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Abstract
For a magnetometer that measures weak interplanetary fields, the in-flight determination of
zero levels is a crucial step of the overall calibration procedure. This task is more difficult
when a time-varying magnetic field of the spacecraft interferes with the surrounding natural
magnetic field or when the spacecraft spends only short periods of time in the interplanetary
magnetic field. Thus it is important to examine the algorithms by which these zero levels are
determined, and optimize them. We find that the method presented by Davis and Smith (1968
EOS Trans. AGU 49 257) has significant mathematical advantages over that published by
Belcher (1973 J. Geophys. Res. 71 5509) as well as over the correlation technique published
by Hedgecock (1975 Space Sci. Instrum. 1 83–90). We present an alternative derivation of the
Davis–Smith method which illustrates that it is also a correlation technique. It also works with
first differences as well as filtered data as input. In contrast to the postulate by Hedgecock
(1975 Space Sci. Instrum. 1 83–90), we find that using first differences in general provides no
advantage in determining the zero levels. Our new algorithm obtains zero levels by searching
for pure rotations of the interplanetary magnetic field, with a set of sophisticated selection
criteria. With our algorithm, we require shorter periods (of the order of a few hours, depending
on solar wind conditions) of interplanetary data for accurate zero level determination than
previously published algorithms.

Keywords: magnetometer calibration, interplanetary magnetic field, solar wind, Alfven waves

1. Introduction

Post-launch spacecraft magnetometer zero levels can differ
from their pre-launch values for many reasons. Some of
the most common issues are temperature changes of the
sensor and the electronics, varying magnetic fields of the
spacecraft due to electric currents or magnetic permeability,
aging of electronic parts, exposure to strong radiation and other
causes. See Acuña (2002) for a general review on space-based
magnetometers. A historical review on measurements of the
interplanetary magnetic field can be found in Ness and Burlaga
(2001). Also see Snare (1998) for a historical review on vector
magnetometry in space. For a spinning spacecraft, the zero

levels of the component axes that lie in the spin plane can
be estimated by averaging in the spinning spacecraft frame
over many spin periods when gains and angles are known
to high enough precision and the magnetic field is constant
during the averaging period. However, spacecraft-generated
ac magnetic fields at the spin frequency in the spinning frame
will cause erroneous zero levels in the despun spacecraft
frame that cannot be found by averaging. For a discussion
of the calibration of magnetometers on a spinning spacecraft
such as determining relative gains and orientations, see Kepko
et al (1996). Farell et al (1995) is another reference on the
calibration of magnetometers on a spinning spacecraft, but it
omits relative gains. A commonly used term for the zero level
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is offset. We will use both terms interchangeably throughout
this paper.

In the solar wind, a simple method that can be used to
determine constant or extremely slowly varying zero levels
is averaging of the magnetic field values over a few solar
rotations. The averages of all three component axes should be
zero since the divergence of B is zero, and the configuration
of the solar magnetic field should not be correlated with
the spacecraft location. However, we note that there are
field configurations that can be symmetric about the Sun’s
rotation axis such as those associated with the g0

1, g
0
2, g

0
3, . . .

coefficients of the Legendre polynomial expansion (see, for
example, Altschuler et al (1977) and references therein); so
this technique is not foolproof. Furthermore, this technique
requires that the spacecraft stays in the interplanetary magnetic
field continually and returns an average zero level at most
only monthly. It is desirable to determine offsets much more
often and to not rely on the Sun having a favorable magnetic
configuration. Fluctuations of the interplanetary field are
primarily changes in the direction rather than in the magnitude
so that the field magnitude is more constant than any of its three
component axes (Ness et al 1964). See also power spectra
and histograms in Coleman (1966). Fortunately, the Alfvénic
nature (Belcher et al 1969) of the solar wind fluctuations allows
us to determine offsets comparatively rapidly, much faster than
once per month.

There are three documented methods for finding zero
levels in the interplanetary magnetic field, based on the above-
described property of the interplanetary magnetic field to
determine slowly changing zero levels. The first method
developed is called the Davis–Smith method (Davis and Smith
1968). This method optimizes the zero levels so that the
variance of the squared magnitude of the magnetic field is
minimized. Rosenberg (1971) provides a detailed derivation
of this technique. The Davis–Smith equation (22) was not
published until Belcher (1973) developed his own method and
compared it with the Davis–Smith method. Below we give an
alternative derivation of the Davis–Smith method and discuss
the variant of Belcher (1973), which gives greater insight into
the methodology. The Belcher method optimizes the zero
levels so that the maximum variance vector is orthogonal to
the background field. The third method (Hedgecock 1975) is
based on the assumption that averaged over a suitable time
interval, there should be no correlation between changes in the
field magnitude and changes in the inclination of the field to
any one of the three component axes.

All three methods must be applied with some caution
because the assumptions, on which each particular method
is based, might not always be true. Their results stand and
fall with the appropriate selection criteria for data intervals.
The Davis–Smith method has no published selection criteria.
Davis and Smith selected data intervals by eye (Belcher 1973).
Belcher and Hedgecock published rather loose selection
criteria that require long intervals (a few days to weeks) of
input data.

We have modified the Davis–Smith method to determine
magnetometer zero levels on much shorter time scales than
previously possible. While this can be useful for all missions,

it is particularly useful when the spacecraft spends most of the
time inside a magnetosphere and only occasionally enters the
interplanetary magnetic field. The magnetic field is usually
observed close to the bow shock and in many cases highly
disturbed by non-Alfvénic upstream waves, or the spacecraft
might observe the interplanetary field only because of very
unusual solar wind conditions that have higher than average
dynamic pressure values. Our revised method can also be
used for missions that require the adjustment of zero levels
at more frequent intervals than a few days as required for
the published selection criteria of Belcher and of Hedgecock.
Such missions may not have had an appropriate magnetic
cleanliness program and therefore the magnetic field at the
location of the magnetometer is heavily disturbed by the
spacecraft’s own time-varying magnetic field, or they may
experience diurnal variations due to a changing spacecraft or
sensor fields as the solar illumination or spacecraft temperature
varies with orientation or the orbital position.

For convenience of the reader, below we review all
three methods. This review gives us further insight into
the differences between the three techniques and serves to
illuminate the improvements we have made. We first discuss
the Belcher and the Hedgecock methods.

1.1. Belcher’s method

This method is based on the assumption that the fluctuations of
the solar wind are predominantly transverse to the background
field (1). It optimizes the zero levels so that the maximum
variance vector (Sonnerup and Cahill 1967) is orthogonal to
the background field (2). Angular brackets denote averages:

δ �B‖ = δ �B · 〈 �BA〉
|〈 �BA〉| ≈ 0, (1)

where δ �B is the unit vector in the maximum variance direction,
δ �B‖ is the part of δ �B in the direction of the background field
and �BA is the actual background field vector:

δ �B‖ ≡ 0. (2)

Assuming that the measured field �BM consists of the actual
field �BA plus a constant offset vector �O, we obtain

δ �B · 〈 �BM〉 = δ �B · �O + δ �B · 〈 �BA〉, (3)

writing the sum over n data windows (angular brackets denote
averages over single data windows)

D =
n∑

i=1

(
δ �Bi · 〈 �Bi

A

〉)2 =
n∑

i=1

[
δ �Bi · (〈 �Bi

M

〉 − �O)]2
, (4)

and using dD

d �O = 0, we obtain Belcher’s matrix equation

n∑
i=1

T i · �O =
n∑

i=1

T i
〈 �Bi

M

〉
, (5)

where i is the index of the data window, T i is the outer product
of δ �Bi (T is a matrix) and n is the number of data windows.

The matrix on the left-hand side of (5) is singular for
n = 1, but (5) can still be used by selecting several data
windows and solving the system of equations by using a least
squares approach. Belcher’s method has two selection criteria
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Figure 1. Relationship between the actual field magnitude BtA , the
measured field magnitude BtM and the offset O.

that need to be applied to each data window. The method
requires the precise knowledge of the maximum variance
direction, and therefore one of his selection criteria is λ3/λ1 �
0.1, where λ1, λ2 and λ3 are the eigenvalues (in descending
magnitude) of the same covariance matrix that was used to
find the maximum variance direction (Sonnerup and Cahill
1967). His other selection criterion requires the sum of the
eigenvalues to be several times above the noise level. For
more detailed information, see Belcher (1973).

1.2. Hedgecock method

This method is based on the assumption that averaged over a
suitable time interval, there should be no correlation between
changes in the field magnitude and changes in the inclination
of the field to any one of the three coordinate axes. The word
‘changes’ refers to first differences (differences of consecutive
measurements, a simple approximation to the time derivative).
Figure 1 shows the relationship between the actual field
magnitude BtA , the measured field magnitude BtM and the
offset O. Using the law of cosines, we write

B2
tA

= B2
tM

+ O2 − 2BtM O cos(θ), (6)

where θ is the elevation angle.
Taking BtA and O as constants, differentiating and

collecting terms, we obtain

dBtM = O sin θ dθ

1 − O
BtM

cos θ
. (7)

Assuming that the term O
BtM

cos θ is small (the offset is small
or the measured field is approximately normal to the Z-axis),
we write

�BtM = O sin θ�θ. (8)

Since sin θ is positive for 0 < θ < 180◦, the sign of �BtM

relative to �θ depends on the sign of O. The covariance C(O)

between �BtM and �θ changes sign as O crosses through zero
(C(O) = −C(−O) and C(0) = 0). Writing the equation

C(Ok) =
∑N

j=1 �BtM(Ok)j

�θ(Ok)j

N − 1

−
∑N

j=1 �BtM
(Ok)j

∑N
j=1 �θ(Ok)j

N(N − 1)
, (9)

where �BtM(Ok)j

is the difference between two consecutive

measured field values at the kth iteration, �θ(Ok)j is the
difference between two consecutive inclination angles at the
kth iteration, C(Ok) is the covariance for the kth value of O and
N is the length of the data window.

The method requires that C(Ok) is calculated for a range
of different offsets (e.g. using 0.1 nT steps for the offsets).
The offset at the zero crossing of the covariances is the desired
offset. Hedgecock’s selection criteria are such that pairs of
measurements are rejected if θ(Ok) lies outside of the range
30 < θ(Ok) < 150 or �BtM(Ok)

> 1 nT. For more details, see
Hedgecock (1975).

1.3. Davis–Smith method

The original derivation of the Davis–Smith method was never
published in a refereed journal. It is based on minimization of
the variance of the squared magnitude of the magnetic field of
several (n) data windows. The initially observed uncorrected
variance is

Vi = 〈[ �BMi
· �BMi

− 〈 �BMi
· �BMi

〉]2〉
. (10a)

Expanding, we obtain

Vi = 〈( �BMi
· �BMi

)2 − 2
( �BMi

· �BMi

)〈 �BMi
· �BMi

〉

+
〈 �BMi

· �BMi

〉2〉
, (10b)

which reduces to

Vi = 〈( �BMi
· �BMi

)2〉 − 〈 �BMi
· �BMi

〉2
. (10c)

If we correct the magnetic field measurement by subtracting
an offset vector �Oi, the variance of the correction becomes

V c
i = 〈[( �BMi

− �Oi

) · ( �BMi
− �Oi

)]2〉

− 〈( �BMi
− �Oi

) · ( �BMi
− �Oi

)〉2
. (11a)

Expanding, we obtain

V c
i = 〈

B4
Mi

− 4B2
Mi

( �Oi · �BMi

) − 4O2
i

( �Oi · �BMi

)

+ 4 �Oi

( �BMi
�BMi

) �Oi + O4
i + 2B2

Mi
O2

i

〉

− 〈
B2

Mi

〉2
+ 4

〈 �Oi · �BMi

〉〈
B2

Mi

〉
+ 4

〈
O2

i

〉〈 �Oi · �BMi

〉

− 4
〈 �Oi · �BMi

〉〈 �Oi · �BMi

〉 − 〈
O2

i

〉2 − 2O2
i

〈
B2

Mi

〉
, (11b)

which reduces to

V c
i = 〈

B4
Mi

〉 − 〈
B2

Mi

〉2
+ 4 �Oi

〈 �BMi
· �BMi

〉 �Oi

− 4
〈 �Oi · �BMi

〉〈 �Oi · �BMi

〉 − 4
〈
B2

Mi

( �Oi · �BMi

)〉

+ 4
〈
B2

Mi

〉〈 �Oi · �BMi

〉
, (11c)

where Vi is the variance of the squared field magnitude of the

data window i, V c
i is the variance after offset adjustment,

⇀

BMi

are the measured magnetic field vectors of the data window i
and �Oi is the offset vector of the data window i.

Let

Qi = 〈
B4

Mi

〉 − 〈
B2

Mi

〉2
scalar (12)

Wi = 〈
B2

Mi

�BMi

〉 − 〈
B2

Mi

〉〈 �BMi

〉
vector (13)

Di = 〈 �BMi
�BMi

〉 − 〈 �BMi

〉〈 �BMi

〉
dyadic (covariance matrix).

(14)

3
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We note that these values are all constants depending only on

the measured values
⇀

BM .
Then,

V c
i = Qi + 4 �Oi(Di) �Oi − 4 �Oi

�Wi. (15)

Minimization of V c
i by differentiating with respect to �Oi gives

�Oi(Di) =
�Wi

2
, (16)

which is the Davis–Smith equation. For a mathematically less
abstract version of this equation, see (22). A combination of
all data windows leads to

n∑
i=1

Di · �O = 1

2

n∑
i=1

�Wi, (17)

where n is the number of data windows and �O is the offset for
all combined data windows.

2. Mathematical insights into the Davis–Smith
equation

2.1. Derivation of the Davis–Smith equation using
correlations

It is instructive to show that if one starts with the assumption
that |BM |2 is uncorrelated with the variance along any one of
the three component axes, we obtain the same result.

Recall that the sample covariance can be written in three
different ways:

Sxy = 1

N − 1

N∑
j=1

(xj − 〈x〉)(yj − 〈y〉) (18a)

=
N∑

j=1

xjyj

N − 1
−

∑N
j=1 xj

∑N
j=1 yj

N(N − 1)
(18b)

= 〈xy〉 − 〈x〉〈y〉. (18c)

We note that adding an offset to any or all three component
axes will not alter their mutual covariances. Setting Sxy to zero
using (18c), our assumption of the lack of correlation between
|BA|2 and each of the three component axes implies that

〈B1|BA|2〉 = 〈B1〉〈|BA|2〉
〈B2|BA|2〉 = 〈B2〉〈|BA|2〉
〈B3|BA|2〉 = 〈B3〉〈|BA|2〉,

(19)

where |BA|2 is the actual squared magnitude of the field.
Introducing offsets O1, O2 and O3 along each of the

sensors,

|BM |2 = |BA|2 + 2O1B1 + 2O2B2 + 2O3B3 + O2
1 + O2

2 + O2
3 .

(20)

Rewriting (19) we obtain

〈B1(|BM |2 − 2O1B1 − 2O2B2 − 2O3B3)〉
= 〈B1〉(〈|BM |2〉 − 2O1〈B1〉 − 2O2〈B2〉 − 2O3〈B3〉)

〈B2(|BM |2 − 2O1B1 − 2O2B2 − 2O3B3)〉
= 〈B2〉(〈|BM |2〉 − 2O1〈B1〉 − 2O2〈B2〉 − 2O3〈B3〉)

〈B3(|BM |2 − 2O1B1 − 2O2B2 − 2O3B3)〉
= 〈B3〉(〈|BM |2〉 − 2O1〈B1〉 − 2O2〈B2〉 − 2O3〈B3〉). (21)

From (18a) it is easy to see that since O2
1 , O2

2 and O2
3 do not

change in time, they do not change the covariance and for that
reason can be omitted from (21).

After bringing all offsets to one side, one can write the
equation as
⎛
⎜⎜⎜⎝

〈
B2

1

〉
−〈B1〉2 〈B1B2〉− 〈B1〉〈B2〉 〈B1B3〉− 〈B1〉〈B3〉

〈B2B1〉 − 〈B2〉〈B1〉
〈
B2

2

〉
− 〈B2〉2 〈B2B3〉− 〈B2〉〈B3〉

〈B3B1〉 − 〈B3〉〈B1〉 〈B3B2〉− 〈B3〉〈B2〉
〈
B2

3

〉
−〈B3〉2

⎞
⎟⎟⎟⎠

⎛
⎝

O1

O2

O3

⎞
⎠

= 1

2

⎛
⎝

〈B1|BM |2〉 − 〈B1〉〈|BM |2〉
〈B2|BM |2〉 − 〈B2〉〈|BM |2〉
〈B3|BM |2〉 − 〈B3〉〈|BM |2〉

⎞
⎠ . (22)

Equation (22) is the same as (16). This demonstrates that
the Davis–Smith method is also a correlation technique. The
matrix on the left-hand side of (22) is the covariance matrix
that is independent of the offset.

2.2. Davis–Smith equation for first differences

It is similarly instructive to derive the Davis–Smith method for
first differences. Equation (23) is the time derivative of (20):

d| �BM |2
dt

= d| �BA|2
dt

+ 2O1
dB1

dt
+ 2O2

dB2

dt
+ 2O3

dB3

dt
. (23)

In (23), the terms 2O1, 2O2 and 2O3 are still present and
d| �BA|2

dt
is constant for a pure rotation as well as a linear change

of the field magnitude. Thus making the covariance between
d| �BM |2

dt
and dB1

dt
, dB2

dt
and dB3

dt
zero yields 2O1, 2O2 and 2O3.

Formulating equation (21) for first differences yields

〈�B1(�|BM |2 − 2O1�B1 − 2O2�B2 − 2O3�B3)〉
= 〈�B1〉(〈�|BM |2〉 − 2O1〈�B1〉 − 2O2〈�B2〉

− 2O3〈�B3〉)
〈�B2(�|BM |2 − 2O1�B1 − 2O2�B2 − 2O3�B3)〉

= 〈�B2〉(〈�|BM |2〉 − 2O1〈�B1〉 − 2O2〈�B2〉
− 2O3〈�B3〉)

〈�B3(�|BM |2 − 2O1�B1 − 2O2�B2 − 2O3�B3)〉
= 〈�B3〉(〈�|BM |2〉 − 2O1〈�B1〉 − 2O2〈�B2〉

− 2O3〈�B3〉). (24)

Bringing all offsets to one side yields the same equations as
(16) and (22) but for first differences as input. This means that
equations (16) and (22) can be used for both magnetic field
data and first differences of magnetic field data. At this point,
we would like to mention that there is another computationally

less expensive solution to (24). Assuming that d| �BA|2
dt

is zero
(which is true for a pure rotation), the offsets can be directly
brought to one side which leads to a simpler equation:

(�B1 �B2 �B3)

⎛
⎝

O1

O2

O3

⎞
⎠ = 1

2
�|BM |2. (25)

Interestingly enough, for first differences, equation (25) is
identical to equation (16) in Acuña (2002) even though his
equation was derived completely differently.

4
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Figure 2. Artificially generated data that contain pure rotations
while the field strength Bt is smoothly and slightly nonlinearly
decreasing.

2.3. Davis–Smith equation for filtered data

It is again instructive to derive the Davis–Smith method for
filtered data (see equation (26))

F(|BM |2) ≈ F(|BA|2)
+ 2O1F(B1) + 2O2F(B2) + 2O3F(B3), (26)

where F( ) denotes the filter function.
Similarly, as for first differences, equation (21) can also

be formulated for filtered data. Equation (25) can also be used
for filtered data if the filter removes the dc components and
low frequencies. The cut-off frequency needs to be higher
than one divided by the length of the data window.

Using filters makes it possible to filter out slow changes in
the field magnitude. Figure 2 shows an example of artificially
generated data by using simple mathematical functions. The
data set contains pure rotations around two non-parallel axes,
while the magnetic field strength smoothly decreases (slightly
nonlinear). We added a 2 nT offset in each component leading
to small ripples in the field magnitude Bt . We then applied
the Davis–Smith equation to this data set in three different
ways. First, we used the unfiltered data which returned O1 =
11.92 nT, O2 = −3.08 nT and O3 = 4.80 nT. Second, we used
first differences which returned O1 = 1.58 nT, O2 = 2.21 nT
and O3 = 1.88 nT which is in this case a great improvement
(due to the almost linear decrease of the field). Third, we
applied a high-pass filter to remove the decrease of the total
field while keeping the ripples unchanged which yielded the
correct O1 = 2.00 nT, O2 = 2.00 nT and O3 = 2.00 nT.
Additionally, we calculated the offset using (25) which yielded
O1 = 11.83 nT, O2 = −2.87 nT, O3 = 4.88 nT. This result is,
in this case, not as good as using the full Davis–Smith equation
and first differences as input (see above). The assumption that
d| �BA|2

dt
is equal to zero is violated due to the continuous decrease

of the field magnitude.
At this point, we should discuss a postulate stated by

Hedgecock: ‘A possible criticism of the above two methods
(methods by Davis–Smith and Belcher) is that they tend
to maximize the Alfvénic character (i.e. field magnitude
conserving) of the selected fraction of observations even

though there is no a priori reason why the disturbances
should be strictly Alfvénic in nature. In the following we
present a technique for zero level determination which does not
suffer from this objection . . . ’. Also the fact that Hedgecock
correlates the field magnitude with an inclination angle
rather than the component itself does not make a significant
difference. The component and the inclination angle are
directly related. However, this does make it impossible to
find a simple analytical solution. First differences are often
very small quantities, and small compressional disturbances
can have an undesired influence on the outcome of zero level
calculations. In general, for relatively long intervals (as used
by Belcher and Hedgecock), there is no significant difference if
one uses first differences or not. For shorter intervals, however,
there is often a difference (see the above example).

Major advantages can be achieved when a filter is applied.
This makes it possible to filter out disturbances such as slow
changes in the field magnitude or stray fields caused by the
spacecraft. With the exception of shocks, fast magnetosonic
waves tend to smooth out compressional disturbances in the
solar wind while Alfvénic structures persist. For example, a
high-pass filter (with a cutoff frequency of a few mHz) does
not reduce the variance of the magnetic field measurements
as drastically as taking the derivative. This conserves a larger
range of input values. Correlations are very sensitive to phase
shifts; therefore, it is crucial that the filter is a zero-phase
filter. Additionally, the filter should conserve the amplitude
of the pass-band and thus for our work we use Butterworth-
type filters. The Davis–Smith equation (22) can handle all
types of filters (high-pass, low-pass, band-bass and band-stop),
no matter how many of the dc components of the data are
preserved.

For a spinning spacecraft with no ac fields at the
spin frequency, say due to asymmetries in the solar panel
configuration, only the offset along the spin axis needs to be
calculated and the Davis–Smith equation can be simplified to(〈
B2

3

〉 − 〈B3〉2
)
O3 = 1

2 (〈B3|BM |2〉 − 〈B3〉〈|BM |2〉), (27)

where we assume the third component to be the spin axis.

2.4. Mathematical superiority of the Davis–Smith equation

The main advantage of the Davis–Smith equation over the
equations by Belcher and Hedgecock is its versatility. It works
for unaltered as well as for filtered data and for first differences.
Another advantage over the method by Hedgecock is that it
provides analytical solutions for all three component axes
if needed and therefore omit the need for iterations through
various offset values. A third major advantage over Belcher’s
method is that the Davis–Smith equation is not singular if
applied to just one data window. This is critical for establishing
sophisticated selection criteria for data windows (see
section 3). Belcher’s matrix is singular for one data window
because two of its eigenvalues are zero. This means that each
data window only provides information along one direction,
whereas the Davis–Smith equation is capable of providing
information along all three component axes of the principal
coordinate system of each data window. In other words,
Belcher’s equation does not use all available information.
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3. Selection criteria for the Davis–Smith method

After having established the mathematical superiority of the
Davis–Smith equation, we need to find the optimum selection
criteria. We start with a discussion of previously published
selection criteria by Belcher and Hedgecock. As mentioned
above, Belcher uses the criterion λ3/λ1 � 0.1. The eigenvalues
of the covariance matrix are a measure of the variance along the
principal axes. As mentioned in the previous section, Belcher’s
equation allows each data window only to contain information
along one direction (the maximum variance direction). The
ratio λ3/λ1 is therefore a suitable criterion for his method,
even though occasionally this leads to the selection of data
windows that contain pure compressions. This can happen
(but not necessarily) when both λ3 and λ2 are small compared
to λ1. Hedgecock’s selection criteria are dependent on the
zero level. This means that for each iteration, the selected data
set changes. This can lead to multiple zero crossings of the
calculated set of covariances, thus failing to provide a unique
solution. The Davis–Smith equation can handle information
(variance) along all the three axes of the principal coordinate
system; therefore, all three eigenvalues of each data window
should be as large as possible (additional criteria needed, see
below).

Figure 3(a) shows an example of STEREO-A magnetic
field data (starting at 26 March 2007, 13:40:51) displayed in
spacecraft coordinates. Figure 3(b) contains the same data as
figure 3(a) but rotated into minimum variance coordinates to
show that the variance is present along all three principal axes.
The third panel of figure 3(b) contains the component with
the smallest variance. For a pure rotation of the interplanetary
magnetic field, a plot of the squared field magnitude versus
either one of its component axes should look like a straight
line with zero gradient (assuming all zero levels are correct).
Figure 3(c) shows slopes before and after the correct zero levels
have been applied. The gray slopes are nonlinear because the
zero levels are incorrect for all three components; the black
horizontal lines are close to being linear due to the presence
of rotations around various non-parallel axes and corrected
zero levels. For the case that there are rotations and that the
zero levels are correct for two axes but incorrect for one axis,
the slope is still linear and its gradient is equal to twice the
required offset correction (see black points in figure 3(d)). If
we introduce an incorrect zero level in another component,
the slope becomes nonlinear (see gray points in figure 3(d)).
After we have applied the correct zero levels to the data in
figure 3(a), we get an extremely flat field magnitude
confirming that the variances along all three components are
mostly rotational (see figure 3(e)).

In the case of pure compressions along one component
axis (while the other two components stay constant), the plot
of the squared magnitude versus that particular component
resembles a parabola (see figure 4). In reality, there are
neither pure rotations nor pure compressions; the field behavior
is somewhat in between. Our task is to separate rotations
that are pure enough to give reliable offset estimates from
those that are too heavily disturbed by compressions. Let us
take a closer look at the second case, where we have pure

Table 1. Three examples of empirically determined criteria used in
calculations. STEREO is a dual-spacecraft mission with three-axis
stabilization where the zero levels of all three component axes need
to be calibrated. THEMIS is a five-spacecraft mission with spin
stabilization where only the zero level of the component that lies
along the spin axis needs to be calculated. Venus Express (VEX) is
a three-axis stabilized spacecraft.

Mission STEREO THEMIS VEX
Data resolution 1 s 3 s 1 s

Selection
mcs 0.25 nT 0.25 nT 0.3 nT
ε1 1 ∗ mcs 1 ∗ mcs 1 ∗ mcs
ε2 0.5 0.5 0.5
ε3 1 ∗ mcs 1 ∗ mcs 1 ∗ mcs
c1 1.25 1.25 1.25

Windowing
wp1 320 s 300 s 320 s
wp2 3600 s 3000 s 3600 s
wp3 20% 5% 20%
s 8 s 3 s 8 s

Inversion
c2 1.5 1.5 2.0
npts 1000 300 1000
ni 10 10 10

Monte Carlo
nmc 300 300 300
c3 2.0 2.0 3.0

compressions, along one component axis. If one naively
makes the correlation between the field magnitude and that
component goes to zero by changing the zero level, the average
of that component will be removed because the derivative of
x2 (a parabola) is 2x. For this reason, the Davis–Smith method
tends to remove the averages of the component axes if applied
to data with too much compressional content.

For intervals that have a small variance in the component
axes, it is difficult to decide whether a slope is truly linear.
The data points from the data window, once corrected, should
lie on a straight line with zero gradient. There is a certain
minimal required variance that allows us to find linear slopes.
For the description of most of our criteria that we apply for
finding zero levels, we need to introduce the term mcs which
is the minimal compressional standard deviation that we want
to resolve.

3.1. First selection criterion

In order to solve for all three zero levels, significant rotations
around various non-parallel axes are required. As stated above,
we combine many data windows and perform a single large
inversion. Each data window is required to contain fluctuations
that lie at least within a single plane. A combination of
such data windows can still contain fluctuations that lie inside
multiple non-parallel planes. Thus, our first criterion requires
that the square root of the second eigenvalue of the covariance
matrix is greater than a certain threshold, namely

√
λ2 > ε1.

In our work, we usually set ε1 = mcs (see table 1). For
a spinning spacecraft, the criterion changes to std(B3) > ε1

(where we assume the third axis to be the spin axis).
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Figure 3. (a) A short example of STEREO-A data in the spacecraft coordinate system. The thin black lines are the magnetic field
magnitude and its negative value plotted on the same scale to illustrate when the field was largely along or orthogonal to the sensors. The
zero levels are incorrect. O1 = 1 nT, O2 = −1 nT and O3 = 2 nT. (b) Same data as in figure 3(a), but rotated into the minimum variance
coordinate system to show that there is variance along all the three axes of the principal coordinate system. The square roots of the
eigenvalues (same as standard deviations in the minimum variance coordinate system) are given in a descending order: 3.03 nT, 0.48 nT and
0.38 nT. (c) Squared magnitude (B2

t ) versus component plots. The averages have been subtracted to center the plots at the origin. Gray:
before zero levels have been applied. Black: after zero levels have been applied. (d) Black: O1 is incorrect, whereas O2 and O3 are correct.
This causes a slope with gradient of 2O1 that is close to linear. O1 = 1 nT. Gray: O1 and O3 are incorrect, whereas O2 is correct. The
introduction of an offset in another component causes a highly nonlinear slope. O1 = 1 nT and O3 = 2 nT. (e) The data in figure 3(a) after
the zero levels have been applied. The thin black traces are the mirrored field magnitude. The variance of the squared magnitude (thin black
traces) has been greatly reduced compared to figure 3(a), confirming that the variances in the component axes are mostly rotational.
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Figure 3. (Continued.)

3.2. Second selection criterion

The second selection criterion describes how ‘clean’ particular
rotations within a certain data window are. By computing the
ratio λ2

std(|BA|2) > ε2, we can get a measure of this property.
We normally choose ε2 = 0.2 to 0.5. This selection criterion
is applied after the zero levels have been calculated using

equations (22) or (27) because std(|BM |2) changes toward
std(|BA|2) when the zero levels change toward their correct
values (see the black curves in figure 3(c) or compare the
thin black traces in figure 3(a) with the corresponding traces
in figure 3(e)). For a spinning spacecraft, we replace λ2 by
var(B3) (where we assume the third axis to be the spin axis).
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Figure 4. A theoretical example of a pure compression. Magnitude
squared versus the component along which there is a pure
compression. For this example, we chose the other two components
(B1 and B2) to be zero. Black: upper and lower quartile of B3. The
straight slopes represent twice the offsets that would be calculated
using only the upper and lower quartile. The difference of these
offsets is used for our third selection criterion (the linearity
criterion).

3.3. Third selection criterion

Our third selection criterion decides whether a particular slope
exhibits sufficient linearity with a gradient of zero. Since
this selection criterion requires much computational effort, we
only apply it if the first two selection criteria are fulfilled.
This selection criterion is applied after the zero levels have
been calculated (using equations (22) or (27)) and subtracted
from the data. We sort the magnetic field measurements of a
data window, in three different ways, according to B1, B2 and
B3 and we always exchange the values of |BA|2 according to
the corresponding sorting procedure. After the sorts have
been performed, we have B1, B2 and B3 in an ascending
order and their corresponding values of |BA|2 (|BA|2 in three
different sequences). Then we start with sorted B1 and take
the first quarter of values and calculate the offset O11 using the
Davis–Smith equation (27) that solves for only one component.
Similarly, we calculate the offset O12 for the second quarter of
values and so on. Then we search the maximum and minimum
values of the four calculated offsets and use the criterion
abs(O1 max − O1 min) < ε3 (see figure 4). For a long data
interval with pure compressions having a standard deviation
of mcs, abs(O1 max − O1 min) should be ∼2 mcs (if the sum
of the squares of the other two components is constant). To
be conservative, we use ε3 = mcs as our threshold. We do
the same for the other two component axes. In the case of a
spinning spacecraft, only one component has to be taken into
account.

3.3.1. Making the third selection criterion robust. It is likely
that not all three component axes fulfill the third selection
criterion for the same data window. A particular data window
can still be used if at least one component passes the selection
criteria. In this case, the other two component axes that do
not pass the selection criteria should not have a significant
influence on the calculation of the offset of the component that
passes. The component axes influence one another via the
off-diagonal terms (covariances) in (22). We need to prevent
the off-diagonal terms from dominating the matrix in such a

way that the offsets of the components that pass cannot be
determined correctly. As an example, we assume that only the
first component passes. We then check the covariances of the
other components in the following way:〈
B2

1

〉 − 〈B1〉2 > abs(O2 max − O2 min)abs(〈B1B2〉 − 〈B1〉〈B2〉)
+ abs(O3 max − O3 min)abs(〈B1B3〉 − 〈B1〉〈B3〉),

where we use abs(O2 max − O2 min) and abs(O3 max − O3 min)

as estimates of how much the offsets O2 and O3 are being
compromised. Now let us assume that the first two components
pass. Then we check against the third component by doing
two checks:〈
B2

1

〉 − 〈B1〉2 > abs(O3 max − O3 min)abs(〈B1B3〉 − 〈B1〉〈B3〉)〈
B2

2

〉 − 〈B2〉2 > abs(O3 max − O3 min)abs(〈B2B3〉 − 〈B2〉〈B3〉).
Similarly, we do these checks for all other possible cases.

If one looks at just one data window, the checks of
the covariances are rather loose because the estimated errors
used for cross checking might not always be accurate, but
statistically a large error of the offset of another component
combined with a large covariance reduces the chance of correct
offset estimate of the component of interest. At this point, we
are just trying to avoid large outliers. In section 5, we show
how we combine all data windows. When we combine all data
windows, we assume that the influence of the components that
did not pass cancels each other out to a large extent. For a
spinning spacecraft, the covariances do not need to be taken
into account.

After we have applied all of our selection criteria, it is
still possible to get outliers. We expect that the offsets that
pass the third selection criterion are correct to a certain extent.
We calculate the standard deviation of all offsets that pass our
tests. We throw out offsets that have a larger difference from
the median than a multiple c1 of the standard deviation. For
our work, we usually use c1 = 1.25. For a spinning spacecraft,
only one component needs to be taken into consideration.

The value that we set for mcs is dependent on the distance
from the Sun as well as noise in the data and disturbances
introduced by the spacecraft’s magnetic field and the chosen
high-pass filter. Table 1 shows three example sets of criteria
that we used in our work. The value for each criterion has been
determined empirically. In general, we use the same values
for filtered and unfiltered data. We chose our selection criteria
in such a way that in general, mcs is the only parameter that
needs to be changed according to the distance from the Sun.

4. Windowing

Our method works with a data-window length that varies from
about 5 min to about 1 h (parameters: wp1 minimal data-
window length, wp2 maximal data-window length). The shift
step s is constant and smaller than half of the smallest data-
window length. Each data window regardless of its length
is shifted with the shift step s over the whole set of input
data. This means that a single data point can be part of
several data windows. The variable data-window length gives
us three advantages: the method scales itself toward optimal
data-window length, we obtain more accurate tracking of the
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beginnings and ends of pure rotations and we weigh more
heavily long consistent intervals of pure rotations.

We start at the smallest data-window length (320 s) and
increase the length subsequently by wp3 per cent until we
reach the largest data-window length (3600 s). For our work,
we used wp3 = 5 to 20%. We have used shift steps from s =
3 to 16 s. We combine all selected data windows regardless
of their length and perform one large inversion. Variable data-
window lengths greatly increase the number of data windows
and thus the number of required computations. We implement
our algorithm in such a way that we use cumulative sums as
often as possible.

5. Combination of data windows and overall
inversion

It is possible to combine all selected data windows in a very
simple way which avoids large matrices. For each data
window, we subtract all the averages from B1, B2, B3 and
|BM |2. Then we use the following equation to combine all the
values of all data windows which is a simpler form of (22):
⎛
⎜⎝

〈
B ′2

1

〉 〈B ′
1B

′
2〉 〈B ′

1B
′
3〉

〈B ′
2B

′
1〉

〈
B ′2

2

〉 〈B ′
2B

′
3〉

〈B ′
3B

′
1〉 〈B ′

3B
′
2〉

〈
B ′2

3

〉

⎞
⎟⎠

⎛
⎝

O1

O2

O3

⎞
⎠= 1

2

⎛
⎜⎝

〈B ′
1|BM |2′〉

〈B ′
2|BM |2′〉

〈B ′
3|BM |2′〉

⎞
⎟⎠ .

(28)

For a spinning spacecraft, we use

〈
B ′2

3

〉
O3 = 1

2 〈B ′
3|BM |2′〉, (29)

where B ′
1, B ′

2, B ′
3 and |BM |2′ are all magnetic field values of

all data windows that had the averages removed.
Even after the input has passed our selection criteria, we

have to decide whether the overall inversion has produced
meaningful results. We check if it contains rotations around
various non-parallel axes by the requirement that the standard
deviation of each component that went into the final inversion
is greater than c2 ∗mcs. If a particular component fails to meet
this criterion, we do not trust the offset for that component. In
our work, we have used c2 = 1.5 to 2. Another criterion is the
number of independent points npts that went into the inversion
(each measurement is counted only once even if it is part of
several data windows). We have set this value to npts = 1000
for 1 s data. This value largely depends on the resolution of
the data. The next criterion is the number of different data
windows ni that went into the overall inversion. We usually
set this value to 10. For a spinning spacecraft, the offset from
all combined data windows can be calculated using (29).

If none of the components fulfill the criteria of the overall
inversion, one could loosen criteria one, two and three so that
more data windows get selected. In some cases, it is better
to have more data windows that were chosen using less tight
criteria than very few data windows chosen with strict criteria.
In some cases, changing the cutoff frequency of the high-pass
filter can produce a higher number of valid data windows.

6. Monte Carlo simulation

Once we have performed the overall inversion, we need to
check if the obtained solutions are stable solutions. As a
Monte Carlo simulation, we chose to use a modified version
of the so-called Bootstrap method (Efron 1982). This method
reduces the information content of the data set which consists
of n independent measurements by randomly choosing n times
a measurement out of the n measurements. This leads to a new
data set that has roughly 1/e measurements more than once.
This procedure is done a large number of times, and each time
a new inversion is performed. The variance of the solutions is
then used as a measure of stability. In the case of interplanetary
magnetic field measurements, two consecutive measurements
are generally not independent (e.g. for 1 s resolution). In
order to achieve some degree of independence in our work, we
used 2 min intervals instead of single points. Since we have
variable window lengths, the same 2 min interval can be part
of several data windows. If a particular 2 min interval did not
get chosen, it was removed from all data windows. For our
work, we performed 300 to 500 inversions (parameter: nmc).
We decide that an offset is determined in a stable fashion if the
difference between the maximum and the minimum estimates
is smaller than c3 ∗ mcs. It is possible that not all three offset
estimates are stable. If at least one estimate is stable, we
apply the stable offset(s) to the data and repeat the overall
inversion and the Monte Carlo simulation for the remaining
component(s) but we leave out the data windows that fulfill
the third selection criterion only for the stable component(s).
This leads to a data set that was especially chosen in order to
solve for the remaining component(s). If only one component
remains, the algorithm is the same as for a spinning spacecraft.
We use the maximum and minimum estimates to define our
error bars.

If no stable solution can be found, one could try tweaking
the selection criteria. For example, if the noise level of the
data is rather low one could loosen the criteria that are based
on eigenvalues or variance (ε1, ε2 and c3). One could also try
lowering the shift step s in order to better track beginnings and
ends of pure rotations or decrease the increment of the widow
length wp3 from, e.g., 20% to 10%. Another possibility would
be that too many compressions slipped through. In this case,
increasing mcs could help in finding stable solutions.

7. Application of our algorithm to space-borne
magnetometer data

Figure 5 shows an example of magnetic field data where
the field magnitude is continuously declining throughout
the interval. The data were measured on the three-axis
stabilized STEREO-A while passing through the interior of an
interplanetary coronal mass ejection (ICME). For this interval,
we could only obtain zero levels by high-pass filtering the data.
First differences as well as unfiltered data did not yield results
because no data windows were selected by our algorithm.

Tables 2 and 3 show the results of a calibration performed
with STEREO-B data for day 224 of 2007. The input
parameters are given in table 1. The first run did not return a
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Figure 5. Magnetic field data of STEREO-A as it passes through the interior of an ICME. Shown in black are the outputs of the three
magnetometer sensors at 1 s resolution. The light gray lines are the magnetic field magnitude Bt and its negative value is plotted on the same
scale to illustrate when the field was largely along or orthogonal to the sensors. Zero-phase high-pass filtering is applied on these data before
our zero level determination algorithm. The filter is a fourth order (eighth order when zero-phase filtering) Butterworth-type filter with a
cutoff frequency of 8.9 mHz.

Table 2. Example of STEREO-B zero level calculations for day 224 of 2007. For the filtered case, the cutoff frequency of the high-pass
filter is 3.3 mHz. The fields that are marked in gray represent violations of criteria which lead to the dismissal of O1 from the filtered case
and the dismissal of O3 from both cases. The full set of selection criteria is given in table 1.

Unfiltered input data Filtered input data

Inversion
Number of independent points 13 648 >npts = 1000 12727 >npts = 1000
Number of data windows 359 >ni = 10 570 >ni = 10
std(B1) (nT) 1.408 >c2 ∗ mcs = 0.375 0.338 >c2 ∗ mcs = 0.375
std(B2) (nT) 0.614 >c2 ∗ mcs = 0.375 0.398 >c2 ∗ mcs = 0.375
std(B3) (nT) 0.555 >c2 ∗ mcs = 0.375 0.185 >c2 ∗ mcs = 0.375
O1 (nT) −43.63 −43.99
O2 (nT) 19.92 20.10
O3 (nT) −37.85 −37.50

Monte Carlo simulation
abs(O1min − O1max ) (nT) 0.321 <c3 ∗ mcs = 0.5 – <c3 ∗ mcs = 0.5
abs(O2min − O2max ) (nT) 0.196 <c3 ∗ mcs = 0.5 0.147 <c3 ∗ mcs = 0.5
abs(O3min − O3max ) (nT) 0.525 >c3 ∗ mcs = 0.5 – <c3 ∗ mcs = 0.5

Result
O1 (nT) −43.63 –
O2 (nT) 19.92 20.10
O3 (nT) – –

Error bars
O1min to O1max (nT) −43.89 to −43.57 –
O2min to O2max (nT) 19.83 to 20.02 20.03 to 20.17
O3min to O3max (nT) – –

Combined result
O1 (nT) −43.63
O2 (nT) 20.01 (averaged)

Combined error bars
O1min to O1max (nT) −43.57 to −43.89
O2min to O2max (nT) 19.83 to 20.17 (worst case of both estimates)
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Table 3. Rerun of the algorithm in order to solve for O3. Before we performed the rerun, we applied the corrected zero levels O1 and O2 as
given in table 2 to the input data.

Unfiltered input data Filtered input data

Inversion
Number of independent points 19 687 >npts = 1000 12879 >npts = 1000
Number of data windows 331 >ni = 10 1035 >ni = 10
std(B3) (nT) 0.575 >c2 ∗ mcs = 0.375 0.373 >c2 ∗ mcs = 0.375
O3 (nT) −37.99 −38.07

Monte Carlo simulation
abs(O3min − O3max ) (nT) 0.17 <c3 ∗ mcs = 0.5 0.19 <c3 ∗ mcs = 0.5

Result
O3 (nT) −37.99 —

Error bars
O3min to O3max (nT) −38.06 to −37.89 —

Combined result
O3 (nT) −37.99

Combined error bars
O3min to O3max (nT) −38.06 to −37.89

Table 4. Example of a zero-level calculation for THEMIS-B. For the filtered case, the cutoff frequency of the high-pass filter is 3.3 mHz.
The full set of selection criteria is given in table 1.

Unfiltered input data Filtered input data

Inversion
Number of independent points 3302 >npts = 300 3425 >npts = 300
Number of data windows 215 >ni = 10 1915 >ni = 10
std(B3) (nT) 1.835 >c2 ∗ mcs = 0.375 1.259 >c2 ∗ mcs = 0.375
O3 (nT) −0.04 −0.09

Monte Carlo simulation
abs(O3min − O3max ) (nT) 0.233 <c3 ∗ mcs = 0.5 0.257 <c3 ∗ mcs = 0.5

Result
O3 (nT) −0.04 −0.09

Error bars
O3min to O3max (nT) −0.16 to 0.07 −0.22 to 0.04

Combined result
O3 (nT) −0.07 (average)

Combined error bars
O3min to O3max (nT) −0.22 to 0.07 (worst case of both estimates)

value for O3 for the unfiltered case and for the filtered case O1

and O3 could not be determined. The criteria that caused the
program to dismiss some of the offset calculations are marked
in light gray. Since both methods (filtered and unfiltered) did
not yield O3, our software applied O1 from the unfiltered case
and the averaged O2 from both cases to the data and reran the
algorithm only to solve for O3. The outcome of the rerun is
displayed in table 3. The algorithm finds O3 for the unfiltered
case. We chose this particular example also to show that
the criteria that we choose do not represent strict boundaries
between finding accurate and inaccurate calculations. As can
be seen in table 3, the estimate of O3 for the filtered case
is being dismissed by the algorithm even though the value
of −38.07 nT appears to be very close to the result of the
unfiltered case which is −37.99 nT. Our selection criteria are
usually on the safe side. After we had applied the calculated
offsets to the data, we reran the algorithm for a testing purpose

and all zero levels came out zero (O1 = 0.00 nT, O2 = 0.00 nT,
O3 = 0.00 nT). The algorithm is mathematically not iterative;
thus, the algorithm will run the second time (with correct
offsets) exactly as the first time (same error bars, same offset
calculations will be dismissed, etc). Slight differences can
arise for the filtered case because the right-hand side and the
left-hand side of equation (26) are not exactly equal.

Magnetic field data of THEMIS-B are displayed in
figure 6. The data show multiple bow shock crossings. The
roughly 7 h long subset of the data that is marked in gray has
been selected as input for an offset calculation. The selected
data contain several intervals of large upstream waves which do
not disturb our algorithm. The result of the offset calculation
is displayed in table 4. The length of the error bar of the
calculated offset is only 0.29 nT. Because of the use of spin-
averaged data, the accuracy of the spin-plane offsets has no
influence on the calculation of the spin-axis offset.
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Figure 6. Example of spin-averaged THEMIS-B data. The roughly 7 h long subset that is marked in gray has been used as input for an
offset calculation. B3 represents the spin-plane component. The spin period of the THEMIS spacecraft is roughly 3 s.

The example that we chose for Venus Express uses a
slightly different approach. Venus Express had no magnetic
cleanliness program. At the positions of the magnetometers,
the spacecraft’s magnetic field interferes with the natural
magnetic field. Initial cleaning of the Venus Express data
has been performed (Zhang et al 2008) using the gradiometer
configuration of the dual triaxial sensors. The initial cleaning
of the data provides an ac accuracy of better than 0.1 nT
(Zhang et al 2008). The inboard sensor is placed directly
onto the spacecraft’s surface. The outboard sensor is mounted
on a short boom of only 1 m in length. The magnetic field
strength caused by the spacecraft ranges from 2000 to 6000 nT
at the inboard sensor and is roughly 200 nT at the outboard
sensor. For Venus Express, we try to detect changes of the
zero levels with as rapid a cadence as possible. We apply our
whole novel technique using an overlapping 3 h window that
is shifted by 1 h. Whenever it is not possible to determine a
zero level for a particular component, the window is extended
by 1 h toward later times and so on. However, the calculations
after the next shift (1 h) again start with a 3 h window (see
figures 7(a) and (b)). In order to be able to track offsets,
the selection criteria should be such that changes in offset are
not mistakenly dismissed as compressions by the algorithm.
Table 1 shows the selection criteria that we used for tracking
offsets using Venus Express data. The values for mcs, c2

and c3 are different from the corresponding values for the
other two spacecrafts. A compromise between the accuracy
and the tracking ability was made. Large discontinuities of
the zero levels occur from one day to the next because the
initial data cleaning was done for day-files. An algorithm has
been applied (by the data cleaning team) to join the day-files.
This algorithm occasionally leaves behind slight jumps in the
offsets. We applied our technique using separate day-files so
that no windows can cross day-boundaries.

8. Discussion and future work

Because of its mathematical superiority (see section 2.4),
the Davis–Smith method represents the method of choice for
magnetometer calibrations inside the interplanetary magnetic
field. The technique described herein is an improved
implementation of the Davis–Smith method. The authors
are aware of the fact that there are possibilities of further
improving the presented novel technique. We have both
documented the mathematical underpinnings of the procedure
and explained the relationship to the Belcher technique and the
Hedgecock technique and their limitations. These techniques
have been used on interplanetary parts of previous missions
such as Pioneer Venus (Russell et al 1980), Galileo (Kivelson
et al 1992) and Cassini (Dougherty et al 2004) during their
interplanetary passages. These zero level calibrations might
profit from the application of these techniques herein, but we
note that the recalibration must be done on the data in sensor
coordinates and not all investigators have chosen to archive
data in this coordinate system.

When a spacecraft is in a planetary magnetosheath or
even an ICME magnetosheath, the field variations along a
component direction may correlate with the magnetic field
magnitude for long periods because the shock changes the
field only in the direction perpendicular to the shock normal.
Inside a planetary magnetosphere a similar situation arises,
but with a three-axis stabilized spacecraft rolls or rocking of
the spacecraft about its axes can be effective in determining
the zero levels. Further studies need to be done for the
application of our novel technique to data from rocking or
rolling a spacecraft inside a magnetosphere. For example, the
change of the Earth’s internal field strength at the position
of the spacecraft could be filtered out, leaving only the pure
rotations of the magnetic field data from rocking or rolling.
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Figure 7. (a) Example of the detection of changing offsets using 4 days of Venus Express data. The input data are unfiltered. The horizontal
lines show the timeframe for a particular offset estimate. The vertical black lines represent the error bars for the offset estimates.
(b) Example of the detection of changing offsets using 4 days of Venus Express data. The input data are high-pass filtered using a cutoff
frequency of 8.9 mHz. The horizontal lines show the timeframe for a particular offset estimate. The vertical lines represent the error bars for
the offset estimates.

Additionally, the technique could be applied to purely Alfvénic
transverse waves inside a magnetosphere (Cummings et al
1969) while filtering out the Earth’s internal field. For a
spin-stabilized spacecraft this is generally not possible to rock
or roll the spacecraft perpendicular to the spin axis, but in
multiple spacecraft missions it is sometimes possible to fly
with spin axes at a large angle to one another. This was done
on ISEE 1 and 2 for brief periods and recently on THEMIS
(Angelopoulos). Another technique to obtain the offset of the

third axis is to rotate the sensor along the spin axis into the
rotational plane of the spacecraft. This was done on ISEE 1
and 2 (Russell 1978) and Polar (Russell et al 1995).

Further work could also be done by validating the
presented novel technique using cross-instrument calibrations
on a single spacecraft. For example, a vector magnetometer
can be calibrated using a reference scalar field strength
(Merayo et al 2000) such as provided by the gyro-times of
an electron drift instrument (e.g. Paschmann et al 1997) or
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a precise scalar magnetometer. See Olsen et al (2003) for
information on the scalar calibration of the Ørsted vector
magnetometer.

Analysis of the Alfvénic nature of the solar wind (Belcher
et al 1969) as well as Alfvénic transverse waves inside a
magnetosphere (Cummings et al 1969) could be done with
emphasis on calibration, e.g. for finding ideal frequency bands
for zero level determination. These studies could include data
from particle instruments as well. For further information, see
e.g. Tsurutani and Ho (1999) and Russell (2000).
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