xN ip0

The fact that a time-domain window cannot change the Gaus-
sian nature of the original signal seems a good reason for not
investigating its influence in more detail. However, as we show
presently, there is a subtle connection between the statistical
properties of the PSD estimate at each frequency bin and the
spectral properties of the time-domain window, which results

in a frequency-dependent correction of the PSD statistical prop-
erties that has been overlooked in previous studies. Although
this correction will eventually prove negligible for the sym-
metrical time-domain windows (e.g., Hanning and Hamming)
usually employed in standard spectral analysis, an evolving
Gaussian background, such as that presented by a solar radio
burst, can be mathematically modeled as the product of a sta-
tionary Gaussian background and a time-domain window of
arbitrary shape. The effect of such an asymmetric window is
generally not negligible.

The actual expressions for the spectral powers corresponding
to each of the discrete frequency bins,N/2 � 1

2k N
f p f , k p 0, 1, … , , (4)k cN 2

of the PSD estimate are subject to different normalization con-
ventions. The one adopted here is

2 2P̂ p FX F , (5)k k2N � wn

where and are real magnitudes, and we have taken intoX X0 N/2

account that for a real-time signal, the other DFT coefficients
and their complex conjugates are related as . Note∗X p Xk N�k

that for the power spectral densities corresponding to (DCf0

component) and (Nyquist frequency), the above normali-fN/2

zation convention is different by a factor of 2 from the classical
half–spectrum periodogram normalization convention (Press et
al. 1989, p. 464). This is because should be regarded as aP̂k

true power spectral density (i.e., power divided by the unit
frequency interval), and thus we have taken into account the
fact that the frequency bins corresponding to these two special
frequencies are half as large as the others.

The statistical properties of the PSD estimate defined in equa-
tion (5) can be derived from the statistical properties of the
real and imaginary parts of the DFT coefficients, A pk

and , which, being linear combinations of�(X ) B p �(X )k k k

zero-mean Gaussian variables, are themselves zero-mean Gaus-
sian variables characterized by their individual variances 2jAk

and . The rigorous derivation of the mean and variance of2jBk

the PSD estimate, , requires rather involving2 2P̂ p A � Bk k k

mathematical manipulations, which are presented for the in-
terested reader in Appendix A. The remarkably simple results
of this detailed analysis are summarized below.

Because the DC and Nyquist frequency bins are purely real,
their probability distribution can be expressed in terms of the
variance as2j { mA kk

ˆ
�1/2 Pkˆ ˆ( ) ( )p P p 2pm P exp � , k p 0, N/2 (6)( )k k k 2mk
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(Appendix A), which is a distribution with 1 degree of2x

freedom. Equation (6) can be employed to evaluate the ex-
pected values

2 2ˆ ˆAP S p m , AP S p 3m , k p 0, N/2, (7)k k k k

which, employed in equation (1), provide

2V p 2, k p 0, N/2, (8)k

which is a result that is independent of the shape of the time-
domain window .wn

If no special time-domain windowing function is applied
(i.e., ), it can be shown that for , the realw { 1 k ( 0, N/2n

and imaginary parts of the DFT coefficients are independent
zero-mean Gaussian variables characterized by equal variances

. The probability distribution associated with2 2j p j { m /2A B kk k

the PSD estimate in this case is an exponential distribution
given by

ˆ1 Pkˆp(P ) p exp � , (9)( )k
m mk k

which provides the expected values

2 2ˆ ˆAP S p m , AP S p 2m , k p 0, N/2; (10)k k k k

hence,

2V p 1, k ( 0, N/2. (11)k

However, as shown in Appendix A, in the general case of
a windowed time-domain signal, the variances and are2 2j jA Bk k

no longer identical, and if the windowing function is asym-
metric, the zero-mean Gaussian random variables and areA Bk k

no longer independent, being characterized by a nonzero cor-
relation coefficient . Although in this general case the prob-rk

ability distribution of the PSD estimate cannot be written in a
closed form, the joint probability distribution of two correlated
Gaussian variables,

2 21 A B A Bk k k kp(A , B ) p exp � � � rk k k( )[ ]2 2 21 � r 2j 2j j jk A B A Bk k k k

�1

2�# 2pj j 1 � r ,A B kk k( )
(12)

(Davenport & Root 1958) can be employed to obtain a gen-
erally valid and remarkably compact expression of the PSD

spectral variability,

2 2V p 1 � FW F , (13)k 2k

where

N�11 2 �4pikn/NW p w e (14)�2k n2
np0� wn

is the normalized DFT of the squared time-domain window
evaluated at the even-indexed discreet frequencies .f p 2f2k k

Since by definition, the normalized DFT of the squared time-
domain window, , is bounded by the interval, the2FW F [0, 1]2k

spectral variability of a windowed Gaussian signal can range,
at least in principle, anywhere between 1 and 2, depending on
the particular shape of the time-domain window. However, be-
cause windows (e.g., Parzen, Hanning, Hamming, etc.) are cho-
sen to reduce spectral leakage, they are invariably well-be-
haved, symmetric time-domain windows that gradually
approach zero at both ends of the time-domain interval. This
has the effect of drastically reducing in most frequency2FW F2k

bins, so that in all but a few of them—those near the2V p 1k

DC and Nyquist frequency bins. However, we consider it
worthwhile to investigate the influence of the time-domain win-
dow not only in the case of these standard windowing functions,
but also in the more general case of an arbitrary time-domain
window, which as we already mentioned can be used to model
an evolving Gaussian background.

For this purpose, we present in Figure 1 a comparison
between the spectra corresponding to a Hanning win-2FW F2k

dow, , and a Hanning window mul-w p [1 � cos (2pn/N)]/2n

tiplied by a linearly increasing factor, ′w p (1 � n)[1 �n

. The rather extreme change rate, one per sam-cos (2pn/N)]/2
ple, is chosen just for illustration purposes. All spectra have
been obtained by performing an point FFT, resultingN p 8192
in 4097 frequency bins. The lower line in Figure 1a displays
the normalized spectrum corre-2 2 2 2FW F p FFFT(w )/ � w F2k 2k 2k

sponding to a Hanning window, while the upper line represents
the spectrum , normalized for the′ 2 ′2 2 2FW F p FFFT(w )/ � w F2k 2k 2k

window function , but not for the linear increase. Notice thatwn

except for a few frequencies at both ends of the frequency
interval, the and spectra have overall flat shapes2 ′ 2FW F FW F2k 2k

that are many orders of magnitude below 1, which translates
to a negligible contribution to the expected spectral variability
expressed by equation (13) at most of the PSD frequency bins.
To better quantize this behavior, we display in Figures 1a and
1b a close-up view of the same spectra at both ends of the
frequency interval. Except for a couple of bins at both ends of
the frequency interval, the contribution to the spectral2FW F2k

variability corresponding to the Hanning window is negligible.
However, the partially normalized spectrum is several′ 2FW F2k

orders of magnitude above 1 for a few tens of frequency bins.
However, by fully normalizing the spectrum, 2FW F p2k
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Fig. 1.—Comparison of normalized spectra and unnormalized spectra corresponding to a Hanning window , and to the same window multiplied2 ′ 2FW F FW F w2k 2k n

by a linearly increasing function obtained for points: (a) (lower spectrum) and (upper spectrum). (b) and (c) Expanded view2 ′ 2c p 1 � n N p 8192 FW F FW Fn 2k 2k

of the low- and high-frequency ends of the spectra presented in (a). The dotted lines show the normalized version of at both ends of the spectrum. For′ 2FW F2k

comparison purposes, a horizontal dashed line in all three panels indicates the unity level.

, as shown by the dotted line in the bottom′2 ′2 2FFFT(w )/ � w F2k 2k

panels, the spectral variability is practically indistinguishable
from that of the original Hanning window.

2.2. Equivalence of Spectral Variability and Spectral
Kurtosis

We now compare our definition of spectral variability, ,2Vk

to that of similar statistical parameters defined by other authors
as a means of discriminating Gaussian and non-Gaussian sig-
nals. Historically, as already mentioned in the introduction,
Dwyer (1983) was the first one to employ frequency-domain
analysis with the goal of detecting non-Gaussian signals in
underwater acoustics experiments. Pointing out that the real
and imaginary parts of the DFT are zero-mean random vari-
ables, Dwyer (1983) used their moments about the origin to
define

4AA SkK( f ) p , (15)k 2 2AA Sk

which is expected to be exactly 3 for a Gaussian process. In
this respect, the spectral variability as defined in equation (1)

is, up to a constant, mathematically equivalent to Dwyer’s def-
inition for frequency-domain kurtosis, for both the DC (assum-
ing a zero-mean time-domain signal) and Nyquist frequencies,
where , and has an expected value2B p 0 V p K( f ) � 1N/2 N/2 N/2

of 2.
More recently, Vrabie et al. (2003) provided a cumulant-

based definition of the newly emerged concept of “spectral
kurtosis” (SK) as

4 2 2AFX F S � 2AFX F Sk kSK( f ) p , (16)k 2 2AFX F Sk

which is expected to be exactly 0 for a Gaussian time-domain
signal. Taking into account that , it immediately fol-2 ˆFX F ∼ Pk k

lows that

2V p SK( f ) � 1, (17)k k

which proves, up to a constant, the mathematical equivalence
of these parameters at all but the DC and Nyquist frequencies.
However, Antoni (2006) has already pointed out that the SK
parameter should be redefined to reflect the purely real nature
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of the and DFT coefficients, and when this is done, theX X0 N/2

equivalence becomes exact.
Therefore, the spectral variability , as derived in Appendix2Vk

A, completely characterizes the statistical nature of a time-
domain signal at all its spectral components, including the DC
and Nyquist frequency bins, hence unifying previously pub-
lished, incomplete results. Although one may argue whether

is a second- or fourth-order statistical parameter, the defi-2Vk

nition of SK given by equation (16) lacks an immediate phys-
ical interpretation, as recognized by Antoni (2006). This is
because the only directly observable physical quantity in the
frequency domain is , whose expected value can2ˆ ˆP ∼ FX F AP Sk k k

be used as a meaningful physical reference from which its
higher moments can be always computed. In contrast, isFX Fk
an artificially defined parameter whose statistical expectation

(which is not the same as ), aside from being phys-1/2ˆAFX FS AP Sk k

ically meaningless, cannot be analytically computed, even for
most of the simple statistical distributions. Hence, in terms of
observable quantities, can be regarded as a second-order2Vk

statistical parameter.
However, from the perspective of its practical application,

the spectral variability plays a role equivalent to that of the2Vk

more familiar time-domain kurtosis. Since “spectral kurtosis”
is an appropriate name for such a spectral tracer of non-Gaus-
sian processes, and since we have proven their practical equiv-
alence, we see no reason not to refer to by this already2Vk

familiar name, keeping in mind that it differs by a constant
from the original definition, equation (16). This parallels the
common practice of using the term “kurtosis” for what one
may, in a more formal way, refer to as “kurtosis excess” (Ken-
ney & Keeping 1962). Henceforth in this paper, we refer to

as spectral kurtosis, and , defined below, as the spectral2 2ˆV Vk k

kurtosis estimator.

3. SPECTRAL KURTOSIS ESTIMATOR

3.1. Definition and Variance

Our goal is to decide with some level of confidence whether
or not the observed PSD estimate corresponding to a physicalP̂k

process may be assumed to be driven by an underlying Gaus-
sian distribution. The statistical parameter defined by equa-
tion (1) is to be estimated from the data and subsequently
compared with the expected value, equation (13), for an ideal
Gaussian process. The ideal estimator would be an unbiased
one, in other words an estimator having an expectation value
identical to the expected value of the magnitude being esti-
mated. Due to its linearity, the PSD estimate is an unbiasedP̂k

estimator of the true spectral power density of the signal. How-
ever, the statistical parameter defined by equation (1) as the
ratio of the variance and the squared mean of the PSD estimate
is no longer a linear combination of its components. Therefore,
the best option we have is to define the spectral kurtosis es-

timator as

2ĵk2V̂ p , (18)k 2m̂k

where and are unbiased estimators of their associated2ˆ ˆj mk k

parameters; i.e., and . In practice, these2 2ˆ ˆAj S p j Am S p mk k k k

two unbiased estimators will be computed from a number of
M adjacent blocks of N time-domain samples used to obtain
M spectral estimates ( ).P̂ k p 0, … , N/2; i p 1, … , Mki

Introducing short-hand notations for the sums,

M M
2ˆ ˆ( )S p P , S p P , (19)� �1 ki 2 ki

ip1 ip1

the unbiased estimators of the true and are given by the2j mk k

k-statistics unbiased estimators of the first two cumulants of
the distribution as:P̂k

21 MS � S2 12ˆm̂ p S , j p , (20)k 1 kM M(M � 1)

(Kendall & Stuart 1958, p. 280), where and should beS S1 2

understood as having an implicit dependence on . Using thesefk

expressions, the spectral kurtosis estimator becomes

M S22V̂ p M � 1 , (21)k ( )2M � 1 S1

which is similar in form, but only asymptotically equivalent,
to the SK estimator obtained by Vrabie et al. (2003) in terms
of the second- and fourth-order cumulants of the complex Xk

distribution.
In Appendix B, we present a detailed derivation of the var-

iance of the spectral kurtosis estimator defined in equation (21).
The result, which is dependent on the particular shape of the
time-domain windowing function, is

4M2 2 4 6ˆ( ) ( )Var V p 1 � 5FW F � FW F � FW F . (22)k 2k 2k 2k2(M � 1)

However, as discussed in § 2 and shown in Figure 1, at the
DC and Nyquist frequency bins , and at most of theFW F p 12k

other bins ; hence, the -order approximation ofFW F � 0 1/M2k

equation (22) simplifies to

24/M, k p 0, N/2,2ˆ( )Var V � (23)k {4/M, k p 1, … , (N/2 � 1),

which can be used as a statistical detection threshold for prac-
tical applications.

Remarkably, equation (23) reveals that the variance of the
SK estimator at the DC and Nyquist frequencies, where it
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equals the variance of a kurtosis estimator, is about 6 times
larger than the variance at other frequency bins. We consider
it worthwhile to discuss this difference in more detail, due to
its importance from a practical point of view, as related to the
implementation of a classical kurtosis estimator for non-K̂
Gaussian signal detection using filter-bank spectrometers (Ruf
et al. 2006).

To correctly quantify the difference between the variances
of the and estimators, we have to take into account the2ˆ ˆV Kk

fact that in the case of a finite impulse response (FIR) filter-
bank spectrometer, the amplitudes of the filtered signal at

frequencies are obtained directly as real linear com-N/2 � 1
binations of time-domain samples. Therefore, fromN/2 � 1
the same data samples as used by the DFT-based PSDN # M
estimator, one would obtain in each filter-bank frequency chan-
nel a set of independent PSD esti-N # M/(N/2 � 1) � 2M
mates. Therefore, for a given amount of time-domain data, the

variance of ∼4/M has to be compared with a variance of2ˆ ˆV Kk

about ∼12/M. Therefore, for a given time-domain data set, the
SK estimator relying on DFT-based PSD estimates may be
more efficient by a factor of 3, in terms of its variance, than
a kurtosis estimator based on filter-bank PSD estimates.

3.2. Performance and Limitations of the SK Estimator

In general, non-Gaussian signals should cause the SK esti-
mator to deviate statistically (with respect to its variance,2V̂k

eq. [23]) from its expected value, equation (13). Thus, the SK
estimator provides a potentially useful tool for discriminating
Gaussian and non-Gaussian signals. We now use simulations
to examine the performance and limitations of this detection
tool for various non-Gaussian time-domain signals.

3.2.1. Detection of Stationary Deterministic Signals

We consider in this section the simplest case of a time-
domain signal composed of background Gaussian noise of zero
mean and variance mixed with a deterministic sinusoidal2jx

signal of modulated amplitude and random phase uni-A fn n

formly distributed on the interval. Moreover, we con-[0, 2p]
sider that the frequency of the deterministic signal exactly
matches one of the non-DC or Nyquist discrete DFT frequen-
cies , and that no windowing function is applied. A rigorousfk

mathematical treatment under these assumptions can be found
in McDonough & Whalen (1995), where the probability dis-
tribution of the PSD estimate is given as

�2 PAk1 P � Akˆp(P ) p exp � I , (24)( )k 0( )2 2 22 j 2 j j

which is a noncentral distribution with 2 degrees of freedom.2x

Equation (24) can be straightforwardly employed to obtain the

mean and variance of the PSD estimate asP̂k

2 2 4m p 2 j (1 � h ), j p 4 j (1 � 2h ), (25)k k k k

where denotes the signal-to-noise ratio (S/N) at2 2h p A /2 jk

the frequency bin .fk

Using the results above, the corresponding statistical pa-2Vk

rameter can be written in terms of S/N as

2hk2V p 1 � , (26)k 2(1 � h )k

which is the same, up to a constant of 1, as the result obtained
by Vrabie et al. (2003) based on similar considerations.

Equation (26) shows that in the case of a monochromatic
sine wave mixed with Gaussian noise, the monotonically2Vk

goes from 1 to 0 when goes from zero to infinity. If wehk

consider a conservative detection threshold of about 3 j2V̂k

(i.e., ), we can determine an expression for the number�6/ M
M of PSD estimates needed for a reliable detection from the
background Gaussian noise of a monochromatic RFI signal,
which is given by

4M(h ) ≥ 36(1 � 1/h ) . (27)k k

Equation (27) reveals that, for example, should beM � 600
sufficient for a reliable detection of a signal having an average
power equal to the background noise, while only about 60 PSD
estimates would be needed to reliably detect a monochromatic
signal about 10 times stronger than the background noise. How-
ever, the same relationship shows that for , the SKM ≤ 36
estimator would not be able to detect a monochromatic signal,
even if its S/N goes to infinity.

Before continuing to evaluate the performance and limita-
tions of the SK estimator, it should be mentioned that as shown
by Fridman (2001), the system of equations (25) may in prin-
ciple be solved for and in terms of the observed quantities2 2j A

and , leading to a cleaned background spectrum and anm jk k

averaged power estimate of the deterministic signal. Although
attractive, we want to point out that the method proposed by
Fridman (2001) can be valid only for the particular case under
discussion. However, the method could still be used with some
degree of reliably as long as . As shown later in the2V ! 1–3 jk

text, such situations are less frequently observed than the case
of an SK estimator having values well above unity.

3.2.2. Detection of Transient Signals

Although derived for the assumption of time-domain sta-
tionarity of the signal, the SK estimator can be very effective
in detecting transient signals mixed with the stationary back-
ground noise, as noted by Vrabie et al. (2003). To support this
assertion, which may be of particular practical importance, we
consider below the case of a transient monochromatic time-
domain signal that is switched on and off during the observed
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Fig. 2.—SK estimator vs. duty cycle of transient RFI for different S/Ns. (a) Theoretical expectation for S/Ns ranging from 1 to 50. The horizontal dotted lines
represent the �3 j detection thresholds for M p 1000 PSD estimates. (b) Simulated SK results corresponding to the theoretical parameters presented in (a). The
duty-cycle ranges for which the transient signal cannot be statistically distinguished from the Gaussian background lie between the intersections of the SK curves
and the horizontal dotted lines.

time-domain samples. To simplify the discussion, weN # M
further assume that the randomly occurring on/off transitions
exactly coincide with some of the edges of the M nonoverlap-
ping blocks of lengths N. Although this assumption is rather
unrealistic, we believe that it will not significantly affect the
validity of the result.

Therefore, measurements under the assumptions above result
in M PSD estimates at a given frequency , out of which, letfk

us say, R estimates have a finite , while the remaininghk

have . Hence, for each individual data block,(M � R) h p 0k

equation (24) provides the expectation values

2AP S p m p 2 j (1 � h ),k k k

2 2 2 4 2AP S p m � j p 4 j (2 � 4h � h ), (28)k k k k k

which, with the appropriate values of , can be used to estimatehk

the power sums entering the SK estimator,

2 2AS S p 2R(1 � h )j � 2(M � R)j ,1 k

2 4 4AS S p 4R(2 � 4h � h )j � 8(M � R)j . (29)2 k k

Hence, for the particular case being discussed, the SK estimator,

equation (21), is

2M (M/R � 2)hk2ˆAV S p 1 � , (30)k [ ]2M � 1 (M/R � h )k

which, as expected, reduces to equation (26) for andR p M
reasonably large M.

Equation (30) allows us to evaluate the performance of the
SK estimator for different duty cycles, , of the ran-d p R/M
domly occurring transient signal at different values of the
S/N parameter . First of all, the duty cycle dependence ofhk

the SK estimator is not monotonic, having a local maximum
at , given byd p 1/(4 � h )k

21 M hk2V̂ p 1 � . (31)k ( ) ( )4 � h M � 1 8 � 4hk k

This result indicates that the SK estimator may indeed be very
efficient in detecting low–duty-cycle transients, which may re-
sult in a value for the estimator well above 1, depending on
the S/N parameter. However, it should be mentioned at the
same time that equation (30) also reveals an important limi-
tation of the estimator. Indeed, if the duty cycle is exactly 50%



RFI EXCISION 813

2007 PASP, 119:805–827

Fig. 3.—Windowed time-domain signal obtained from a stationary Gaus-
sian signal multiplied by a linear factor . Each of the three{x } c p 1 � aii i

data blocks displayed contains data samples; the sample index iN p 8192
runs from 0 to ; and . (a) Original time-domain signal3N a p 10/(3N)

multiplied by three successive Hanning windows, . (b) Signal dis-{c x } wi i i

played in (a) normalized to the total power contained in each data block,
.2 1/2{w c x /[� (w c x ) ] }i i i i i iblock

(i.e., ), the value of the SK estimator becomes prac-R p M/2
tically 1. This makes the transient signal statistically indistin-
guishable from a Gaussian signal, regardless of the S/N—be-
havior that is identical to that known in the case of the
time-domain kurtosis estimator (De Roo et al. 2007).

To better quantify this limitation, one should compare the
estimate given by equation (30) with the detection threshold
limits above and below the expected value for a Gaussian signal
(i.e., ), which provides the range of duty cycle over�1 � 6/ M
which the transient signal is undetectable by means of the SK
estimator. The dependence of equation (30) is shown graphi-
cally in Figure 2. Panel a presents the expected behavior of
the SK estimator in the case of monochromatic transient signals
having duty cycles ranging from 0% to 100% and , 5,h p 1k

10, and 50. The dotted lines show the �3 j limits for M p
1000 PSD estimates. The figure shows that the signalh p 1k

can be detected from the background noise only for a duty
cycle exceeding about 90%, while even for , the es-h p 50k

timator fails to detect the transient signals having a duty cycle
between ∼45% and ∼55%. Figure 2b presents a simulation
obtained for the same parameters as used in Figure 2a. Besides
a very good agreement with the theoretical expectations, this
figure also illustrates how the statistical variance of the esti-
mator is influenced both by S/N level and duty cycle. It can
be seen that this variance strongly decreases with the increase
of the S/N level, and it also decreases to some extent with the
increase of the duty cycle.

3.2.3. Quasistatic Gaussian Background

We now turn to the case of an evolving Gaussian background,
such as that expected for a strong solar radio burst. To simulate
this, we assume that each individual data sample is drawn from
different Gaussian distributions with variances . This situ-2jxn

ation is mathematically equivalent to replacing the original data
set with a linear combination , where the real co-{x } {c x }i i i

efficients may have a continuous time evolution that extendsci

beyond the range of the N samples used to produce one PSD
estimate. However, we assume that the timescale of the ana-
lyzed physical process is slow compared with the time span of
the data samples, so that the coefficients have onlyN # M ci

a smooth temporal variation. From the example illustrated in
Figure 1, we have already learned that the spectrum of2FW F2k

a Hanning window multiplied by a smooth function, such as
, cannot significantly deviate from 1 in more thanc p 1 � ann

a few frequency bins of the SK estimator. However, this as-
sumes a periodic sawtooth variation of the coefficients, in-ci

dependent of PSD index M. Fortunately, we show that a similar
behavior can be obtained by building an SK estimator based
on normalized PSD estimates. Indeed, if after each realization
of a estimate its spectrum is normalized to the full-bandwidthP̂k

total power , the statistics become insensitive to smooth2ˆ ˆ� P Vk k

temporal variations of the input signal. Note that this spectral-
domain normalization is equivalent to a time-domain normal-
ization obtained by dividing each windowed data block by

. Figure 3 displays the original and normal-2 1/2[� (w c x ) ]i i iblock

ized time sequences for three consecutive blocks of N p
data samples generated by numerical means. The bottom8192

panel of this figure suggests that the normalized time-domain
sequence might be statistically equivalent to the case of a sta-
tionary Gaussian signal analyzed with a modified Hanning win-
dow similar to the one analyzed in Figure 1.

To validate our expectations, we present in Figure 4 a nu-
merical simulation obtained for data blocks ofM p 1000

data samples. The data set consists of a linearlyN p 8192
increasing Gaussian background, ,c p 1 � a[(m � 1)N � n]mn

mixed with two deterministic signals. The first one, corre-
sponding to the frequency bin , is a continuous mono-k p 1000
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Fig. 4.—SK estimator spectra for a time-domain signal obtained for a stationary Gaussian background multiplied by a linear factor , with a{x } c p 1 � aii i

indicated in each panel. The background signal is mixed with a 100% duty cycle random-phase sinusoidal signal at and a 20% duty cycle random-f p 1000k

phase sinusoidal signal at . Both signals have S/Ns of 1000. Each data block contains samples, and data blocks were used tof p 3000 N p 8192 M p 1000k

generate the statistics. Left column: spectra obtained from PSD estimates corresponding to the original time-domain data blocks multiplied by a Hanning window.2V̂k

The horizontal dashed lines indicate the � ranges about the medians of each spectrum. Right column: spectra obtained from PSD estimates normalized2ˆ�6/ M Vk

to their full-bandwidth total powers. The horizontal dashed lines indicate the � ranges about 1.�6/ M

chromatic signal with S/N p 1000, while the second one,
corresponding to the frequency bin , has the samek p 3000
S/N but is randomly occurring with a 20% duty cycle. The
figure is organized in three rows and two columns. Each row
of the left column, from top to bottom, corresponds to a dif-
ferent change-rate parameter a; i.e., 0/(M # N), ,5/(M # N)
and , respectively, corresponding to 0%, 0.5%, and20/(M # N)
2% variation over N samples. The right column presents the
results corresponding to the same parameters, but for an SK
estimator built on normalized spectra. Two important effects
are apparent. The first is that without normalization (left col-
umn), the spectrum is shifted above unity, while its variance2V̂k

obviously becomes larger than for the stationary case (dotted
lines). This problem is avoided by applying the normalization
(right column). We actually observed this phenomenon on real
solar data during solar bursts, where the estimator failed until
we applied the normalization.

The second effect is that the expected duty-cycle behavior
described in Figure 2 is altered for both normalized and un-
normalized spectra. Indeed, the left column shows that in the
case of unnormalized spectra, the SK estimator level of the
100% duty-cycle line decreases when a increases, while the
20% duty-cycle line becomes practically indistinguishable from
the background. On the other hand, when normalized spectra
are used (right column), the low–duty-cycle signals can be
easily detected, while for particular values of the change rate,

in this case, the continuous signal may be-a p 5/(M # N)
come undistinguishable from the Gaussian background. How-
ever, for , the SK estimator for the continuousa p 20/(M # N)
signal becomes larger than unity and is well above the threshold
level. In this respect, the change in the background power level
appears to have a similar effect on the SK estimator for con-
tinuous signals as the change of the duty cycle has for the
transient ones.
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Fig. 5.—RFI-contaminated dynamic spectrum produced from FST radio data obtained during a quiet-Sun observation. The time and frequency resolution of
the averaged dynamic spectrum are ∼142 ms and ∼1 MHz, respectively. Various types of continuous, clustered, and scattered RFI contamination are evident.

4. IMPLEMENTATION AND RESULTS

Having established the theoretical properties of the SK es-
timator, our aim is to suggest a general approach for its practical
implementation as an RFI detection and excision tool. A
straightforward implementation of an RFI excision algorithm
for a one-channel DFT-based radio spectrograph would require
accumulating the sums and defined in equation (19) overS S1 2

the desired M spectra, each derived from N blocks of time-
domain data and normalized by the band-integrated total power,
if necessary. From these sums, the SK estimator, equation (21),
is calculated and compared with a threshold value based on
equation (22) (or eq. [23]) to define a flag array to be applied
to to remove bad channels. Because of the narrow bandwidthS1

of most RFI, one can maximize retention of RFI-free data
channels by accumulating the SK statistics at a finer frequency
resolution than the desired (science-based) bandwidth and com-
bine frequency channels after RFI excision.

In the case of an interferometric radio array, the logical AND
of the RFI flag arrays (assuming channels with RFI are flagged
as zero) yield an RFI flag array for each pair of antennas. Note
that this approach avoids the theoretical difficulties of defining
a statistical estimator for the correlated spectra, which would
have to take into account the fact that the data sets recorded
by two different antennas are not statistically independent (Frid-
man 2001).

4.1. Software Implementation of an RFI Excision
Algorithm for the FST Interferometric System

One of the main goals of the newly developed FASR Sub-
system Testbed (FST; Liu et al. 2007) is to provide a test bed
for studying methods of RFI excision. The design of this in-
strument, which records full time-resolution time-domain data
at a sampling rate of 1 ns, allows playback of data in simulated
real time while experimenting with software-implemented RFI
excision algorithms in either time or frequency domains over
an instantaneous 500 MHz bandwidth. This 500 MHz band
can be tuned anywhere in the 1–9 GHz frequency range. Since
the FST system is composed of three independent data channels
linked to three of the seven antennas of the Owens Valley Solar
Array (OVSA; Gary & Hurford 1999), the performance of the
RFI excision algorithms on correlated data can also be inves-
tigated. However, this flexibility does not come without cost.
Due to the limitation to 2 Mbytes per channel of on-board
memory of the 8 bit resolution digitizing system (Acqiris
DC271), no more than about 2 ms of contiguous time-domain
data segments can be recorded at a time, with time gaps between
data segments that are due to the time needed to download the
recorded data and store it on the host computer hard drive. The
duty cycle for data acquisition is roughly 1%. The data we use
to illustrate the SK algorithm were taken in modes 1 and 3, as
defined in Liu et al. (2007), and a standard Hanning window
has been applied to reduce the FFT spectral leakage. For three-
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Fig. 6.—RFI-cleaned dynamic spectrum obtained from the same data displayed in Fig. 5. For each averaged spectrum, the RFI flags have been generated based on
the statistics obtained from contiguous PSD estimates. Most of the RFI spikes have been removed, and the continuous RFI spectral lines are reduced.2V̂ M p 244k

Fig. 7.—(a) Magnified portion of Fig. 5 containing RFI. (b) Same portion of Fig. 6, with some of the RFI removed. (c) Number of subchannels flagged for
RFI, in dynamic spectrum format, corresponding to the same portion of the dynamic spectrum as in (a) and (b). The number of subchannels is color-coded
according to the scale above (c).

channel data taken in mode 1, 2 ms of contiguous time-domain
data are recorded, with time gaps between segments on the
order of 160 ms. In mode 3, 100 ms of data are separated by
20 ms gaps. As a consequence of these hardware constraints,

the contiguous SK statistics cannot be extended beyond an
upper limit (for mode 1 data) of contiguous6N # M p 2 # 10
data samples, which, depending on the frequency resolution
desired, puts an upper limit on the maximum number of PSD
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Fig. 8.—RFI-cleaned dynamic spectrum obtained from the same data displayed in Fig. 5, but with frequency resolution reduced by a factor of 8 in order to
improve the SK statistics ( contiguous PSD estimates). To allow a better comparison with Figs. 5 and 6, no subchannel integration has been performed.M p 1952

estimates, M, that can be obtained from the same contiguous
data set. Nevertheless, as shown later in the text, this limitation
can be overcome by ignoring the time gaps and performing
SK statistics based on more-or-less evenly distributed, non-
contiguous PSD estimates. But one should keep in mind that
the efficiency of the estimator using this operating mode may
be affected by the temporal behavior of nonstationary RFI
signals.

The FST system also provides the ability to investigate the
validity and efficiency of the RFI excision algorithms under
extreme conditions of rapidly varying power levels of the Gaus-
sian signal, which occur during the impulsive phases of some
solar radio bursts recorded by the instrument. As shown in the
previous section, it is necessary in such situations to obtain
SK statistics based on normalized PSD estimates. However, the
FST system does not need special treatment in such situations,
due to its built-in automatic gain control (AGC) loop, which
dynamically maintains a fixed power level of 6 dBm over the
500 MHz bandwidth data channel inputs of the digitizer. There-
fore, the unscaled PSD estimates obtained directly from the
raw data are already normalized by the default behavior of the
system. However, it is one of the main goals of this study to
check whether or not the SK estimator really behaves as ex-
pected under the extreme conditions of fast-varying radio
bursts, a situation we consider of great practical interest for the
design of future solar radio telescopes with real-time RFI ex-
cision capability. Moreover, studying the behavior of the SK
estimator under radio burst conditions should help us evaluate

the extent to which the assumption of an underlying Gaussian
parent population still holds in the presence of various coherent
or incoherent emission mechanisms that might be responsible
for the natural radio emission produced by the solar radio
bursts. In particular, we want to investigate whether or not a
dynamic SK-based RFI excision algorithm can be safely used
during a radio burst, without the risk of confusion with artificial
RFI signals.

4.2. Performance of the Algorithm in the Case of Strong
RFI

In the 1–9 GHz observational range of the FST instrument,
the 1.5–2.0 GHz frequency band is one that is strongly con-
taminated by RFI. Figure 5 displays a dynamic spectrum of
the quiet Sun that is heavily contaminated by RFI signals with
a variety of time-domain characteristics. The dynamic spectrum
has a frequency resolution of ∼1 MHz and a time resolution
of ∼142 ms, each spectrum being obtained by averaging data
obtained from 2 ms segments of contiguous data corresponding
to one mode 1 acquisition, separated by 140 ms of dead time.
Each segment has been divided into adjacent blocksM p 244
of data samples each, resulting in 244 PSD estimatesN p 8192
in each of 4097 frequency channels, having a frequency res-
olution of ∼122 kHz. We then integrate over eight frequency
bins (subchannels) and accumulate in time to produce a time-
averaged spectrum with a frequency resolution of ∼1 MHz.

Figure 6 illustrates the performance of the RFI excision al-
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Fig. 9.—Total power dynamic spectrum of a weak solar radio burst recorded on 2006 April 5, around 21:06:30 UT, in the 1–1.5 GHz frequency band. The
time resolution of the dynamic spectrum is 25 ms, and the frequency resolution is 1 MHz. The vertical black stripes in the plot represent variable time gaps
needed to dump each separate acquisition on the storage media. Four on/off periodic RFI signals can be seen at 1190, 1360, 1400, and 1440 MHz, in addition
to a few narrowband features scattered below 1200 MHz, most likely due to aircraft distance-measuring equipment. RCP and LCP labels indicate a few of the
periodic changes in the background intensity, about every 4 s, due to periodic switching of the observed circular polarization, which is the default mode of
operation of OVSA.

gorithm in the case of statistics based on a single averaged2V̂k

spectrum. A detection threshold of ∼ has�1 � 3 j p 1 � 6 M
been used to flag the RFI-contaminated channels and remove
them prior to subchannel integration. Channels for which sub-
channels have been removed are proportionally scaled in am-
plitude to correct for the missing subchannels. Given the small
number ( ) of PSD estimates we have available as aM p 244
result of the low duty cycle of the FST, we consider the per-
formance illustrated by Figure 6 to be promising. Even in this
case of low-number statistics, Figure 6 shows that the algorithm
successfully removes most of the transient RFI without af-
fecting the continuum background. The removal of the strong,
apparently continuous RFI is less effective, perhaps due to a
combination of low-number statistics, time gaps forced by the
low duty cycle of the instrument, or residual nonstationary
power level, which can reduce the effectiveness of the algo-
rithm for continuous RFI as shown in Figure 4. We anticipate
that the algorithm will perform better for continuous RFI in
an instrument with a 100% duty cycle. Indeed, a detailed in-
spection of the RFI flags generated by the algorithm reveals
that it is sensitive to the continuous RFI. Figure 7 zooms in
on two areas in Figures 5 and 6 and shows the number (zero
to eight) of surviving (unflagged) subchannels in each fre-

quency and time bin. It is evident that in the case of continuous
RFI components, for much of the time, at least one out of eight
frequency channels are flagged as being contaminated by RFI,
and we anticipate that if better statistics (larger M) were pos-
sible, the results would have been better. The general salt-and-
pepper aspect of the flag spectrum is explained by normal
statistical fluctuations of the SK estimator, expected to be on
an order of ∼1% for the 3 j detection threshold used. The total
number of bins flagged as RFI represent ∼2.5% of the original
data, which suggests that ∼1.5% of the data have been suc-
cessfully identified as contaminated with RFI, and removed.

To check the extent to which the performance of the SK
estimator would be improved by better statistics, we present
in Figure 8 the results obtained by reducing the estimator fre-
quency resolution by a factor of 8, yielding PSDM p 1952
estimates in each frequency-time bin. To allow a better com-
parison with the results presented in Figure 6, we have not
performed in this case any frequency integration, so that the
RFI-flagged bins appear black in the plot. Although the results
have improved, we note that the algorithm performance is still
not optimal. This is because by reducing the frequency reso-
lution of the estimator, the S/N of narrowband RFI is also
reduced, due to the wider frequency bins. The total data loss
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Fig. 10.—RFI-cleaned version of the spectrum displayed in Fig. 9, using a running buffer as explained in the text. A total of PSD estimates haveM p 2880
been used to evaluate the SK estimator and generate the RFI flags. In comparison with the dynamic spectrum displayed in Fig. 9, the periodic fixed-frequency
RFI signals, and nearly all of the scattered RFI spikes, have been removed, while the spectrum of the solar radio burst is not affected by the excision algorithm.
The algorithm fails to detect the RFI spectral lines at the earliest times, until a statistically significant number of PSD estimates is accumulated in the running
buffers. The RFI spikes in a few time bins at about 1090 MHz, having a very low duty cycle at the timescale of the running buffers, results in the removal of
most of the data for the affected frequency channel.

in this case is ∼7%, which may be partially due to better per-
formance, but is also due to the fact that the narrowband RFI
contaminates larger frequency bins.

4.3. Weak Solar Radio Burst Spectrum Contaminated by
Moderate RFI

Figure 9 displays a dynamic spectrum corresponding to a
solar radio burst recorded by the FST instrument on 2006 April
5 in the 1.0–1.5 GHz range. The burst consists of several weak
emissions, the most intense being observed around 21:06:30
UT. Four on/off periodic RFI signals can be best observed at
about 1200, 1360, 1400, and 1440 MHz, in addition to a few
transient RFI spikes near 1100 MHz. A periodic change in the
background intensity every 4 s is due to feed-switching between
right-hand and left-hand circular polarization. The spectrum in
each time bin results from time samples of5N # M p 10
1 ns each ( , , MHz) separatedN p 8192 M p 12 Df p 0.122
by 25 ms dead time, while ∼100 ms time gaps occur between
20 consecutive spectra (vertical black stripes), due to additional
dead time needed for writing the data to disk.

Although the number of PSD estimates, , is far tooM p 12
small for useful statistics for an individual bin, the efficiency

of the SK algorithm may be greatly improved by accumulating
the sums and , on which the SK estimator is based, inS S1 2

running buffers and that span a much longer time.{S } {S }1 2

Sums over the PSD estimates for each time bin areM p 12
added to limited-length arrays holding a predefined number of
partial sums. When the length limit of these arrays is reached,
the oldest pair is discarded to make room for the in-{S , S }1 2

coming one. This procedure allows us to generate, based on
the total sums and , a statistically sig-S p � S S p � S1 1k 2 2k

nificant SK estimator that is used to flag the RFI-affected spec-
tral components of the incoming time bin.

Figure 10 presents the cleaned version of the spectrum pre-
sented in Figure 9, based on running history buffers maintain-
ing 240 partial sums of 12 contiguous PSD estimates. Thus,
the statistics are generated from PSD estimates.M p 2880
Comparing Figs. 10 and 9, we conclude that the approach
successfully removes most of the RFI spectral components
without affecting the spectrum of the solar radio burst. Note
that the algorithm fails to detect the RFI in the first few seconds,
before a statistically significant number of PSD estimates is
accumulated in the running SK buffers. While the “learning
curve” of the estimator should not be of concern, given the
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Fig. 11.—Portion of the dynamic spectrum of a solar radio burst recorded by FST on 2006 December 6, 19:41:00 UT, when strong radio spikes where observed.
The frequency and time resolutions of the dynamic spectrum are ∼0.122 MHz and 25 ms, respectively. However, each averaged spectrum corresponding to a
25 ms time bin was obtained only from 0.1 ms of contiguous data samples, resulting in consecutive PSD estimates. The first 4 s of data, taken with aM p 12
right-hand–polarized (RCP) feed, reveal intense radio spikes, with only weak RFI contamination. The rest of the data, taken with a left-hand–polarized (LCP)
feed, reveal just a few radio spikes and clear RFI contamination. However, some of the spiky structures present in both polarizations might also be due to low–duty-
cycle RFI.

fact that this is a time-limited “start up” effect, the high sen-
sitivity of the estimator to transient RFI spikes might result in
an undesired complete blanking of some spectral regions that
are only transiently affected by RFI, as shown by the missing
channel near 1090 MHz. RFI spikes in a few time bins can
result in removal of all data for the affected frequency until
the contribution to the sum “ages off” and leaves the buffer.
A balance must be struck between increasing buffer size for
improved statistics and the corresponding loss of data due to
overlong response to transient RFI.

4.4. Strong Solar Radio Burst with Fine Time-Frequency
Structures

One of the solar radio bursts recorded by FST that occurred
on 2006 December 6 displayed extremely strong, narrowband
(few MHz), short-duration (!20 ms) radio spikes that nominally
look a great deal like RFI. Figure 11 displays ∼7 s of the
dynamic spectrum, where the highly right-circularly polarized
(RCP) spike bursts are apparent during the first ∼4 s, when the
system was measuring RCP, but are nearly absent when the
system was switched to left-circular polarization (LCP) in the
last ∼3 s. At the same time, RFI is weak during the first
∼4 s, but more readily visible in the last ∼3 s. As in the previous

burst (Fig. 9), each time bin of the spectrum is obtained from
time samples of 1 ns each ( ,5N # M p 10 N p 8192 M p

, MHz), separated in this case by 20 ms dead12 Df p 0.122
time.

A legitimate question arising from the displayed spectral
structures in Figure 11 is whether or not the statistics will2V̂k

remain insensitive to the natural spiky structures while still
discriminating the true RFI contamination. The answer to this
question is important from both practical and theoretical points
of views. From a practical standpoint of a real-time RFI ex-
cision algorithm, it would be highly undesirable for the natural
solar emission to be irreversibly removed due to its being mis-
taken for low–duty-cycle RFI contamination, to which we al-
ready proved the high sensitivity of the SK estimator. From a
theoretical point of view, the analysis of this data set might2V̂k

reveal whether or not the intensity of such natural radio spikes,
generally believed to be produced by the electron cyclotron
maser emission mechanism (see Fleishman et al. 2003 and
references therein), nevertheless obeys a Gaussian statistical
distribution.

The number of contiguous PSD estimates within aM p 12
single time bin is too small to be statistically significant, and
when we applied the running buffer approach of the previous
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Fig. 12.—Same dynamic spectrum displayed in Fig. 11, but with much lower frequency resolution. Each of the contiguous 0.1 ms data segments have been
divided in adjacent blocks of data samples, for an ∼3.9 MHz frequency resolution. No integration in the frequency direction has been performed.M p 390 N p 256
Most of the spike clusters are still partially resolved in the RCP segment of the spectrum, while only one RFI spectral line at about 1020 MHz remains clearly
visible.

section, the algorithm did indeed incorrectly flag the spikes as
RFI. However, as mentioned above, we can increase M by
decreasing N (i.e., decreasing spectral resolution), which is
likely to be fruitful, since the spikes have an intrinsic spectral
width of several MHz. Figure 12 displays the dynamic spectrum
obtained for the same data set, but with a frequency resolution
of 3.9 MHz. As expected, most of the individual spikes are
still resolved, while some of the weaker RFI spectral lines
present in Figure 11 are no longer visible, due to the fact that
their S/N has been decreased by increasing the width of the
frequency bins. While the temporal resolution of the dynamic
spectrum remains the same, each of the individual spectrograms
is now obtained from contiguous PSD estimates,M p 390
which according to equation (27) should be sufficient to dis-
criminate continuous RFI with a S/N as low as ∼1.3.

Figure 13 presents the results of the RFI excision algorithm
applied to the data displayed in Figure 12, with no frequency
integration. Remarkably, almost all of the natural radio spikes
survived the application of the discriminator. This indicates2V̂k

that in the limit of the 390 PSD estimates available, a Gaussian
distribution is at least a good approximation for the probability
distribution function of spike intensity. On the other hand, two
of the three adjacent RFI spectral lines have been completely
removed, as have a few other bright features believed to be
RFI. The low-frequency edge of the main RFI-affected bins is
not removed, possibly due to a too low S/N or a duty cycle

near 50%. The random removal of spectral bins is about equally
numerous in both the RCP and LCP sections and is consistent
with the 1% removal expected for a 3 j discriminator.

Therefore, we can conclude that the implementation of an
SK-based RFI excision algorithm in a real-time instrument,
which can be designed to ensure sufficient statistics in the
20 ms lifetime of a spike, would be unlikely to trigger more
than statistically expected false RFI alarms, even in the pres-
ence of intense and highly fluctuating natural radio emission.

4.5. Rapidly Varying Gaussian Transients

The success described in the previous section may be artificial,
since the natural radio spikes do not vary over the 100 ms of
contiguous data, yet on longer timescales ( ms)100 ms ! t ! 20
they must rise from a low background to some peak level and
then subside. To quantify the SK estimator sensitivity to such
natural transient signals that obey Gaussian statistics, we follow
similar steps to those in § 3.2.2, considering this time that a
stationary Gaussian background, characterized by a constant
variance , is mixed for R out of the M analyzed data blocks,2j

with a narrowband Gaussian transient signal characterized by
the variance , where the ratio of the two variances, , is2h j hk k

still referred as a signal-to-noise ratio. Under these consider-
ations, the power sums entering the SK estimator can be ex-
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Fig. 13.—Results of the RFI excision algorithm applied to the data displayed in Fig. 12. Since no frequency integration has been performed, the RFI-flagged
spectrogram bins appear black in the plot. Remarkably, the SK estimator proves to be insensitive to the natural spiky emission, while it successfully detects most
of the continuous RFI spectral line at about 1020 MHz. The spectrogram also reveals a few scattered bins flagged by the algorithm, most likely false RFI alarms.
However, the total data losses, ∼0.7% in the RCP section, are close to the ∼1% losses due to statistical fluctuations expected for the �3 j RFI detection threshold
used.

pressed as

2 2AS S p 2R(1 � h )j � 2(M � R)j ,1 k

2 4 4AS S p 8R(1 � h ) j � 8(M � R)j , (32)2 k

and subsequently

2M 2(M/R � 1)hk2ˆAV S p 1 � , (33)k [ ]2M � 1 (M/R � h )k

which is similar in form to the expected SK estimator for a
transient RFI signal given by equation (30).

Figure 14 displays the expected SK estimator as given by
equation (33), along with the corresponding simulated results,
for the same S/N values as in Figure 2. Comparing these two
figures, we can conclude that the SK estimator is indeed highly
sensitive not only to RFI transients, but also to Gaussian tran-
sients, the only difference being that the SK estimator in the
case of a Gaussian transient is always greater than unity for
any particular duty cycle other than exactly 0% or 100%. Thus,
if we had longer contiguous data for the event in Figure 11,
so that the Gaussian noise level varied significantly over the
accumulation period, it is likely that the algorithm would have
“failed” and the spikes would be flagged as RFI. This effec-

tively limits the accumulation time to times shorter than the
intrinsic variation of the natural emission, which is normally
not a problem, except for such extreme events as solar spike
bursts. Whether the difference in behavior demonstrated in Fig-
ures 2 and 14 can be exploited for reliable discrimination be-
tween RFI and Gaussian transients is an issue that may be
worth addressing in a future study.

5. CONCLUSION

The statistical properties of the PSD estimates obtained in
the spectral domain (e.g., via FFT) have been analyzed, and
an RFI excision algorithm suitable for real–time implementa-
tion in radio telescopes has been proposed. However, the the-
oretical analysis is general and should be directly adaptable for
many applications in addition to RFI mitigation in radio as-
tronomy. The main findings are as follows:

1. There exists a discriminator that we refer to as the spectral
kurtosis, which for the special case of Gaussian noise has the
value , where is given by equation (14).2 2V p 1 � FW F Wk 2k 2k

2. Using sums and , which are sums of the first twoS S1 2

powers of M PSD estimates, we define a discriminator for
Gaussian noise that we call the spectral kurtosis estimator,

.2 2V̂ p M(MS /S � 1)/(M � 1)k 2 1
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Fig. 14.—SK estimator vs. duty cycle of a transient Gaussian signal for different S/Ns. (a) Theoretical expectation for S/Ns ranging from 1 to 50. The horizontal
dotted lines represent the �3 j detection thresholds for M p 1000 PSD estimates. (b) Simulated SK results corresponding to the theoretical parameters presented
in (a).

3. The value of this SK estimator is unity in most spectral
bins, with a variance given by equation (22), which for practical
purposes (see § 3) reduces to

24/M, k p 0, N/2,2ˆ( )Var V � (34)k {4/M, k p 1, … , (N/2 � 1).

The variance in the DC and Nyquist bins ( ) is thek p 0, N/2
well-known value obtained from time-domain analysis24/M
(e.g., Ruf et al. 2006), which unifies the time- and spectral-
domain approaches.

Using the above expectation values of the estimator and its
variance, one can determine whether any time-domain signal
obeys Gaussian statistics by performing a Fourier transform,
accumulating sums, and examining whether the result in any
frequency bin k agrees with the expected value within a pre-
defined deviation [e.g., ]. However, the extent1/23 j p 3(4/M)
to which the presence of non-Gaussian signals can be distin-
guished from noise depends on both the S/N and the dutyhk

cycle of the signal, according to equation (30). Ind p R/M
particular, the algorithm is “blind” to RFI with a duty cycle
near 50%, as has been noted previously for the case of time-
domain kurtosis (De Roo et al. 2007). In fact, we have shown
that spectral kurtosis and time-domain kurtosis are completely
equivalent, with the same strengths and weaknesses. Hence,

either can be used interchangeably, with the choice being driven
by whether spectral channels are derived from an FFT-based
approach (where SK would be used) or from a finite impulse
response (FIR) or polyphase filter approach (where time-do-
main kurtosis would be used).

The above results have been applied to the problem of RFI
identification and excision using full-resolution time-domain
data recorded by the FST instrument (Liu et al. 2007) during
RFI surveys and solar observations. Taking into account the
limitation on the number of PSD estimates allowed by the FST
instrument, we consider the results to be a successful experi-
mental validation of the use of the SK estimator for RFI ex-
cision. Moreover, the algorithm appears to be most effective
in the case of transient, low–duty-cycle RFI. If it proves to be
less effective for channels with continuous RFI, such channels
are easy to detect from simple power-level considerations, and
it is always possible to flag them using a predefined static
frequency mask.

We have also demonstrated the robustness of the SK esti-
mator for identifying RFI in conditions of considerable tem-
poral and spectral complexity presented by solar radio bursts.
The algorithm successfully identifies the non-Gaussian artificial
signals for flagging while passing the natural solar radio emis-
sion, which recommends it as a promising and valuable tool
to be considered for a real-time implementation in future radio
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instruments, such as FASR. However, Gaussian transients such
as spike bursts may limit the time window over which to gather
statistics. We agree with Fridman & Baan (2001) that no single
RFI excision technique will be 100% successful in identifying
all possible artificial signals, but the SK estimator is a powerful
tool when used in combination with other techniques.

We thank the anonymous referee for pointing out the effect
of Gaussian transients, and for other comments that improved
the paper. This work is supported by NSF grant AST 03-52915
to the New Jersey Institute of Technology. We acknowledge
additional support for the Owens Valley Solar Array through
NSF grant AST 06-07544 and NASA grant NNG06GJ40G.

APPENDIX A

SPECTRAL VARIABILITY OF A WINDOWED TIME-DOMAIN GAUSSIAN SIGNAL

To derive the spectral variability of a windowed Gaussian
signal, we start by conveniently rewriting equation (5) as

2 2P̂ p A � B , (A1)k k k

where

N�12 2pkn�A p w x cos ,�k n n ( )2 Nnp0N � wn

N�12 2pkn�B p w x sin . (A2)�k n n ( )2 Nnp0N � wn

Since and are linear combinations of zero-meanA Bk k

Gaussian variables, they are also random variables belonging
to normal parent distributions of zero mean, and have variances

and that can be exactly computed from the formula,2 2j jA Bk k

generally providing only the first-order approximation for the
variance of a function of N random variables,

N�1
�g �g2j p Cov (x , x ) (A3)�g(x , …, x ) i j1 n �m �mi, jp0 i j

(Kendall & Stuart 1958, p. 232), where are the partial�g/�mi

derivatives evaluated at the mean values , andm p Ax Si i

is the covariance of the two random variables,Cov (x , x )i j

which is zero for independent variables (as is the case here)
and reduces to the variance for .2j i p jx

After some basic mathematical manipulations, equation (A3)
leads to remarkably simple results:

2jx2 [ ]j p 1 � �(W ) , (A4)A 2kk N

2jx2 [ ]j p 1 � �(W ) ,B 2kk N

where

N�1 N�14pkn2 2�(W ) p w cos w (A5)� ( ) �Z2k n nNnp0 np0

is the real part of the normalized Fourier transform of the
squared time-domain window,

N�11 2 �2pikn/NW p w e , (A6)�k n2
np0� wn

evaluated at the discreet frequencies .f p 2f2k k

Note that by definition, for any windowingW p W p 10 N

function, which implies that for the DC and Nyquist
frequencies, . On the other hand, since2 2 2j p j p 2j /N AA A x k0 N/2

and are zero-mean random variables, it immediately followsBk

that and ; hence, the expected mean of2 2 2 2AA S p j AB S p jk A k Bk k

the PSD estimate, , is given at all frequencies binsˆm { AP Sk k

by

22jx2 2m p AA S � AB S p ,k k k N

k p 0, 1, … , N/2, (A7)

which indicates that the power of the Gaussian signal (white
noise) is, as expected, equally distributed among the frequency
bins of the PSD estimate. However, contrary to the case of a
square windowing function (generally an unstated assumption),
equations (A4) and (A5) reveal that the variances of the real
and imaginary parts of the PSD estimate are not generally
equal. This means that at any given frequency bin, even a
symmetrical time-domain window may produce an asymmetric
distribution of the spectral power between the real and
imaginary parts of the PSD estimate in a way that is dependent
on the Fourier transform of the normalized, squared time-
domain window .2 2w / � wn n

Since for the particular DC and Nyquist frequency bins we
have , the PSD probability distributionB p B p 00 N/2

function associated with these frequency bins can be derived
directly from the Gaussian distribution associated with the
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corresponding coefficients,Ak

21 Akp(A ) p exp � , (A8)k ( )2� 2j2pj AA kk

which after the variable change , becomes2 ˆA r Pk k

1 1
�1/2ˆ ˆ ˆ( )p P p P exp � P ,k k k( )2� 2j2pj AA kk

k p 0, N/2. (A9)

Equation (A9) can be used to compute any nth-order moment
about the origin of the PSD estimate, , which is′ nm (n) { AP Sk k

given by

′ 2nm (n) p 1 # 3 … # (2n � 1)j ,k Ak

k p 0, N/2, (A10)

and the variance of the PSD estimate, , at2 ′ ′2j p m (2) � m (1)k k k

the DC and Nyquist frequency bins, as

48jx2 2j p j p . (A11)0 N/2 2N

Hence, taking into consideration equations (A7) and (A11), the
spectral variabilities corresponding to the DC and Nyquist
frequency bins turn out to be

2 2V p V p 2, (A12)0 N/2

which is a generally valid result, independent of the actual
shape of the time-domain windowing function.

However, for all other frequency bins, a complete statistical
description of the PSD estimate cannot be obtained without
evaluating the covariances of the and coefficients. Again,A Bk k

the linearity of these coefficients assures us that the general
formula

N�1
�f �g

Cov ( f, g) p Cov (x , x ), (A13)� i j
�m �mi, jp0 i j

provided by Kendall & Stuart (1958, p. 232) only as a first-
order approximation, leads in this case to an exact result.
Recalling the assumed zero correlation of the time-domain data

samples , we get{x }n

2jx2j { Cov (A , B ) p �(W ) , (A14)A B k k 2kk k N

where

N�1 N�14pkn2 2�(W ) p w sin w (A15)� ( ) �Z2k n nNnp0 np0

is the imaginary part of the normalized Fourier transform of
the squared time-domain window evaluated at the discreet
frequencies . In the case of a symmetric time-domainf p 2f2k k

window, it immediately follows that , which�(W ) p 02k

implies the statistical independence of and . However,A Bk k

since for the reasons mentioned in § 2.1 we do not want to
impose any constraints on the time-domain window, we notice
that according to equations (A14) and (A15), any asymmetric
time-domain window would induce a statistical correlation of
the DFT coefficients that has to be taken into consideration
when computing the variance of the PSD estimate.

We have established so far that in the most general case, the
DFT coefficients and corresponding to a given frequencyA Bk k

bin are Gaussian random variables of zero mean and known
variances. However, since for the PSD estimate isk ( 0,N/2
a quadratic combination of two random variables that may be
statistically correlated, its expected statistical moments should
be derived from the joint distribution of two dependent
Gaussian variables, which is

2 21 A B A Bk k k k
2 2 2p(A , B ) p exp � � � r( )[ ]k k k1�r 2j 2j j jk A B A Bk k k k

�1

2�# 2pj j 1 � rA B kk k( )
(A16)

(Davenport & Root 1958), where

2jA Bk kr p (A17)k
j jA Bk k

is the correlation coefficient of the DFT coefficients.
The evaluation of the PSD variance in the most general case

described by equation (A16) can be greatly simplified by using
the moment-generating function

2 2(A �B )tk kM(t) p Ae S

1
p ,

2 2 2 2 2 2�1 � 2(j � j )t � 4j j (1 � r )tA B A B kk k k k

(A18)

which can be straightforwardly employed to compute the nth-
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order moments about the origin,

nd′m (n) p F M(t). (A19)k n tp0dt

Hence, the variance of the PSD estimate for isk ( 0, N/2

2 4 4 4j p 2(j � j � 2j ), (A20)k A B A Bk k k k

which can be formally reduced to equation (A11) for 2j pB0

, , and .2 2 2 2 2j p 0 j p j p 0 j p j p 2j /N2B A B A B A A xN/2 0 0 N/2 N/2 0 N/2

Therefore, using equations (A7) and (A20), as well as
equations (A4) and (A14), the PSD spectral variability, as

defined by equation (1), can be now expressed as

4 4 2( )2 j � j � 2jA B A Bk k k k
2V p , (A21)k 2 2 2(j � j )A Bk k

which, making use of equations (A4), (A5), and (A15), can be
rewritten in a remarkably simple, compact form as

2 2V p 1 � FW F . (A22)k 2k

Taking into consideration equation (A12), and that W p W p0 N

, this is a result that is valid for all .1 k p 0, 1, … N/2

APPENDIX B

VARIANCE OF THE SK ESTIMATOR

We rewrite equation (21) in terms of the first two sample
moments about the origin of the random variable ; i.e.,P̂ki

and , which leads to′ ′m p S /M m p S /M1 1 2 2

′M m22V̂ p � 1 . (B1)k ( )′2M � 1 m1

Hence, from equation (A3), we obtain

2 ′M m22ˆ( )Var V p Var , (B2)k ( ) ( )′2M � 1 m1

which translates the problem of determining the variance of
to the more general problem of determining the variance of2V̂k

the ratio of any statistical distribution. Taking into′ ′2m /m2 1

account the fact that the expectation values of any sample
moment of order q, , is the parent population moment of the′mq

same order, , we can again employ equation (A3) to obtain′mq

′ ′2m 4m2 2 ′Var p Var (m )1( )′2 ′6m m1 1

′4m 12 ′ ′ ′� Cov (m , m ) � Var (m ).1 2 2′5 ′4m m1 1

(B3)

The exact variances and covariances entering equation (B3) are
given by Kendall & Stuart (1958, p. 229) for any distribution
as

1′ ′ ′ ′ ′Cov (m , m ) p (m � m m ), (B4)q r q�r q rM

where the covariance of any moment with itself should be
understood as its variance. Using these relationships, equation
(B3) becomes

′ ′ ′2 ′ ′ ′3m 1 m � m 4m m 4m2 4 2 2 3 2Var p � � . (B5)( ) { }′2 ′4 ′5 ′6m M m m m1 1 1 1

For , equation (A10) leads tok p 0, N/2

′m 242Var p , (B6)( )′2m M1

which, as expected, is the same as the variance of the classical
kurtosis parameter computed from the fourth and second
moments of the time-domain amplitude (Kendall & Stuart
1958).

For , equations (A19) and (A4) lead tok ( 0, N/2

′m 42 2 4 6( )Var p 1 � 5FW F � FW F � FW F ,2k 2k 2k( )′2m M1

(B7)

which becomes equation (B6) for , sincek p 0, N/2 FW F p0

.FW F p 1N

Therefore, the variance of the SK estimator (eq. [18]) is given
at all PSD frequency bins by the unique expression

4M2ˆ( )Var V pk 2(M � 1)

2 4 6( )# 1 � 5FW F � FW F � FW F .2k 2k 2k

(B8)



RFI EXCISION 827

2007 PASP, 119:805–827

REFERENCES

Amblard, P. O., Gaeta, M., & Lacoume, J.-L. 1996a, Signal Pro-
cessing, 53, 1

———. 1996b, Signal Processing, 53, 15
Antoni, J. 2006, Mechanical Systems and Signal Processing, 20, 282
———. 2007, Mechanical Systems and Signal Processing 21, 108
Bastian, T. S. 2003, Proc. SPIE, 4853, 98
Davenport, W. R., & Root, W. L. 1958, An Introduction to Random

Signals and Noise (New York: McGraw-Hill)
De Roo, R. D., Misra, S., & Ruf, C. S. 2007, IEEE Trans. Geoscience

and Remote Sensing, 45, 1938
Dwyer, R. F. 1983, in Proc. IEEE Int. Conf. on Acoustic, Speech,

and Signal Processing, Vol. 8 (New York: IEEE), 607
Fleishman, G. D., Gary, D. E., & Nita, G. M. 2003, ApJ, 593, 571
Fridman, P. A. 2001, A&A, 368, 369
Fridman, P. A., & Baan, W. A. 2001, A&A, 378, 327
Gary, D. E., & Hurford, G. J. 1999, in Proc. Nobeyama Symposium,

ed. T. S. Bastian, N. Gopalswamy, & K. Shibasaki (NRO Rep. 479;
Nagano: Nobeyama Radio Obs.), 429

Kendall, M. G., & Stuart, A. 1958, The Advanced Theory of Statistics,
Vol. 1 (London: Griffin)

Kenney, J. F., & Keeping, E. S. 1962, Mathematics of Statistics (3rd.
ed.; Princeton, NJ: Van Nostrand)

Liu, Z., Gary, D. E., Nita, G. M., White, S. M., & Hurford, G. J.
2007, PASP, 119, 303

McDonough, R. N., & Whalen, A. D. 1995, Detection of Signals in
Noise (New York: Academic Press)

Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T.
1989, Numerical Recipies in PASCAL (Cambridge: Cambridge
Univ. Press)

Ruf, C. S., Gross, S. M., & Misra, S. 2006, IEEE Trans. Geoscience
and Remote Sensing, 44, 694

Vrabie, V. D., Granjon, P., Maroni, C. S., & Leprettre, B. 2004, in
5th Int. Conf. on Acoustical and Vibratory Surveillance Methods
and Diagnostic Techniques

Vrabie, V. D., Granjon, P., & Servière, C. 2003, in 2003 IEEE-EU-
RASIP Workshop on Nonlinear Signal and Image Processing
(NSIP-03)


