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A self-consistent kinetic model of three-dimensional �3D� electron holes in a strongly magnetized
collisionless plasma is presented. A stability study of these localized electrostatic structures has been
carried out. The analysis of the motion of trapped particles in the 3D potential structure suggests
using the Hamiltonian approach to describe how electron holes interact with an external electrostatic
perturbation. Using 3D action-angle variables and perturbation theory, it is shown that, in addition
to standard Landau resonance of passing �i.e., untrapped� particles, trapped particles resonate with
the perturbation in such a way that they amplify it. A growth rate for this process is derived and
application to magnetospheric plasma conditions shows that the stability of 3D electron holes is
strongly dependent on the anisotropy of the underlying potential structure. Possible production of
electrostatic whistler waves by a train of electron holes in the auroral region of the Earth’s
magnetosphere is emphasized. © 2008 American Institute of Physics. �DOI: 10.1063/1.3013452�

I. INTRODUCTION

Observations by the Fast Auroral SnapshoT �FAST�
satellite1 have revealed the existence of fast solitary struc-
tures in Earth’s auroral regions.2 They are transient electric
field pulses associated with intense magnetic field-aligned
electron fluxes and they are most frequently detected in the
downward current region of the aurora above 2000 km alti-
tude. They travel roughly at the electron drift velocity �a few
thousand km/s� along the magnetic field B and their duration
is �100 �s. They are similar to the structures identified in
the plasma sheet boundary layer by the GEOTAIL satellite3

since they appear as brief but intense emissions of broadband
quasielectrostatic noise in power-frequency-time spectro-
grams. They have been also spotted at the magnetopause and
at bow shock crossings by the POLAR and CLUSTER
spacecraft.4,5 They correspond to positively charged Debye-
scale-length potential structures which are surrounded by a
negative halo such that they are, on the whole, charge neu-
tral. In auroral regions, their peak electric potential ampli-
tude can be tens of percent of the parallel electron tempera-
ture and their peak electric field can reach 2.5 V /m.2 They
carry an energy up to �1% of the thermal energy, which is
typical of strong plasma turbulence. Their large amplitude
and velocity, their positive polarity, and the fact that they
carry no significant net potential drop along the magnetic
field distinguishes them from the weak double layers6 or ion-
acoustic solitary waves7 previously observed in association
with the up-going ion beams of the upward current region of
the aurora. However they are observed in or near regions of
large amplitude quasistatic parallel electric fields.2 Their po-
tential structure in the parallel direction appears to be Gauss-
ian since the electric field signatures fit well to the corre-

sponding derivative. The parallel and perpendicular electric
fields take the form of bipolar and monopolar spikes, respec-
tively, which suggest that they are 2D or 3D structures.
These fast solitary structures are similar to those observed by
the POLAR spacecraft at higher altitudes in the polar cap.8,9

Using a statistical analysis of this data set covering a wide
range of altitudes, Franz et al.10 have shown that the ratio of
their perpendicular to parallel elongation relative to the mag-

netic field varies as �1+�pe
2 /�ce

2 , where �pe and �ce are the
electron plasma frequency and gyrofrequency, respectively.

The observed fast solitary waves and the corresponding
broadband spectra cannot be explained in the framework of
linear plasma theory. Several nonlinear models have there-
fore been developed. They are two classes of such models.
First, topological solitons and more specifically electron
acoustic solitons models try to reproduce the characteristics
described above. The linear electron acoustic wave only ex-
ists when two electron populations are present in the plasma
with different temperatures and an appropriate hot-to-cold
density ratio.11 The limited parameter range in which the
linear wave can exist puts some constraint on the existence
of nonlinear electron acoustic solitons. These solitons result
from the balance between the waveform steepening of the
wave due to nonlinear terms in fluid equations and the dis-
persion which affects the acoustic wave propagation at
Debye-length scales. Classical electron acoustic solitons cor-
respond to negatively charged clouds12 but the introduction
of an electron beam leads to the appearance of positively
charged electron acoustic solitons.13 The velocity and ampli-
tude along the magnetic field of the fast solitary structures
can be explained by these 1D models but in the small-
amplitude limit, the width of elecron-acoustic solitons is de-
creasing with amplitude for a given set of plasma parameters.
This relationship is not observed in statistical studies of the
parallel width and amplitude of solitary waves from FASTa�Electronic mail: Matthieu.Berthomier@cetp.ipsl.fr.
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�Ref. 14� and POLAR �Ref. 15� spacecraft. These studies
instead show that the width of solitary waves increases with
amplitude. It has also been shown that small-amplitude 3D
electron-acoustic beam solitons can form in an electron-
beam plasma system.16 The role of particle drift across the
magnetic field is essential in this model. Electrons are shown
to perform an azimuthal and quasiperiodic motion across B
due to the “E�B” drift associated with the potential struc-
ture. This fluid model is consistent with the altitude distribu-
tion of the ratio of the perpendicular and parallel scale of the
fast solitary waves but as in the 1D case, it fails reproducing
width-amplitude relationships. Furthermore, these fluid mod-
els do not take into account trapped electrons and they do not
describe the bounce motion of particles at sub-Debye length
scales in the electrostatic potential structure, which is a major
limitation.

Second, there has been a number of fast solitary wave
models based on Bernstein–Green–Kruskal �BGK� modes.17

BGK modes are stationary solutions of the Vlasov–Poisson
equations in a moving reference frame. In the past, these
nonlinear models have been introduced in order to under-
stand laboratory observations of solitary waves.18,19 In the
context of fast solitary waves, a specific form of the BGK
mode has been used in which the equilibrium is maintained
by the electron dynamics while the ions form a homogeneous
neutralizing background.20,21 Electrons of negative total �ki-
netic and potential� energy are trapped inside the positive
potential hump associated with the solitary wave while elec-
trons with positive energy are just passing through the struc-
ture. These BGK modes take the form of localized phase
space electron density holes: untrapped electrons are de-
pleted in the center of the structure in order to compensate
for the repulsion of accumulated trapped electrons in this
region. The way a BGK mode is constructed is somewhat
arbitrary since it is possible either to prescribe the functional
form of the trapped and untrapped distribution function and
to obtain the resulting potential structure22 or to prescribe the
untrapped distribution function and the shape of the potential
structure in order to derive the self-consistent trapped distri-
bution function.23 This second method is well-suited to space
plasma observations since present particle instrumentation is
not fast enough to resolve trapped electron distribution func-
tions on the millisecond time scale while the average un-
trapped distribution function can be measured on a slower
time scale and the potential structure can be derived from
electric field waveform measurements.2 These models cor-
rectly reproduce the parallel properties of fast solitary waves.
Depending upon the choice of the untrapped distribution
function, some restrictions have been shown to exist on the
parameters and waveforms of electron holes. These limita-
tions resulting, for example, from the positiveness of the
trapped distribution function imply that the minimum spatial
width of the BGK mode should increase with its amplitude.21

In the FAST data set, the observed width of solitary waves is
close to this minimum value14 while at POLAR altitudes,
Chen et al.24 showed that it can be significantly larger than
this particular value. Other general relationships between
electron hole parameters can be derived25 but in most cases
they rely on small amplitude developments that are not jus-

tified in the case of the large amplitude fast solitary waves
that we deal with here. A full 3D BGK model of fast solitary
waves has also been developed26 and will be presented and
generalized in this paper in order to self-consistently take
into account the finite velocity of electron holes in the deri-
vation of the trapped distribution function.

The question of stability of 3D electron holes can be
tackled either by considering the evolution of the nonlinear
structure from the very beginning of its generation or by
introducing large amplitude electron holes in a simulation
and by looking at its robustness against longitudinal or trans-
verse perturbations. The simulations have shown that elec-
tron holes emerge from the strongly nonlinear interaction
between bidirectional electron beams.27 They also appear in
1D current-driven systems with a seed local density inhomo-
geneity: a potential ramp forms at the site of the density
fluctuation and it accelerates the electrons that subsequently
interact with the nondrifting electrons of higher temperature
which stagnate upstream �i.e., on the high-potential side of
the ramp� leading to the formation of fast solitary waves
correctly described by a 1D electron hole theory.28 Most 2D
simulations suggest that 1D electron holes are robust struc-
tures on hundreds of inverse plasma periods in strongly mag-
netized plasmas. Still, as demonstrated by particle-in-cell
�PIC� simulations29 and Vlasov simulations28 with periodic
boundary conditions, we cannot preclude a weak instability
of the electron hole relative to specific types of electrostatic
perturbations, namely, to electrostatic whistler waves
�EWW�. Furthermore, 3D simulations have shown that the
eventual decay of phase space tubes was accompanied by the
emission of lower-hybrid waves,30,31 which is the low-
frequency cutoff of EWW. This decay only appears at late
times and the emitted waves form long filaments parallel to
the ambient magnetic field.32 Plasma magnetization
��ce /�pe� also appears to be a major element when consid-
ering electron hole stability since electron hole become
highly transitory in weakly magnetized plasmas.33 All these
results are in agreement with the direct simulation of an iso-
lated 1D �Ref. 21� and 3D theoretically determined BGK
mode,34 which shows that large amplitude electron holes are
robust structures in strongly magnetized plasmas, but are
grossly unstable for conditions where the bounce frequency
of the trapped electrons along the magnetic field line �b is
larger than their gyrofrequency �ce.

35 Therefore, in the
highly magnetized auroral regions where �ce��pe��b, one
would expect the electron holes to live for at least several
bounce periods.

In this paper, we are interested in the process of desta-
bilization of electron holes by electrostatic whistler waves
�EWW� since it appears to be one of the few processes which
can affect electron hole stability in a strongly magnetized
plasma. These waves are commonly observed in auroral
regions.36 Their frequency range extends from the lower-
hybrid frequency ��lh hereafter� up to the electron plasma
frequency, the lower-hybrid wave being the low frequency
and high perpendicular wavenumber limit of this mode.
Their approximate fluid dispersion relation is �2=�lh

2

+�pe
2 cos2 �, where � is the angle between the wave vector k

and the magnetic field B. Among these emissions is the well-
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known auroral hiss which has both electrostatic and electro-
magnetic components. However, auroral hiss is believed to
be generated by incoherent Cerenkov emission from intense
fluxes of precipitating electrons37 observed in the upward
current region. Therefore auroral hiss is a typical feature of
these upward current regions. One can also see EWW emit-
ted from downward current regions, in the form of VLF sau-
cers or V-shaped VLF hiss emissions seen on frequency-time
spectrograms.38,39 The frequency-time dependence of VLF
saucers is due to their dispersion relation and to the localiza-
tion of their source region.40 Observations by the VIKING
spacecraft have shown that up-going electrons were some-
times observed in conjunction with VLF saucers.41 FAST
observations have recently revealed that as much as 85% of
VLF saucers were actually associated with up-going electron
fluxes.42 Ergun et al.43 also found that 79% of the VLF sau-
cer events associated with up-going electron fluxes had fast
solitary waves on their emitting flux tubes and that the local-
ization of the source region was extreme �less than 10 km in
some cases�. These experimental results motivated 1D �Ref.
44� and 2D �Ref. 45� numerical simulations in which phase
space holes �in 1D� and phase space tubes elongated across
the magnetic field �in 2D� where shown to emit EWW. While
these simulations could potentially explain the strong local-
ization of VLF saucers source regions in the case of 1D and
elongated 2D electron holes, the question whether EWW
might be efficiently generated by the 3D electron holes
which are actually observed in the downward current region
of the aurora and the stability of these 3D holes versus EWW
perturbations is still an open question and the main motiva-
tion of the research we report here.

The paper is organized as follows: In Sec. II, the first
self-consistent model of the 3D electron hole in strongly
magnetized plasma is presented. Compared to previous at-
tempts to construct 3D BGK modes,26 our model self-
consistently includes the drift velocity of the localized struc-
ture relative to the untrapped distribution function. We also
describe the trapped particle motion in the self-consistent 3D
BGK mode. In Sec. III, we describe the Hamiltonian formal-
ism that we developed in order to study trapped particles
dynamics. In Sec. IV, we use this formalism to study the
effect of an external electrostatic perturbation �e.g., an
EWW� on particle dynamics. In Sec. V we look at the global
effect of the pertubation by averaging over phase space its
effect on the trapped particles. We derive an expression for
the growth rate of EWW. In Sec. VI, we give the main results
of the numerical study that we performed in order to gain
some insight on the stability of 3D fast solitary waves. Sec-
tion VII sums up the main results presented in that paper.

II. 3D BGK MODEL OF ELECTRON HOLES

Following Muschietti et al.,26 we assume that there ex-
ists a frame moving along B in which electrostatic potential
and electron distribution are in a self-consistent steady state
while ions form a neutralizing background. In this frame, a
potential cylindrically symmetric around a centric magnetic
field line is defined by

�0�x,y,z� = 	h�z�a�r� , �1�

where r=�x2+y2 is the radius away from the centric line, z is
the coordinate along B, and 	 is the amplitude of the struc-
ture. We use a Gaussian profile h�z�=exp�−z2 /2
2� along as
well as across the magnetic field with a�r�=exp�−r2 /2�2�.
The case of a planar structure is recovered with �→�. We
improve upon Muschietti et al.26 by including a finite drift V
of electron holes relative to passing �i.e., untrapped� elec-
trons. As it will be seen in Sec. V, the stability of electron
holes does depend on this relative drift. In this section, we
use standard dimensionless units where length is normalized
by the electron Debye length De, velocity by the electron
thermal velocity ve��Te /m, potential by Te /e, and time by
the inverse plasma frequency �pe

−1. In the electron hole frame,
the flattop distribution function of passing electrons can be
qualitatively approximated by

fp��W� =
6�2

��8 + �W1/2 � V�6�
, �2�

where W=v�
2−2�0�z ,r� is twice the electron parallel energy

E� and � corresponds to the sign of the parallel electron
velocity v�. The density of trapped electrons nt is given by
the Poisson equation which reduces to


�0�z,r� = nt�z,r� + np�z,r� − 1, �3�

where np is the density of passing electrons derived from Eq.
�2�. It is required to examine the electron orbits in order to
understand how an electron population can self-consistently
maintain such an equilibrium. Muschietti et al.26 have shown
that in a strongly magnetized plasma the electron behavior
can be analyzed in terms of three basic motions occurring on
three distinct time scales: the fast cyclotron motion on �ce

−1

time scale, the back and forth bounce motion of trapped par-
ticles along B on time scale �b

−1, and a slow azimuthal drift
along a shell at constant radius R on time scale ��

−1. These
time scales follow the ordering

�ce
−1 � �b

−1 � ��
−1 �4�

and the azimuthal drift is given by

���W,R� = −
	

�ce�
2 	h�z�
a�R� , �5�

where 	h�z�
 is the average of h�z� over the bounce motion of
trapped particles with energy E� on a given cylindrical shell
of constant radius R. This slow drift across the magnetic field
is nothing else than the “E�B” drift due to the self-
consistent perpendicular electric field and R is the gyro-
center’s position. This ordering holds as long as the parallel
distance covered by the electrons over a gyroperiod is short
compared to the parallel scale length of the potential 
 and
as long as the radial profile of the potential a�r� varies little
over an electron gyroradius �L �i.e., �L���. Within these
approximations which are well satisfied in the strongly mag-
netized auroral plasma, and as it will be shown in Sec. III,
we have three constants of the motion which are the perpen-
dicular energy v�

2 , the parallel energy, and the radius of the
gyrocenter R.
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As a consequence, the density of trapped electrons is
defined on each shell R as

nt��0,R� = �
−2�0

0 f t�W,R�
�W + 2�0�1/2dW , �6�

where f t is the distribution function of trapped electrons and
R takes the role of a parameter. This equation is inverted
with the help of Laplace transforms21 such that

f t�W,R� =
1

2�
�

0

−W

�− W − p�−1/2 d

dp
nt�p,R�dp , �7�

where the range of possible energies differs on each shell
with −2	a�R��W�0. The trapped electrons distribution
can be decomposed into two terms, namely,

f t�W,R� = f ts�W,R� + f tp�W� , �8�

where the first contribution f ts, which comes from the poten-
tial term in Eq. �3�, is given by

f ts�W,R� =
�− W

�
� 1


21 + 2 log�	a�R�
− 4W

��
+

1

�2 �R2/�2 − 2�� . �9�

Inclusion of the finite velocity V in Eq. �2� modifies the
second term f tp due to the passing electrons density in Eq.
�3�. After performing the corresponding double integral in
Eq. �7�, we obtained

f tp�W� = �3 + �− 2W�5/2 + 8W2 − 8W�2 + V2/2�

+ �− W�3/2�15 + 2V2� + �− W�10 + 3V2/2 + V4/2��/

�2�2��1 + 2�− W − W + V2/2��1 + 2�− W�3/2 + W2

− V2/2 + V4/4 + 2�− W�1 + V2/2� − W�3 + V2��� .

�10�

Figure 1 gives the total electron distribution function as
a function of parallel velocity v� at the center �R=0� of an
electron hole defined by normalized values 	=0.4, 
=2.6,
and �=2. In the upper panel there is no relative velocity V
between the plasma and the electron hole reference frame
while V=1 in the lower panel. In each panel three cuts of the
distribution function are displayed at different locations z
= �
 ,2
 ,3
� along the magnetic field.

As mentioned by Chen et al.,24,46 electron holes only
exist if the trapped distribution function is non-negative ev-
erywhere in phase space. Since the minimum of the distribu-
tion corresponds to the bottom of the electron hole where
R=0 and W=−2	, this condition of existence is equivalent to
the inequality f t�−2	 ,0��0. As in the 1D case there is no
1-1 relationship between the amplitude and widths of 3D
electron holes but there are some domains of existence for
electron holes. Equation f t�−2	 ,0�=0 defines the bounding
surface of these domains in the parameter space involving
the amplitude �	�, the velocity �V�, the perpendicular ���,
and the parallel �
� width of 3D electron holes. While the
detailed study of these surfaces is beyond the scope of this
paper, we notice that for the above set of parameters, Fig. 1

shows that ��2 is close to the minimum value of the per-
pendicular width. The velocity of the structure also appears
to have a strong effect on the possible widths of electron
holes.

III. HAMILTONIAN FORMALISM FOR 3D
ELECTRON HOLES

In this section, we introduce the Hamiltonian formalism
of action-angle variables which is well-suited to the study of
the dynamics of trapped electrons and of their interaction
with electrostatic perturbations.47 The Hamilton function of
trapped electrons in Cartesian coordinates �q� , p�� reads

FIG. 1. 3D electron hole distribution function as a function of normalized
velocity. The solid, dashed, and dotted lines correspond to z=0, z=
, and
z=2
, respectively. A drift velocity V=1 is included in the lower panel.
Hole parameters are 	=0.4, 
=2.6, and �=2.
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H =
1

2m
�p� − eA� �2 − e�0�q�� , �11�

where p� =mv� −eA� is the electron momentum, q� = �x ,y ,z� and

A� is the vector potential which reduces to A� =−eByx� for the
electrostatic case we study. In this form, H is not separable
but by using successive generating functions, and it is pos-
sible to exhibit the different basic motions of trapped elec-
trons and to find an approximate separable Hamiltonian for
our problem. As a first step we use the generating function

F�q� ,Q� � = F��x,y�,��,Y�� = m�ce� 1
2 �y − Y�2 cot � − xY� .

�12�

According to Hamiltonian theory,48 p� =�q�F�q� ,Q� � and P�

=−�Q� F�q� ,Q� � which gives the following relations among old

�q� , p�� and new �Q� , P� � canonical variables

tan � = �px + eBy�/py , �13�

Y = y + �L sin � , �14�

PY/�m�ce� = x − �L cos � , �15�

P� = mv�
2 /�2�ce� . �16�

We can interpret the new variables � and Y as the gyrophase
of the cyclotron motion and the ordinate of the gyrocenter
position, respectively. The electron Larmor radius is �L

=v� /�ce and X= PY / �m�ce� can be interpreted as the ab-

scissa of the gyrocenter. Since F�q� ,Q� � does not explicitly
depend on time, the new Hamiltonian is the old one
expressed as a function of the new variables, H
= Pz

2 /2m+�ceP�−e�0�X+�L cos � ,Y −�L sin � ,z�. As men-
tioned in Sec. II, in the strongly magnetized auroral
plasma, we have �L��0 /���0��, which means that we
can develop to first order in �L /� the potential of the

electron hole �0��0�X ,Y ,z�+�L
� ·�� �0�X ,Y ,z�, where �L

�

=�L�cos � ,−sin � ,0�. From Hamilton equations, we have

dP� /dt=−d�L
� /d� ·�� �0�X ,Y ,z� which averages out on a

gyroperiod. According to Eq. �4�, �ce
−1 is the fastest time

scale of the problem and P� is therefore an adiabatic invari-
ant, while the electron hole potential can be approximated by
its gyro-average 	�0
���0�X ,Y ,z�. Due to the specific
form of the potential given in Eq. �1�, the Hamilton function
reduces to

H =
Pz

2

2m
+ �ceP� − e	a�� PY

2

m2�ce
2 + Y2�1/2�h�z� . �17�

This expression suggests using an harmonic oscillator type
generating function G�Y ,��=m�ce�cot ��Y2 /2 from which
we obtain

Y =� 2P�

m�ce
sin � , �18�

PY/�m�ce� =� 2P�

m�ce
cos � . �19�

The new Hamilton function reads

H =
Pz

2

2m
+ �ceP� − e	a�� 2P�

m�ce
�1/2�h�z� . �20�

Hamilton equations show that P� is a constant of the motion
which proves that the gyrocenter trajectory develops on a
shell of constant radius R= �2P� / �m�ce��1/2. This shows the
consistency of the approximations that we made in Sec. II.

From this point, it is straightforward to apply
the Hamilton–Jacobi method in order to define three
sets of action-angle variables: we just have to find

a function W��z ,� ,�� , �PZ , P� , P���=Wz�z , P� �+W��� , P� �
+W��� , P� � which satisfies the equation

��zWz�2

2m
+ �ce��W� − e	a��2��W�

m�ce
�1/2�h�z� = E �21�

with E as the energy of the trapped electron. We see that
W�=�P� and W�=�P� are satisfying this equation if we
take P�= P� and P�= P� which are constant. The corre-
sponding action variables are defined as

I� =
1

2�
� ��W�d� = P�, �22�

I� =
1

2�
� ��W�d� = P�, �23�

Iz =
1

2�
� �zWzdz . �24�

In addition we must find a function Wz�z , P� � which verifies
the equation

�zWz = ��2mE − �ceP� + e	a�� 2P�

m�ce
�1/2�h�z��

= � �f�z� . �25�

It is possible to integrate this equation numerically and we
deduce from this expression the third action variable

Iz =
1

2��−z0

z0 �f�z�dz + �
z0

−z0

�− �f�z��dz� , �26�

where the cyclic integral has two contributions since trapped
electrons bounce back and forth along the z� direction with
turning points z0 defined by the relation f�z0�=0. We can
write Iz as
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Iz =
2
�− 2mE�

�
K�− 2 ln� − E�

e	a�R���1/2� �27�

with K�u0�=�0
u0�−1+exp��u0

2−u2� /2�du and E� =E−�ceP�

is the parallel energy as defined in Sec. II. This clearly shows
that Iz is a function of E� and R. This relation can be inverted
and E� can be considered as a function of Iz and I� since R is
a function of I�. Finally, we have found the unperturbed
Hamiltonian of our problem

H0�I�� = E��Iz,I�� + �ceI�. �28�

The corresponding action-angle variables I�= �Iz , I� , I�� and

�� = ��z ,� ,�� satisfy Hamilton equations

d

dt
I� = −

�H0

���
, �29�

d

dt
�� = +

�H0

�I�
, �30�

which implies that I� is constant and that �� =�� t+��0, where

�� =�I�H0 is also a constant vector. This vector can be written
as

�� = ��b�Iz,I��,�ce�I��,���Iz,I��� , �31�

where �b and �� are the bounce and drift pulsations that
were introduced in Sec. II. After one cycle in �q� , p�� coordi-
nates, angle variables changed by 
� j = ��qi

� j ·dqi. If we

now define the generatrice function W��q� , I�� such that ��

=�I�W� and p� =�q�W�, we see that 
� j = ��qiIj

2 W�dqi

=�Ij
� p� ·dq� =2��ij. This shows that � j is an angle variable

that increases by 2� after each cycle of the �xi , pi� coordi-
nate.

IV. PERTURBATION OF THE 3D EQUILIBRIUM

Let us now perturb this Hamiltonian system with a
monochromatic electrostatic wave defined by

���y,z,t� = Re���0 exp�i�k�z + k�y − �t��� , �32�

where Re�.� stands for the real part, k� =k�z�+k�y� is the wave
vector, and � its pulsation. The wave amplitude is assumed
to be small compared to the electron hole amplitude 	 and
we define a small parameter �=−e��0 /	. When this pertur-
bation is switched on, we can define a new Hamilton func-
tion

H�I�,�� ,t� = H0�I�� + ���I�,�� ,t� , �33�

where ���y ,z , t� transformed into ��I� ,�� , t� since any func-

tion of �q� , p�� is a function of �I� ,���. We know that ��I� ,�� , t�,
which is a periodic function in each �i, can be developed in

a Fourier series in �� of the form

��I�,�� ,t� = Re �
K� �Z3

aK� �I��exp�i�K� · �� − �t��� , �34�

where K� = �Kz ,K� ,K�� is a triplet of integer numbers. Pro-
vided that the wavelength of the perturbation is larger than
the electron Larmor radius ���L�, we can neglect the
small-scale electron gyromotion which means that the only
nonvanishing terms of the development will have K�=0.
This assumption, that is critical for our derivation, is satisfied
for electrostatic whistler waves in the strongly magnetized
auroral plasma since the electron Debye length is larger than
the electron Larmor radius and since sub-Debye length elec-
trostatic whistler waves are strongly Landau damped. This

reduces the summation over K� �Z2. Using a quadratic ap-
proximation for the parallel motion in the potential well of
the electron hole, we have �0�R ,z��	�1−z2 /2
2�a�R� and
the parallel trajectory reduces to z=� sin �z with �

=�2
2�E� / �e	a�R��+1�. According to Sec. III, the coordi-
nates of the electron gyrocenter are �R cos � ,R sin ��. In-
troducing Bessel functions Jn which satisfy the relation
exp�i� sin ��=�p=−�

� Jp���exp�ip�� we obtain

cK� = �aK� �I�� = − e��0JKz
�kz��JK�

�kyR� . �35�

The perturbation distorts electron trajectories and action-
angle variables for perturbed trapped electrons can be ex-
panded in a power series in � around their undisturbed value

�I��0� ,�� �0�� according to

I� = I��0� + �I��1� + �2I��2� + ¯ ,

�36�
�� = �� �0� + ��� �1� + �2�� �2� + ¯ .

We aim at evaluating the amount of energy gained or lost

after some time t by an electron 
E�I��0� ,�� �0� , t� whose initial

position in phase space is defined by I��0� and �� �0�. Under the
linearity condition, we assume that over this time t the am-
plitude of the electron hole 	 does not vary. The Taylor ex-

pansion of H0 around I��0� to second order in � leads to


E�I��0�,�� �0�,t� = 
�H0�I���

� ��� · I��1� + �2��� · I��2� + 1
2 I��1� · ��I��

� :I��1��� ,

�37�

where the symbol “:” holds for dyadic contraction.
Perturbed action-angle variables have to satisfy Hamil-

ton equations and we need to solve them order by order in �.
At first order in �, this yields

d

dt
I��1� = � − �����0, �38�

d

dt
�� �1� = ��

I�2
2

H0�0:I��1� + ��I���0, �39�
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where the subscript �0 means that derivatives are taken along

the undisturbed phase space trajectory �I��0� ,�� �0��. Using the

definition �� =�I�H0 and after time integration we obtain

I��1� = − Re �
K� �Z2

exp�iK� · �� �0��K� aK� �I��0��
exp�i�K� t� − 1

�K�
� ,

�40�

�� �1� = − Re �
K� �Z2

exp�iK� · �� �0��

��
I�2
2 �H0�0K� aK� �I��0��

exp�i�K� t� − 1 − �K� t

i�
K�
2 �

− �I�aK� �0
exp�i�K� t� − 1

i�K�
�� , �41�

where �K� =K� ·�� �I��0��−� is a quantity that can potentially
vanish for specific sets of action variables. In such a case

both I��1� and �� �1� become resonant whereby the energy gain
or loss by the trapped electron with a given initial phase
space position will be important. This resonant condition is a
generalization in 3D of the bounce resonance that was iden-
tified in the 1D case.47,49 In 3D it involves the three charac-
teristic frequencies of the electron motion. At this time, it is
important to notice that the average over initial angle vari-

ables of I��1� would be

	I��1�
���0� = 0. �42�

At second order in �, the Hamilton equation for I��2� gives

d

dt
I��2� = � − �

I���
2

��0:I��1� − ��
��2
2

��0:�� �1�. �43�

If we only keep resonant terms when performing time inte-
gration, one can show after some lengthy calculations that

the average over �� �0� of I��2� reduces to

	I��2�
���0� = t3 �
K� �Z2

K� �aK� �2K� · ��
I�2
2 �H0�0:K� �g��K� t� , �44�

where g�u�= �2�cos u−1� /u2+sin u /u� / �2u�. We conclude
that the average energy exchanged between trapped particles
and the perturbation is

	
E
���0� = �2��� · 	I��2�
���0� + 1
2 	I��1� · ��I��

� :I��1��
���0�� �45�

since at first order there is no average energy exchanged.
Hereafter we only consider the first term of Eq. �45� which is
dominant since it is proportional to �

K�
−3

while the second one

varies as �
K�
−2

. It can be shown that for that reason the second
term does not survive the next step of calculation. Combin-
ing Eqs. �40� and �44� with Eq. �45�, we finally get

	
E
���0� = t3 �
K� �Z2

�cK� �2��
I�2
2 �H0�0:K� ���� · K� �g��K� t� �46�

which is a function of I�� = �Iz , I�� only since �
I�I�

2
H0=0� .

V. GROWTH RATE OF ELECTROSTATIC WAVES

We consider that the distribution function of trapped
electrons f t is not affected by the resonant process over the
time scale of the linear instability. It allows us to average
over phase space the energy given by the perturbation to the
trapped particles as

	
E
 = �
E��0

f t�p� ,q��
E�p� ,q��dp� dq� . �47�

In this integral, we weight the energy exchanged by one
particle with the perturbation by the value of the distribution
function at the initial phase space position of the particle.
Since we have shown in Sec. III that P� �or equivalently �L�
is constant and in Sec. II that f t is cylindrically symmetric,
we can write

f t =
1

�2��2 f t�R,z,pz�
��v� − �L�ce�

v�

, �48�

where ��.� is the Dirac distribution. It is also convenient to
make the change of variable from pz to E� since we know
that the trapped distribution only depends on E� and R. We
notice that the integration over the initial position z is
equivalent to an integration over the corresponding angle
variable �z which implies that �dz /vz is equivalent to
1 /�b�R ,E���0

2�d�z. Finally, we change from �R ,E�� variables

to I�� action variables and we get

	
E
 =
�

m
� � 	
E
���0�

f t�I���R�I���

�b�I���
J�I���dI�� , �49�

where J�I���=�b�I��� / �R�I����ce� is the Jacobian function of the
last transformation.

Since the integrand is resonant around the 2D curve Dres

defined by the resonance condition �K� �I��res�=0, we can ex-

pand f t�I��� around the resonant action I��res,

f t�I��� � f t�I��res� + �I�� − I��res� · �I��
�f t�res+¯, �50�

where the subscript �res means that the derivative is taken at
the resonance point. In order to evaluate this 2D integral, we
consider a new reference frame with axis along and across

the resonant curve such that any vector can be written as I��

= I��res+xN� with I��res ·N� =0. The Jacobian of this isometric

transformation is unity. In this frame, f t�I���= f t�I��res�
+xN� ·�I��

�f t�res and ��K� =xN� ·�I��
��� ·K� ��res and we obtain

	
E
 =
�t3

m�ce
�

Dres

�cK� �2�I��res�K� · ��
I�2
2 �H0�res:K� �S�I��res�dI�res

�51�
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with

S�I��res� = �
−�

+�

�� + xN� · �I��
���� · K� ��res�g�xN� · �I��

���� · K� ��rest�

��f t�I��res� + xN� · �I��
�f t�res�dx . �52�

Some simplifications can be made due to the parity of the
integrand terms and we get

S�I��res� = −
��N� · �I��

�f t�res

t22��I��
���� · K� ��res�2

. �53�

This shows that 	
E
� t. This secular variation results from
the 3D resonant interaction of trapped particles with the
wave. Let us now define Vhole as the electron hole volume.
Then the energy exchanged by one electron hole with the
wave after time t is given by the quantity �Et�t�
= 	
E
neVhole, where ne is the unperturbed electron density.

FIG. 2. Growth rate in percent of the wave frequency vs normalized wave number and frequency for drift velocity V=0, V=0.2, V=0.5, and V=1. Other
parameters are �ce /�pe=5, 	=0.35, 
=2, and �=2. Landau damping is not included.
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We define a repetition parameter L as the ratio between the
averaged distance between two electron holes and the aver-
aged size of individual electron holes along a given dimen-
sion of space. The quantity EWL3Vhole is therefore the aver-
aged wave energy that should be compared with �Et�t�. The
wave energy density is defined as EW=�0k2���0�2 /2 and de-
fining its complex frequency as �+ i�, we conclude from
energy conservation that �Et�t� / t=−2�EWL3Vhole which fi-
nally gives the normalized growth rate of the perturbation as
� /�=−neVhole	
E
 / �2�tEWL3Vhole�. Using the normaliza-
tions of Sec. II, we eventually obtained the expression

�

�
=

�2

2��ce/�pe�k2L3

��
K� �Z2

�
Dres

JKz

2 �k��res�JK�

2 �k�Rres�K� · ��
I�2
2 �H0�res:K� �

��I��
���� · K� ��res�2

�N� · �I��
�f t�resdI�res. �54�

It must be mentioned that standard Landau damping from
passing particles interacting with the perturbation gives an

FIG. 3. Same as Fig. 2 but with Landau damping included.
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additional term to this equation of the form �L /�
=� / �2k2���dfp /dv����/k�

.

VI. NUMERICAL RESULTS

From this point, it is possible to compute this growth
rate for different plasma, wave, and electron hole parameters
and to look at the regions in parameter space where the
growth rate is large and positive, i.e., where the 3D electron
hole can be destabilized by its interaction with electrostatic
whistler wave �EWW� perturbations. Figure 2 displays the
contour plot of the growth rate �, which is given in percents

of the wave frequency �, as a function of the wave fre-
quency �normalized to �pe� and of the wavenumber �normal-
ized to De

−1�. Here we only take into account the growth rate
due to the trapped particles. Parameters have been chosen
such that �ce /�pe=5, 	=0.35, 
=2, �=2, Kz=1, and K�

=0 while the electron hole drift V relative to the passing
electrons distribution function varies between 0 and 1 in the
four panels. Similarly to the 1D case, the emission process is
efficient over a wide range of frequencies and wavenumbers.
The actual values of the growth rate strongly depend on the
repetition parameter that we fixed hereafter at L=3. As long
as L�10, we obtain significant growth rates for this linear

FIG. 4. Same format as Fig. 2. Different resonance conditions are considered. Parameters are �ce /�pe=5, 	=0.35, 
=2, �=4, and V=0.5.
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instability. When the electron hole drift increases, the con-
tour plots stretch towards higher frequencies due to the Dop-
pler effect and the maximum growth rate increases. Figure 3
includes the effect of Landau damping. The main effect of
Landau damping is to confine EWW emission to low �below
De

−1� wavenumbers. However Landau damping does not sig-
nificantly reduce the maximum growth rate. In the following
figures we always included Landau damping.

Figure 4 shows the relative contribution to the growth

rate of the first terms of the sum over K� in Eq. �54�. Here
�ce /�pe=5, 	=0.35, 
=2, �=4, and V=0.5. As a reference,
the left upper panel corresponds to the resonance condition
�=�b while the effect of the first and second harmonics of
the drift frequency �� is shown in the other panels. In the
right lower panel we performed the summation over all val-
ues of K�. We see that higher harmonics only contribute to
small wavelength emissions. The growth rate also strongly
decreases with increasing values of K�. This is due to the
Bessel term JK�

2 �k�Rres� which vanishes as soon as K�

�k�Rres. A detailed study of the resonance curve Dres shows
that Rres is always of the order of � which is the perpendicu-
lar width of the structure. Therefore we only need to consider
K��k��, i.e., K���.

Figure 5 gives the contribution to the growth rate from
the second harmonics of the bounce �upper panel� and the
drift frequency �lower panel�, respectively. Plasma and elec-
tron hole parameters are unchanged from Fig. 3. Note that
the scale of the frequency axis varies from one plot to the
other by one order of magnitude since �b���. It is interest-
ing to notice that the maximum �normalized� growth rate is
given by the second harmonics of the drift frequency. How-
ever typical values of these growth rates are relatively weak.
With the chosen parameters, the first harmonic of the drift
frequency cannot match the frequency of the EWW since it
is below the lower-hybrid frequency, which is the cutoff of
this wave mode.

Figure 6 shows the effect of varying plasma magnetiza-
tion from �ce /�pe=2 �left panels� to �ce /�pe=20 �right pan-
els� and the parallel width of the electron hole from 
=1.6
�upper panels�—which is close to its minimum value for 	
=0.35, �=4, and V=0.5—to 
=4 �lower panels�. Here we
only consider the resonance at the bounce frequency. It is
observed that plasma magnetization only slightly decreases
the maximum growth rate of EWW. We also notice that
wider structures along the magnetic field, which correspond
to smaller bounce frequencies, excite lower frequency
waves, down to the lower-hybrid frequency. The comparison
of Figs. 5 and 6 shows that the emission of lower-hybrid
waves by bounce resonance is more favorable than the emis-
sion by drift resonance.

Figure 7 shows how important � is, the perpendicular
width of the electron hole, for the emission of EWW by
bounce resonance �Kz=1, K�=0�. Plasma and hole param-
eters are �ce /�pe=10, 	=0.2, 
=2, and V=0.5 in this figure
while � is varying from 1 to 10. It is clear that the maximum
growth rate strongly increases with � and that the domain of
instability of EWW simultaneously spreads in frequency and
wavenumber space. The large growth rate values mean that

structures which are elongated across the magnetic field are
highly unstable to the bounce resonance instability. However
remember that the actual values of the growth rate directly
depend on the repetition parameter of the electron holes L
since � /�L−3. As a consequence of these large growth rates,
we observed that the convection length of the bounce insta-
bility strongly decreases with increasing ratio � /
. This
means that EWW can be emitted from elongated electron

FIG. 5. Same format as Fig. 2. Resonance at the second harmonics of the
bounce and drift frequency. Parameters are �ce /�pe=5, 	=0.35, 
=2, �
=2, and V=0.5.
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holes within a few tens of Debye lengths or equivalently
within a few kilometers in the auroral region. This process
might therefore explain the emission of EWW in the form of
VLF saucers. In order to further quantitatively compare these
theoretical predictions with experimental data, it would be
necessary to study the saturation mechanism of this
instability.

VII. CONCLUSIONS

We have performed a detailed theoretical study of the
stability of three-dimensional electron holes in a strongly
magnetized plasma. We have first derived the exact distribu-
tion function of 3D drifting electron holes. We have shown
that the amplitude-minimum width relationship of electron

FIG. 6. Same format as Fig. 2. Plasma magnetization �ce /�pe and parallel width of the electron hole 
 varies. Other parameters are 	=0.35, �=4, and
V=0.5.
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holes is strongly affected by the electron hole velocity rela-
tive to the passing particles. Introducing Hamiltonian formal-
ism, we have defined a set of action-angle variables which
allowed us to study the 3D dynamics of trapped particles.
Canonical perturbation theory led to an estimate of the en-
ergy gained or lost by trapped electrons in their interaction
with EWW. We have identified a generalized resonance con-
dition which implies the bounce frequency along the mag-
netic field and the drift frequency across the magnetic field
due to the “E�B” drift associated with the electric field
structure. An estimate of the growth rate of this linear insta-
bility has been derived by a complex averaging process. This

general result does not depend on the particular choice of the
passing distribution function.

The numerical study showed that the emission of EWW
by bounce resonance is dominant. It can excite waves over a
large frequency range, virtually from the lower-hybrid fre-
quency cutoff up to the electron plasma frequency, depend-
ing mainly on the parallel width of the structure and on the
electron hole drift relative to the passing electron frame. The
strongest emissions have been found to occur for elongated
structures across the magnetic field. A possible explanation
of the production of VLF saucers by this process has been
pointed out.

FIG. 7. Same format as Fig. 2. The perpendicular elongation of this electron hole � varies. Other parameters are �ce /�pe=10, 	=0.2, 
=2, and V=0.5.
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