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ABSTRACT

In this paper, we present a study of the scaling properties and intermittency of solar wind MHD turbulence
based on the use of wavelet transforms. More specifically, we use the Haar Wavelet transform on simultaneous
3 s resolution particle and magnetic field data from the Wind spacecraft, to investigate anomalous scaling
and intermittency effects of both magnetic field and solar wind velocity fluctuations in the inertial range.
For this purpose, we calculated spectra, structure functions, and probability distribution functions. We show
that this powerful wavelet technique allows for a systematic elimination of intermittency effects on spectra
and structure functions and thus for a clear determination of the actual scaling properties in the inertial
range. The scaling of the magnetic field and the velocity fluctuations are found to be fundamentally different.
Moreover, when the most intermittent structures superposed to the standard fluctuations are removed, simple
statistics are recovered. The magnetic field and the velocity fluctuations exhibit a well-defined, although
different, monofractal behavior, following a Kolmogorov −5/3 scaling and a Iroshnikov–Kraichnan −3/2
scaling, respectively. The multifractal properties of solar wind turbulence appear to be determined by the
presence of those most intermittent structures. Finally, our wavelet technique also allows for a direct and
systematic identification of the most active, singular structures responsible for the intermittency in the solar wind.
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1. INTRODUCTION

The solar wind is a collisionless plasma undergoing super-
sonic and super-Alfvénic spherical expansion. It provides a
unique environment in which to study magnetohydrodynam-
ics (MHD) turbulence in general, and in astrophysical plasmas
in particular. Several heliospheric space missions have furnished
the scientific community with a wealth of data (velocity, mag-
netic field, plasma density, temperature, etc. and also particle
distribution functions) at a resolution which is not available in
any terrestrial laboratory.

The solar wind plasma is strongly turbulent. One of the
most striking features of the solar wind is indeed the very
large number of degrees of freedom which are excited: the
electromagnetic fields and plasma properties of the solar wind
show fluctuations over a wide range of timescales ranging from
the solar rotation period up to the local electron plasma period,
i.e., frequencies f from 10−6 Hz to fpe ∼ 2 × 104 Hz (Salem
2000).

For decades, many efforts have been put forward to under-
stand the physical mechanisms of solar wind turbulence. Many
fundamental issues have been addressed, such as the nature and
the properties of the fluctuations, the origin and evolution of
turbulence in the interplanetary medium, the mechanisms of
the turbulent cascade of energy through the inertial range, and
the corresponding “dissipation” at the smallest scales near the
local ion gyrofrequency fci, and reviewed by numerous excel-
lent papers (see Roberts & Goldstein 1991; Mangeney et al.
1991; Marsch 1991; Goldstein et al. 1995b; Goldstein 1995;
Goldstein et al. 1997; Tu & Marsch 1995; Bruno 1997; Horbury
1999; Goldstein & Roberts 1999; Horbury et al. 2005; Bruno
et al. 2005; Bruno & Carbone 2005). However, for reasons that

we discuss below, two of the primary problems of solar wind
MHD turbulence that still remain a puzzle are the nature of the
nonlinear energy cascade and the strong intermittent character
of solar wind fluctuations in the inertial range.

At MHD scales, i.e., for frequencies below the local ion
gyrofrequency fci or length scales greater than the ion gyro-
radii, the solar wind plasma can be treated as a magneto-
fluid. Furthermore, the fluctuations may be assumed to be
frozen in the supersonic, super-Alfvénic solar wind flow, so that
spatial scales are translated in timescales for spacecraft data
(Taylor’s hypothesis). Solar wind MHD turbulence, just like
neutral fluid turbulence (Frisch 1995), exhibits what appears
to be an inertial domain at these scales, first noted by Coleman
(1968), with power-law spectra and scale invariance, suggesting
a nonlinear energy cascade from large “energy-containing”
scales toward much smaller scales, where dissipation via kinetic
effects is presumed to act. Typically, the observed inertial
range at 1 AU extends over three decades of frequencies, from
f ∼ 2 − 3 10−4 Hz up to f ∼ fci (a few tenths of Hz). In
this range, the observed spectral slopes for magnetic field (e.g.,
Goldstein et al. 1995b; Bruno & Carbone 2005) and electric
field (Bale et al. 2005) fluctuations in the inertial range are close
to the value predicted by Kolmogorov (1941) for turbulence in
non-conducting fluids.

Until the Wind spacecraft, solar wind plasma data (such as
velocity, density, etc.) have in general had a much lower time
resolution compared to magnetic field measurements, of the
order of a few minutes (a few 10−2 Hz), so that only two decades
of frequencies of velocity (or density) fluctuations could be
explored in the inertial range, resulting in large uncertainties
in their spectral slopes. The 3D-Plasma (3DP) experiment on
board Wind (Lin et al. 1995) provides plasma data at a 3 s
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resolution, thus allowing exploration of the inertial domain over
three decades for velocity fluctuations. This showed that the
scaling of the magnetic field and the velocity components are
different, the spectral slope of velocity fluctuations being very
close to 1.5, the Iroshnikov–Kraichnan prediction (Iroshnikov
1963; Kraichnan 1965). This difference was first observed by
Salem (2000) and Mangeney et al. (2001) a few years ago, but
the accuracy of the data were questioned. The 3DP plasma and
the magnetic field data quality and precision have since been
improved through better calibrations compared to the early part
of the Wind mission without much of an effect on the results
(Salem et al. 2007): the difference in scaling for the B and the
V fields is even clearer (Salem et al. 2004, 2006, 2007). This
trend does not depend on the type of spectral analysis used for
the analysis. While the results by Salem (2000) and Mangeney
et al. (2001) used a wavelet transform, they have been confirmed
recently by Podesta et al. (2006a, 2007) using a standard Fourier
transform.

Fluctuations in the solar wind as well as in developed
neutral fluid turbulence (e.g., Frisch 1995), even if they display
statistical homogeneity, are never purely scale invariant; in
fact, their probability distribution functions (PDFs) change
significantly going to small scales from the large scales, where
they are more or less Gaussians. This property is known as
Intermittency (e.g., Veltri et al. 2009). It may be seen, at small
scales, as heavy tails in the PDFs of fluctuations. Intermittency
is also responsible for departures from the scale invariance
(or self-similarity) in the inertial range predicted by simple
phenomenologies of turbulence (e.g., Frisch 1995; Biskamp
1993, 2003). For example, the K41 phenomenology in neutral
fluid turbulence predicts that the fluctuations are self-similar,
i.e., that the velocity fluctuation δv� at scale � and its moments
have the monofractal scaling law

〈|δv�|〉 ∝ �h , 〈|δv�|p〉 ∝ �ζ (p) , p = 1, 2, . . . ,

the Hölder exponent h = 1/3 being a constant and ζ (p) = p h,
the average 〈. . .〉 being taken over space; in this case, the Hölder
exponent is also called the Hurst exponent (h = H = constant).
At variance with these predictions, observations show that
the scaling exponent ζ (p) deviates from linearity and that it
is a concave function of p. The multifractal formalism was
introduced in the mid-eighties in order to understand these
discrepancies, the basic idea being that the Hölder exponent is
not really constant in space but actually depends on the location

|δv�(x)| ∝ �h(x). (1)

Then h(x) quantifies the local regularity (or strength of the
“singularity”) of the observed fields (Halsey et al. 1986) at the
point x: when h(x) is close to 0, the field is very irregular (or
singular) at the point x, while larger values of h(x) are related
to a smoother (more regular) behavior at x.

At the difference from “monofractals,” multifractal processes
exhibit an intricate pattern of local regularity, and the set of
points (or times) Ω(h) at which the process has a given Hölder
exponent h is itself a fractal set with fractal (or Hausdorff)
dimension D(h); D(h) is often referred to as the spectrum of
singularities, and describes the relative frequency of occurrence
of local abrupt fluctuations (singularities) with strength h. It
provides a statistical and global description of the variations of
“regularity” of the fields. The “multifractal” analysis aims at
characterizing the statistics of the spatial distribution of local
Hölder exponents with the singularity spectrum D(h), related

to the scaling exponent ζ (p) by a Legendre transformation (see
Parisi & Frisch 1985).

Intermittency in the solar wind turbulence has been widely re-
ported in the literature (Burlaga 1991, 1993; Marsch & Liu 1993;
Marsch & Tu 1994; Carbone et al. 1995a, 1995b, 1996a, 1996b,
2004; Ruzmaikin et al. 1995; Horbury et al. 1996, 1997; Hor-
bury & Balogh 1997; Bruno et al. 1999a, 1999c, 2003, 2007a,
2007b; Veltri & Mangeney 1999; Veltri 1999, 2004; Veltri et al.
2005, 2009; Pagel & Balogh 2002, 2003; Sorriso-Valvo et al.
2001, 2005). Most of these studies were centered around charac-
terizing the multifractal nature of solar wind (mainly magnetic
field) fluctuations. They focused on quantifying the departure
from Gaussian statistics by analyzing PDFs or characterizing
the anomalous scaling of structure functions and quantifying
deviations from self-similarity by fitting different intermittency
models to observed structure function curves (see Section 2 for
more details). As will be discussed in the next section, this kind
of approach, aimed at understanding the behavior of intermit-
tent systems in turbulence, is purely statistical or geometrical,
with no definitive model dominating the others and therefore
no consistent way to quantify intermittency. Such geometrical
models do not provide any information on the physics of inter-
mittency, its physical nature, and how it affects the properties of
solar wind turbulence in general.

In particular, the physical nature of the intermittent bursts
of strong activity in developed turbulence is not yet fully
understood. It is conjectured that part or all bursty contributions
to turbulent fluctuations are in fact due to the spatially localized
coherent structures observed in fully developed turbulence,
which emerge from the surrounding background flow due to
the nonlinearity of the flow dynamics. It is expected that these
small-scale structures are related to the universal properties of
turbulence, thereby exhibiting a generic geometric signature
that may be characteristic of the cascade dynamics. Therefore,
a characterization of these structures could hopefully provide a
better understanding of cascade mechanics.

Soon after the introduction of the multifractal picture of fully
developed turbulence, a wavelet-based statistical approach was
proposed as a unified multifractal description of singular mea-
sures and multi-affine functions (e.g., Muzy et al. 1993, 1994).
The ability of wavelets to provide good time resolution with
modest frequency resolution matches well with the character of
the broadband spectra typical of turbulent data. The usefulness
of wavelets comes from a result by Meyer (1998) showing that,
under mild regularity conditions on the process δv�(x), its local
Hölder exponent h(x) as defined in Equation (1) can be calcu-
lated from its wavelet coefficients w(s,x) (s is the scale, see the
definition in Section 3.2; see also Arneodo et al. 1988; Bacry
et al. 1991; Farge 1992; Mimouni et al. 1995) which scale as
the fluctuation δv�(x),

w(s, x) ∼ sh(x), (2)

independently of the chosen wavelet transform, provided that
the analyzing wavelet is admissible and is sufficiently localized.

A wavelet analysis method for multifractal signals is therefore
very efficient to extract local exponents and detect singularities
in turbulent flows, allowing for their characterization. It also
eliminates artifacts in the determination of the scaling ζ (p),
redefining the structure functions in terms of wavelet transforms
instead of linear increments (Arneodo et al. 1995; Bacry et al.
1993). It has proven to be an efficient way to determine statistical
properties of complex systems, and to provide a good basis to
analyze their geometry.
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In the present study, we adopt a similar approach to study solar
wind MHD turbulence using high-time resolution data from the
Wind spacecraft at 1 AU. We use the Haar Wavelet transform
on simultaneous Wind 3 s resolution particle and magnetic field
data from the 3DP and the MFi experiments respectively, to
investigate anomalous scaling and intermittency effects of both
magnetic field and solar wind velocity fluctuations in the inertial
range.

2. CHARACTERIZING ENERGY CASCADE AND
INTERMITTENCY IN TURBULENCE

In the absence of a well accepted theory of turbulence, a
number of phenomenological models have been developed in
Fluid dynamics and/or MHD to understand the observed inter-
mittency and scaling properties of fully developed turbulence.

2.1. Basic Phenomenologies

In phenomenological models for the turbulent cascade in an
incompressible neutral fluid, the flow is considered to result
from the superposition of “eddies” with sizes � � L, and
associated velocity fluctuation δv� ∼ |v(r + �) − v(r)|. L
is the largest (the outer scale) of the turbulent eddies. In
incompressible MHD, one has also to consider the magnetic
fluctuation δB� ∼ |B(r + �) − B(r)|.

In the usual picture of turbulence, the interaction between
eddies makes the kinetic (plus eventually magnetic) energy
E(�) = ρ δv2

� + δB2
�

/
2μ0 cascade nonlinearly from large

to small length scales, with a typical timescale τtr (�). This
applies in the so-called inertial range, at scales smaller than the
energy containing range (� � L) but larger than the dissipation
range where viscosity (or other dissipative effects) becomes the
dominant physical effect (e.g., Frisch 1995). To describe the
cascade in the inertial range, two main assumptions are used:
(1) significant energy exchanges between eddies occur only
between eddies of similar scales and (2) the rate ε of energy
exchange between eddies is independent of their scale,

ε = E

τtr

= independent of �. (3)

Different phenomenological models result from making var-
ious assumptions concerning the dominant contributions to E
and τtr (e.g. Galtier et al. 2005; Müller & Biskamp 2003). The
first one is the analogous of the Kolmogorov phenomenology
(Kolmogorov 1941, 1962) for fluid turbulence (K41 hereafter).
The turbulent eddies are assumed to be isotropic with normal-
ized velocity and magnetic fluctuations of the same order of
magnitude,

δv�

vA

∼ δB�

B̄
, (4)

where vA is the Alfvén velocity associated to B̄. Then the
only available timescale is the characteristic nonlinear or eddy
turnover time, t� ∼ �/δv�, during which the eddy gives almost
all of its energy E ∼ δv2

� to eddies of smaller scales. Thus,

τtr ∼ t�, (5)

so that one obtains immediately

δv� ∝ ε1/3 �1/3. (6)

The scaling of the spectral energy density Ek can be obtained
from the Bessel–Parseval theorem (

∫
dk Ek ≈ δv2

� , with k ∼

�−1), so that
Ek ≈ � δv2

� ∝ ε2/3 k−5/3. (7)

The second phenomenology, proposed independently by
Iroshnikov (1963) and Kraichnan (1965, IK hereafter) is a
variant of K41 that accounts for the propagation of the eddies
in the large-scale magnetic field B̄ (Alfvén effect). Within this
framework, the fluctuations are still assumed to be essentially
isotropic but most of the energy transfer from scales to scales
is due to interactions between Alfvénic type of fluctuations
moving in opposite direction along B with the Alfvén speed vA;
this limits the time during which two eddies interact, which is
on the order of an Alfvén time tA ∼ �/vA 	 t� only, and thus
increases the energy transfer time by a factor t�/tA (Dobrowolny
et al. 1980; Biskamp 1993),

τtr ∼ t�
t�

tA
. (8)

Under assumption (4), both δv� and δB�, and E ∼ δv2
� should

then obey the scaling

δv� ∝ δB� ∝ (ε vA)1/4 �1/4, (9)

or
Ek ∝ (ε vA)1/2 k−3/2. (10)

However, both observations and numerical simulations indi-
cate that the assumption of isotropy of MHD fluctuations must
be relaxed (see, e.g., Müller & Biskamp 2003). In the presence
of a large-scale average magnetic field B̄, the eddies become
anisotropic with scales � transverse to B̄ and λ parallel to B̄,
λ > �. Goldreich & Sridhar (1995) proposed a phenomenology
where the eddies are elongated along the average magnetic field
B̄, λ 
 �, and the fluctuations essentially orthogonal to B̄, the
perpendicular components δv⊥

� ∼ δb⊥
� being much larger than

the parallel components (see also Goldreich & Sridhar 1997;
Goldreich 2001). The shape of the eddies is fixed by a condition
of “critical balance” t� ∼ tA between the eddy turn over time
t� ∼ �/δv⊥

� and the Alfvèn time tA ∼ λ/vA, so that the nonlinear
transfer time τtr given by Equation (8) now becomes

τtr ∼ t� ∼ tA, (11)

i.e., the energy transfer time is on the order of the “perpendicu-
lar” eddy turn over time, which is itself of the order of the Alfvèn
time needed for two interacting counter-propagating eddies to
cross each other along the large-scale magnetic field.

Since E ∼ (
δv⊥

�

)2
, a Kolmogorov type of scaling is obtained

(k⊥ ∼ 1/�, k‖ ∼ 1/λ),

Ek⊥,k‖ ∝ ε2/3 k
−5/3
⊥ , (12)

with eddy shapes λ ∝ �2/3 resulting from the critical balance
condition.

All these phenomenologies do not appear to be entirely
successful in explaining the results of the most recent numerical
simulations (e.g., Müller et al. 2003; Mason et al. 2008). Indeed,
these simulations show that the turbulent spectrum depends on
the strength of the average magnetic field B̄, as measured by
the ratio Γ = B̄2/ρ δv2

L, where ρ is the mass density and δvL

is the velocity fluctuation at the largest scale. For small average
magnetic field Γ 	 1, the spectrum is the one predicted by
Goldreich and Sridhar’s anisotropic phenomenology (Goldreich
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& Sridhar 1995), while for large average magnetic field Γ 
 1,
it is the anisotropic Iroshnikov–Kraichnan spectrum

Ek⊥,k‖ ∝ k
−3/2
⊥ , (13)

that best describes the results. Moreover, when Γ 	 1, magnetic
energy is significantly larger than kinetic energy at large scales,
whereas they remain almost equal in the strong field case, Γ 
 1
(see Müller & Grappin 2005).

2.2. Intermittency and Higher-order Statistics

The statistics of a variable δφ with a Gaussian PDF is
fully determined by its variance (second order moment of the
PDF). However, since the PDFs of solar wind fluctuations in
the inertial range are known to be non-Gaussian, a classical
power spectrum (based on the 2nd moment of the PDF) is not
sufficient to completely describe the statistics of the fluctuations.
In fact, the most complete information is provided by the PDF
or, equivalently, by its full sets of moments 〈δφp〉 (p = 1,
2,. . .). The absolute moments of the PDF are known as structure
functions. For any dynamical variable φ(t), the pth order
structure function, S

p

φ , is defined as:

S
p

φ (τ ) = 〈|φ(t + τ ) − φ(t)|p〉. (14)

The variation of S with τ gives information on the scaling
behavior of the data set. In the inertial range, it is shown that S
takes the form of a power law of τ ∝ �:

S
p

φ (τ ) = 〈
δφp

τ

〉 ∝ τ ζ (p), (15)

where ζ (p), the scaling exponent of the structure function, is
here the fundamental parameter. If Ef ∝ f −α , the spectral
exponent α is related to the scaling exponent of the 2nd order
structure function by

α = 1 + ζ (2). (16)

Generally, ζ (p) is a nonlinear function of p; as mentioned above,
this is related to the fact that the local Hölder exponent is not
constant, characteristic of multifractality. For a Kolmogorov-like
scaling, ζ (p) is given by

ζ (p) = p

3
+ β(p/3), (17)

while for a Kraichnan-like scaling, ζ (p) is given by Carbone
(1993),

ζ (p) = p

4
+ γ (p/4). (18)

β(p/3) and γ (p/4) describe the deviations from self-similarity
or scale invariance. In the absence of intermittency, β = γ = 0
and a linear scaling exponent, ζ (p) = p H , is recovered
(signature of monofractals, see Section 1).

Many models, generalizing both K41 and IK by taking into
account the effects of intermittency, have been proposed to
predict the variation of β and γ with p (see Marsch & Tu
1997; Horbury & Balogh 1997; Bruno & Carbone 2005, for
a review). The influence of intermittency on the scaling of
solar wind fluctuations has then been evaluated by using those
models (Carbone et al. 1995a, 1995b; Marsch & Tu 1997, and
references therein). However, these models are concerned only
with a statistical and global analysis of the regularity of the
turbulent fields. In order to get a local description of the degree

of singularity of these fields, it is convenient to turn to methods
based on wavelets.

In our present study (described in the following section), we
make use of the Haar Wavelet, a square function defined between
0 and 1 and varying between −1 and 1 (Mahrt 1991) that has
a very good time resolution, but a poor frequency resolution.
While the use of this wavelet is not convenient in situations
where narrow spectral peaks are the objects of the investigation,
it seems to be well suited to the study of solar wind turbulence,
characterized by featureless average power spectra, and strongly
intermittent behavior, similar to what is observed in strongly
turbulent neutral flows, where the fluid velocity components
measured at a given point look like a usual random signal but
with intermittent bursts of strong variations (e.g., Sreenivasan
& Antonia 1997).

3. DATA AND WAVELET ANALYSIS TECHNIQUE

We describe here the Wind instrumentation and data sets used
in the present study. We also provide a very simple description
of the Haar Wavelet transform and the underlying technique that
we apply to the Wind data sets.

3.1. The Data Sets

The Wind spacecraft, launched on 1994 November 1, was
mainly designed to observe and measure the solar wind ap-
proaching Earth from a position near the Lagrange point L1.
Wind has made a series of Earth orbits as staging to its nom-
inal position at the L1 equilibrium point upstream, and spent
extended time intervals there allowing comprehensive studies
of the ambient solar wind.

For the present study, we consider data from the first Wind
apogee pass near L1, in 1995, where the spacecraft spent several
months following a series of phasing orbits. The chosen time
interval is close to the previous minimum of solar activity, when
well-defined periods of successive slow and fast flows can be
identified. It extends from 1995 May 23rd to July 23rd. This
interval was selected because no transient magnetic cloud or
strong interplanetary shock was observed during these 62 days
(Sanderson et al. 1998), so the analyzed properties are those of
the ambient solar wind, without distinction between slow and
fast streams. As a result, the structure functions that we calculate
may contain a statistical mix of slow and fast wind properties,
including the rapidly changing boundaries between slow and
fast wind, interplanetary shocks etc. However, our conditioning
technique (see Section 3.5 below) will allow to systematically
eliminate those strong (non-intermittent) transient events.

We use spin resolution (3 s) magnetic field and plasma data,
respectively from the Magnetic Field Investigation (MFI) exper-
iment (Lepping et al. 1995) and the Three-Dimensional Plasma
and energetic particle (3DP) experiment (Lin et al. 1995) experi-
ment on board Wind. We also use accurate measurements of elec-
tron density obtained from the WAVES experiment (Bougeret
et al. 1995).

MFI is a dual triaxial fluxgate magnetometer. The instrument
has a variable resolution depending upon the range of operation.
We use here the three components of the magnetic field
vector, Bx, By, and Bz (in the Geocentric Solar Ecliptic (GSE)
coordinate system) as well as the total magnetic field strength B
with a 3 s time resolution.

The instruments on the 3DP experiment make continuous
measurements of ion and electron moments at a 3 s time
resolution. We mainly make use of the three components of
the solar wind (proton) velocity Vx, Vy, and Vz (in the GSE
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coordinate system), as well as the total proton temperature Tp
and the total electron temperature Te.

The electron density Ne is obtained from the Thermal Noise
Receiver (TNR), a radio wave receiver part of the WAVES ex-
periment. The TNR is a very sensitive digital spectrum analyzer
designed to do thermal noise spectroscopy in the ambient so-
lar wind plasma (Meyer-Vernet & Perche 1989; Issautier et al.
1999). TNR consists of several separate receivers that measure
and digitize into different frequency bands between 4 kHz and
256 kHz. The electron density is determined accurately every
4.5 s from the spectrum of the quasi-thermal noise around the
electron plasma frequency and it is quite immune to the space-
craft charging effects (Salem et al. 2001).

The 3DP plasma and the TNR electron density are resampled
onto the time lags of the magnetic field data by linear interpo-
lation. Also, a simple linear interpolation was used when a very
few data gaps occurred.

It is worth emphasizing that simultaneous 3 s resolution mag-
netic field and plasma data greatly extend our study of intermit-
tent structures to smaller scales toward the high-frequency end
of the inertial range of solar wind MHD turbulence.

3.2. Wavelets in Turbulence

Ordinary Fourier techniques are commonly used in the
analysis of time series. But they are inefficient in dealing with
local behavior and it is clear that this inefficiency is due entirely
to the nonlocal nature of the ordinary Fourier analysis, through
which we compose local variations in time by using nonlocal
exponentials in reconstructing the signal.

The usual tool for analyzing the frequency content of a
noisy signal whose statistics depend slowly on time is the
Windowed Fourier Transform (WFT). The WFT localizes a
signal simultaneously in time and frequency by “looking” at
it through a window of width T that is translated in time then
translated in frequency (modulated in time) the same way for all
analyzed frequencies: the time resolution is T and the frequency
resolution is 1/T .

Wavelet transforms represent another compromise between
frequency resolution and time resolution, which depends now on
the frequency. Wavelet analysis is becoming ever more popular
in laboratory (e.g., Bettega & Roman 2009) and natural plasmas
(e.g., Mangeney et al. 2001; Vörös et al. 2004), as well as fusion
research (e.g., van Milligen et al. 1995; Bos et al. 2008), though
the methods have been known and applied in other fields (such
as image processing and the monitoring of electrical power
systems) for quite some time.

Unlike the traditional Fourier transforms, wavelet transforms
have the capability to unfold turbulence signals into both space
(or time) and scale (Mallat 1989; Farge 1992); they replace time
modulation by scaling to achieve frequency localization so that
each component can be studied with a resolution that matches
its scale (with a narrow wavelet at high frequencies or a broad
wavelet at low frequencies). They favor the time resolution at the
expense of frequency resolution, in degrees depending on the
particular wavelet that is used, which is a good compromise
for the study of a fully incoherent but highly intermittent
turbulent flow like the solar wind in the Alfvénic range. This
allows to localize short-lived high-frequency phenomena, such
as transients or singularities (those with the highest level of
fluctuations) in a signal, and zoom in on these most intermittent
intervals and study their effects on the intrinsic scaling properties
of the fluctuations.

Wavelet transforms have been successfully applied to the
study of turbulence in neutral fluids (Farge et al. 1990; Meneveau
1991a, 1991b; Farge 1992; Katul et al. 1994a, 1994b; Katul &
Parlange 1994; Katul et al. 1998; Farge et al. 2006) and more
recently to the solar wind case (Veltri & Mangeney 1999; Bruno
et al. 1999a, 1999b, 1999c, 2001; Vörös et al. 2004; Salem et al.
2007; Veltri et al. 2005, 2009).

For actual turbulence measurements sampled at discrete
times, the appropriate wavelets are discrete wavelet transforms,
defined as follows. Let φk = φ(tk) be N = 2M measured
values of a quantity φ (1 � k � N ), regularly sampled at
times tk = (k − 1) Δt (Δt being the time resolution of the
data sample). The discrete wavelet transform WT

(m)
φ (j ) of φ,

at a scale τm = 2m Δt (1 � m � M) and sampled at the
N/2m = 2M−m times tm,j = (j − 1) τm, is given by

WT
(m)
φ (j ) = 2−m/2

N∑
k=1

φk ψ

(
tk − tm,j

τm

)
, (19)

where ψ(t) is the analyzing wavelet. Equation (19) uses a
logarithmic uniform spacing for the scale discretization with
increasingly coarser temporal (or spatial) resolution at larger
scale (Daubechies 1988; Meyer 1989; Katul et al. 1994a). Under
some conditions on the analyzing wavelet, it can be shown that
Equation (19) is invertible, i.e., the knowledge of φ − 〈φ〉 is
equivalent to the knowledge of its N − 1 wavelet coefficients
WT

(m)
φ (Meyer 1989; Katul et al. 1994a, 1994b), 〈φk〉 being the

mean value of φk over the interval NΔt . Moreover, just as for
the Fourier transform, there is a Bessel–Parseval theorem (Chui
1992) stating that the variance σ 2

φ = 〈δφ2〉 = 〈φ2
k 〉 − 〈φk〉2 of

the signal φk over this time interval is the sum of contributions
from each scale (Katul et al. 1994a; Katul & Parlange 1994),

σ 2
φ = 〈δφ2〉 = 1

N

M∑
m=1

2M−m∑
j=1

(
WT

(m)
φ (j )

)2
. (20)

3.3. The Haar Wavelet Transform

The Haar Wavelet basis is specifically chosen for its differenc-
ing characteristics, since we are interested in developing explicit
relations between spectra or pth order structure functions and the
wavelet coefficients (Mahrt 1991). It was first adopted by Katul
et al. (1994a, 1994b) to study the atmospheric surface layer tur-
bulence, and later by Veltri & Mangeney (1999) and by Salem
(2000) in solar wind turbulence. Moreover, it has proven to be
a powerful tool in atmospheric turbulence research (see Katul
et al. 1998, and references therein).

The analysing wavelet for the Haar Wavelet transform is given
by Mahrt (1991),

ψ(t) =
{

1 for 0 � t < 1/2,
−1 for 1/2 � t < 1,
0 elsewhere.

(21)

The corresponding wavelet transform has the highest time
resolution, 2Δt , at the smallest scale m = 1. It has an interesting
alternative interpretation. Indeed, it has been shown (see Beylkin
et al. 1991, 1992; Katul et al. 1994a) that for this Haar Wavelet
basis, the wavelet coefficients WT

(m)
φ (j ) and the coarse grained

signal φ(m)(j ) (equivalent to a low-pass filtered signal) at scale m
can be calculated from the signal φ(m−1) at scale m−1 according
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to a simple fast pyramidal algorithm

WT
(m)
φ (j ) = 1√

2
[φ(m−1)(2i − 1) − φ(m−1)(2i)], (22)

φ(m)(j ) = 1√
2

[φ(m−1)(2i − 1) + φ(m−1)(2i)], (23)

for m = 1 to M and j = 1 to 2M−m for each m, given
M = log2(N ) the number of scales allowed by the number
of samples N. This pyramidal algorithm yields N − 1 wavelet
coefficients

N

2
+

N

22
+ · · · +

N

2M
=

M∑
m=1

2M−m = N − 1, (24)

that define the orthonormal Haar Wavelet transform for the
measured data set.

We want to emphasize the fact that the coarsed grained signal
in Equation (23) is not exactly an average signal at scale m.

The real average value φ
(m)

(j ) of φk over the time interval
[(j − 1)Δtm, jΔtm] of length Δtm = 2m Δt is defined by

φ
(m)

(j ) = 1

2m

2mj∑
k=2m(j−1)+1

φk. (25)

This average signal φ
(m)

(j ) is related to the coarse grained signal
φ(m)(j ) (Equation (23)) by

φ
(m)

(j ) = 2−m/2 φ(m)(j ). (26)

The fluctuation δφ(m)(j ) at scale m can be defined as the
difference between successive average values of φ(j ) at the
smaller scale m − 1

δφ(m)(j ) = φ
(m−1)

(2i − 1) − φ
(m−1)

(2i). (27)

It can easily be shown that the fluctuations δφ(m)(j ) defined
by Equation (27) are directly proportional to the wavelet
coefficients of Equation (22),

δφ(m)(j ) =
√

22−m WT
(m)
φ (j ). (28)

It is to be noted that the algorithm requires the simultaneous
calculation at each scale of the fluctuation δφ(m, j ) and of the
smoothed quantity φ

(m)
(j ), so that the effects of the large scales

contained in φ
(m)

(j ) on the fluctuation δφ(m)(j ) can be easily
studied.

3.4. Analysis of Turbulence

We describe here the relations between the Haar Wavelet
coefficients and the statistical quantities needed in the charac-
terization of turbulence. The primary tool for this purpose is
of course the power spectral density E(f ), but also the struc-
ture functions (discussed in Section 2.2) and Flatness factor,
commonly used to characterize non-Gaussian fluctuations.

To determine an expression for the wavelet spectrum, we
make use of the Parseval identity—Equation (20),

σ 2
φ =

M∑
m=1

Δfm Eφ(fm), (29)

where fm = 1/τm = 2−m/Δt . Noting that Δfm/fm = ln (2), it
can be easily shown that

Eφ(fm) = Δt

ln(2)

〈(
WT

(m)
φ (j )

)2〉
, (30)

where 〈·〉 is an average in time (or in space) over all values of (j )
for scale index m (see Meneveau 1991a; Yamada & Ohkitani
1990). Equation (30) shows that the wavelet power spectrum
at frequency fm is directly proportional to the average of the
squared wavelet coefficients at that scale m. Because of this
particular characteristics of the wavelet power spectrum, we
expect it to be much smoother than its Fourier counterpart, for
which the variance increases as the frequency increases and
tends toward the Nyquist frequency of the measure signal (e.g.,
Jenkins & Watts 1968).

The wavelet coefficients can also be used to determine for any
flow variable φ a set of functions, which are not strictly structure
functions as they are usually defined (see Equation (14)),
but have the same physical meaning (Mahrt 1991; Katul et al.
1994a). As shown above (see Equations (22) and (28)), the
Haar wavelet coefficients are expressed as a “fluctuation” of
any given variable, thus, they can be related to the pth-order
structure function using

S
p

φ (τm) = 〈|φ(t + τm) − φ(t)|p〉 ∼
〈∣∣WT

(m)
φ (j )

∣∣p〉
2( m

2 −1) p
, (31)

where the separation distance is the scale τm = 2m Δt and
the position or time is t = (2mj ) Δt . Note that the definition
above (Equation (31)) of the structure functions refers only to
quantities defined at scale m while their conventional definition
(Equation (14)) still contains information about scales which
are finer/smaller than m. One may think of the Haar Wavelet
transform at scale m as an average over an interval 2mΔt of the
function δφm = δφ(τm) = φ(t + τm) − φ(t), an average that
diminishes “leakage” from smaller scales. Variances and higher
order moments of these two differences (the one corresponding
to the usual structure function definition and the one derived
above in the Haar Wavelet formalism) at a given scale will
be different, since in general 〈xp〉 �= 〈xp〉, for any given
random variable x, whose average over part or over the whole
sample are denoted by x and 〈x〉, respectively. However, in
practice the difference between both definitions of structure
functions are unimportant. As discussed in the introduction (see
Equation (2)), structure functions calculated using Equation (31)
will have the same scaling laws as the actual structure functions
(Meyer 1998). Thus in what follows, we refer to them as
structure functions, without any further specification.

Naturally, the wavelet power spectrum can be expressed as a
function of the second order structure function

Eφ(fm) = 1

4 ln 2

S2
φ(fm)

fm

. (32)

Finally, two other useful statistical measures can be defined
using the wavelet coefficients as well. The wavelet skewness
(SK) and the wavelet flatness (FF) at scale m, often used to
characterize the intermittency of a statistically homogeneous
signal (e.g., Frisch 1995), are given by

SK(τm) = S3
φ(τm)(

S2
φ(τm)

)3/2 =
〈(
WT

(m)
φ (j )

)3〉
〈(
WT

(m)
φ (j )

)2〉3/2 , (33)
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FF (τm) = S4
φ(τm)(

S2
φ(τm)

)2 =
〈(
WT

(m)
φ (j )

)4〉
〈(
WT

(m)
φ (j )

)2〉2 . (34)

The Flatness is a parameter that Bruno et al. (2003) analyzed in
detail using Helios 2 data in the solar wind from 0.3 to 1 AU.

3.5. The Conditioning Scheme: Quantifying the Role of
Intermittency

In fully developed neutral fluid turbulence, some local spatio-
temporal order is observed, intermittently, in the form of highly
coherent structures, i.e., localized regions of strong vorticity,
shaped in sheets or tubes (e.g., Jimenez et al. 1993; Camussi &
Guj 1997; Chainais et al. 1999, and references therein). There
is now a general agreement on the existence and importance of
coherent structures in fully developed turbulence (Jimenez et al.
1993), and it is expected that these small-scale structures are
related to universal properties of turbulence, thereby exhibiting
a generic geometric signature that may be characteristic of the
cascade dynamics.

Despite several (essentially numerical) analyses (see Jimenez
et al. 1993, and references therein), the role and actual shape of
such structures in real turbulent flows is not fully understood.
In particular, it is not well established that the flow singulari-
ties, i.e., the bursts of strong fluctuations that are responsible
for intermittency, are actually coherent structures passing by
the measuring instrument. Connecting the two approaches to
intermittency, i.e., either from the geometry of the coherent
structures, or from the statistics of turbulent fluctuations at dif-
ferent scales is a difficult task (see Moisy & Jiménez 2004),
since statistical quantities may depend both on the geometry
of the individual structures and on their spatial distribution at
larger scales.

Also, there is no agreement about what method is the best to
extract coherent structures from a given turbulent flow; however,
the spatial information preserved by the wavelet coefficients
make them well suited for identifying and extracting coher-
ent structures (e.g., Farge 1992; Veltri 1999; Veltri & Mangeney
1999; Bruno et al. 1999a, 1999c, 2001; Salem 2000; Salem et al.
2007; Veltri et al. 2005, 2009). These structures, being local-
ized, compress well into a wavelet basis, and are represented by a
small number of large amplitude wavelet coefficients WT

(m)
φ (j )

at a given scale m. In contrast, the remaining incoherent field,
which may be thought of as background noise, will have co-
efficients widely spread in time and scale, with a much lower
amplitude than the “coherent” coefficients. More precisely, co-
efficients of modulus larger than a threshold η are expected to
correspond to the coherent component and the coefficients of
smaller modulus will correspond to the incoherent component.
Therefore, one can split the set of coefficients into two inde-
pendent classes using an orthogonal wavelet transform, then
reconstruct two filtered contributions that are orthogonal. Thus,
the total (i.e., the original measured) field φ(t) is the sum of the
coherent and the incoherent fields i.e., φ(t) = φC(t) + φI (t).

The value of the threshold η should ideally be taken as to
ensure a vanishing probability that the wavelet coefficient of
the noise will have a value larger than the threshold; however
this critical threshold level will depend upon the noise, which is
unknown a priori in a fully turbulent flow. There are several ways
to overcome these difficulties. The first one, used for example
by Farge (1992), is to proceed iteratively: choose an initial
threshold, determine the resulting probability distribution of the
noise coefficients, to determine a better threshold, and repeat

the process. In the same spirit, Kiyani et al. (2006), in order to
detect spurious multiscaling, decreased the threshold level until
a mono scaling was recovered. Another, more primitive way is
to choose arbitrarily the threshold, but study how results depend
on this particular choice. We have chosen this last method (Veltri
& Mangeney 1999; Salem 2000; Mangeney et al. 2001; Veltri
et al. 2005), and defined a scale-dependent threshold ηm,

η2
m = F

〈∣∣WT
(m)
φ (j )

∣∣2〉 = Fσ 2
m, (35)

σ 2
m = 〈|WT

(m)
φ (j )|2〉 being the variance at a scale m calculated

over all points j ∈ [1, N/2m]. The conditioning factor F is
a constant, independent of scale, arbitrarily but meaningfully
chosen so that not too many points are excluded by the
conditioning (see next Section). As emphasized by Kiyani
et al. (2006), such a conditioning preserves eventual scaling
properties. Thus, the background component is characterized
by ∣∣WT

(m)
φ (j )

∣∣2
< η2

m, (36)

and the coherent component by∣∣WT
(m)
φ (j )

∣∣2 � η2
m. (37)

Once the flow has been split into a coherent component
and a background incoherent component, one may calculate
separately conditioned structure functions, for the total flow,
the coherent component, and the background component. This
technique was applied by Katul et al. (1994a, 1994b) in
a study of atmospheric turbulence, and by Chainais et al.
(1999) for turbulence produced in a layer between counter
rotating cylinders. Note that Chainais et al. (1999) used a
conditioning criterion on the pressure, which in the context of
their experiment is a sensitive indicator of vortical structures.

Both Chapman et al. (2005) and Kiyani et al. (2006) also
used a conditioning technique, but directly on the linear incre-
ments, in the general context of the study of biases introduced
by the finite length of observational time series (see discussion
in Section 7). Solar wind studies along the same lines have been
published by Veltri (1999), Veltri & Mangeney (1999), Salem
(2000), Bruno et al. (1999a, 1999c, 2001), Salem et al. (2007),
Kiyani et al. (2006), Hnat et al. (2007), and Veltri et al. (2005,
2009). As we will see later, some of the conclusions of our
work are rather insensitive to the details of the conditioning
technique.

It is worth mentioning that the conditioning technique used in
this paper could be, and has been, used with any of a large class
of mother wavelets and relies basically on the scaling property
(Equation (2)).

4. RESULTS: SPECTRA AND STRUCTURE FUNCTIONS

The above described technique is applied to our Wind data
set described in Section 3.1. Basically, N = 221 data points
(thus sampling M = 21 scales simultaneously) in the ambient
solar wind in 1995 at solar minimum were used, which allows
both a very good characterization of the inertial range of solar
wind turbulence (Salem et al. 2007) and a sufficiently accurate
determination of structure functions up to p � 7 or so (Anselmet
et al. 1984; Marsch & Tu 1997). Spectra and structure functions
are calculated for every solar wind variable considered, namely,
the three components of the magnetic field Bx, By, Bz and the
three components of the solar wind proton velocity Vx, Vy, and
Vz (in the GSE coordinate system), the magnetic field strength
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Figure 1. From top to bottom: (a) conditioned power spectra, with F = 10, for the
Wind (solid line and squares) and for the ISEE 3 (dashed line and triangles) XGSE
component of the magnetic field. The squares and triangles represent 10 scales
(m = 1 to 10, m = 1 being the smallest scale) or frequencies fm = 2−m/Δt ,
Δt being the time resolution of the data, 3 s for Wind and 1 minute for ISEE 3,
respectively. (b) Same power spectra as in (a), normalized to the Kolmogorov
power law f −5/3.

|B|, the magnetic energy B2, the wind speed |V |, and the electron
density Ne. We limit ourselves to structure functions of order as
high as 6 so as not to worry about convergence problems from
higher-order structure functions (Anselmet et al. 1984; Dudok
de Wit & Krasnoselskikh 1996). Also, the statistics over the
larger scales is not so reliable, as the number of points at a given
scale m, N/2m decreases as m increases; but this is not important
in our study as the inertial range of solar wind turbulence is well
sampled.

4.1. Defining the Inertial Range

As mentioned above, Veltri & Mangeney (1999) were the first
to apply the Haar Wavelet technique on solar wind data. They
used 12 months of 1 minute resolution ISEE 3 magnetic field and
solar wind velocity data, taken in 1978–79 (with N = 219, thus
sampling 19 scales) and calculated the corresponding spectra
and structure functions. We compared their power spectrum for
Bx to the one obtained with our Wind data set. This is illustrated
in Figure 1. The upper panel shows both Wind (solid line and
squares) and ISEE 3 (dashed line and triangles) wavelet power
spectra as a function of frequency; the squares and triangles
represent the actual data points. The ISEE 3 spectrum was
shifted by a constant factor, so both power spectra can be
comparable. Note that the spectra shown here are conditioned
power spectra using F = 10. Both spectra coincide really well.

Figure 2. Scaling exponents ζ (p) = ζp (Equation (15)) for the pth order
structure functions of the magnetic field and solar wind velocity components Bx,
By, Bz, Vx, Vy, and Vz, as a function of p. The two solid lines represent the linear
laws expected from the K41 (ζp = p/3) and IK (ζp = p/4) phenomenologies,
Equations (17) and (18), respectively.

There appears to be a break in the spectral slope around the
frequency f ∼ 10−4 Hz, above which the spectrum takes the
form of a K41 power law. This is confirmed by the lower panel
of Figure 1, which shows the two same spectra multiplied by
f 5/3. One can immediately see that the compensated spectrum
is almost flat in the range 10−4 < f < 10−1 Hz. Therefore, the
inertial range of solar wind turbulence at 1 AU extends from
frequencies of the order of 10−4 Hz up to the proton cyclotron
frequency or so (Leamon et al. 1998, 1999; Salem 2000).

The reason why this comparison is shown here is that Veltri
& Mangeney (1999) claimed they have found for the first time
IK-like scaling, i.e. f −3/2 power-law spectra, for fluctuations
of all components of magnetic field and solar wind velocity
except for the radial velocity Vx, which seemed curiously to
have a K41 scaling. This result was inconsistent with the
usual findings of K41-like scaling at least for magnetic field
fluctuations in the inertial range. In their calculation of spectra
and structure functions, they used 10 scales from m = 1 to
m = 10; these scales correspond to a frequency range of
1.6 10−5 < f < 8.3 10−3 Hz. As seen in Figure 1, this range
has a significant part outside the actual inertial range at lower
frequencies and the power spectrum has two distinct slopes.
This could explain why their spectral slopes, except for Vx,
were actually flatter than both the K41 value 5/3 and the IK
value 3/2.

In our calculation of power spectra and structure functions in
the inertial range, we only consider the nine first scales from
m = 1 to m = 9, corresponding to timescales of 2 Δt � τ �
29Δt s or a frequency range of 6 10−4 < f < 0.16 Hz. In
the following, the scaling exponents ζ (p) of structure functions
(Equation (15)) are determined using a linear least squares fit on
a log–log plot of structure functions versus scale or frequency.

4.2. Scaling Exponents of Structure Functions

We present here the results from our structure function
analysis. Figure 2 displays the scaling exponents (Equation (15))
of the ordinary structure functions (Equation (31)) as a function
of their order p for the three components of the magnetic field
and solar wind velocity (Salem et al. 2007). For comparison,
K41 and IK linear predictions are also shown.
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We find the well-known, nonlinear, shape of ζ (p) as a function
of p (Burlaga 1991; Marsch & Liu 1993; Ruzmaikin et al. 1995;
Horbury et al. 1997; Horbury & Balogh 1997; Marsch & Tu
1997): intermittency severely affects the scaling exponents of
all the flow variables by reducing their values from the expected
K41 or IK scaling, more and more as p increases (see Section 2).
The shape of these structure functions is consistent with a power-
law behavior, Sp(τ ) ∼ τ ζ (p), only for the lowest orders p. One
can still determine the exponents ζ (p) by fitting the structure
functions with power laws, although this determination becomes
less and less accurate as p increases. We can already note that
for the lowest orders p, the scaling exponents of the structure
functions for the magnetic field and the velocity components are
significantly different: the former being closer (but not equal)
to a K41-scaling and the latter closer to an IK-scaling

This result is not obvious: one would expect that both
dynamical variables would have a similar behavior since the
inertial range is characterized by Alfvénic-type fluctuations.
This shows that the nonlinear cascade may not be strongly
affected by the Alfvén effect, contrary to the prediction by
Iroshnikov (1963); Kraichnan (1965); Dobrowolny et al. (1980).

As seen in Figure 2, there is a strong deviation from Gaussian-
ity and self-similarity (scale invariance) in the solar wind (e.g.,
Burlaga 1991; Marsch & Liu 1993; Veltri & Mangeney 1999;
Veltri et al. 2005, 2009), even stronger than in hydrodynamic
turbulence. This behavior is commonly attributed to intermit-
tency. Is the difference of scaling between the magnetic field
and velocity fluctuations also due to intermittency? This ques-
tion can now be easily addressed using conditioned structure
functions (defined above).

4.3. Conditioned Structure Functions and Role of Intermittency

We now refine the analysis of structure functions by adding
the conditioning scheme within the Haar Wavelet technique
(as defined in Section 3.5), in order to quantify the role of
intermittency on the scaling properties of the fluctuations.

When the effects of the most intermittent fluctuations, above√
Fσm, are isolated and removed, well-defined linear scaling

exponents are obtained for the fluctuations in the inertial range
(Salem et al. 2007). This is illustrated in Figure 3, which displays
the scaling exponents of the conditioned structure functions
as a function of their order p for two different values of the
conditioning factor F (F = 5 and F = 20 shown in the upper
and lower panels, respectively). Compared to the nonlinear ζp of
the ordinary structure functions (Figure 2), the scaling exponents
of the conditioned structure functions are perfectly linear

ζ (p) = γ · p, (38)

γ being a constant. The error bars in Figure 3 are very small.
This is evidence of a well-defined monofractal scaling, with
Hurst exponents H = γ . Surprisingly, fluctuations of all
three components of the magnetic field vector display a K41-
like scaling (H ∼ 1/3), while all three components of the
velocity fluctuations show an IK-like scaling (H ∼ 1/4). Using
conditioned structure functions, we have been able to clearly
recover simple, monofractal scaling properties of the standard
fluctuations in the inertial range, following the simple K41 and/
or IK phenomenologies (Salem 2000; Mangeney et al. 2001).
This shows that the multifractal nature of solar wind fluctuations
is caused by the presence of intermittent structures at small
scales.

What fraction of these fluctuations actually alters the
monofractal behavior of turbulence in the inertial range? In

Figure 3. Scaling exponents ζ (p) = ζp (Equation (15)) for the conditioned
pth order structure functions of the magnetic field and solar wind velocity
components Bx, By, Bz, Vx, Vy, and Vz, as a function of p: (a) in this case, the
structure functions are conditioned using F = 5 (see text); (b) The conditioning
factor used here is F = 20. A higher threshold means less singular points were
removed.

other words, what value of the conditioning factor F forms a
threshold above which the monofractal behavior of the scaling
exponents would break. Note that the higher the conditioning
factor F, the smaller the fraction of intermittent fluctuations
to be removed. The answer to this question is illustrated in
Figure 4. For all three components of the magnetic field and so-
lar wind velocity fluctuations, as well as for the total fields |B|
and |V |, the magnetic energy B2, and the electron density Ne,
we calculated conditioned structure functions and their scaling
exponents using values of F varying from 5 to 5000. We deter-
mined the slope γ of ζp for each of the above variables and each
value of F considered, and, for each variable, we normalized the
slope γ (F ) to γ (5), the slope obtained for F = 5.

For the magnetic field components and strength, we find that
F ≈ 20 is a good limit value for the conditioning threshold,
meaning that conditioning with any value of F � 20 does not
change the linear relation ζ (p) ∝ p and slopes of the scaling
exponents shown in Figure 3. For the velocity components or
|V |, the threshold or limit value for F is closer to 50. Indeed,
for F < 20–50, the parameter γ (F ) ∼ γ (5) (γ (F )/γ (5)
almost constant). On the contrary, the scaling exponents ζ (p) of
structure functions conditioned with F > 20–50 start displaying
a nonlinear behavior with p; the larger the F, the stronger
the deviation of ζ (p) from linear behavior for the different
components of the magnetic and velocity fields, but not for
the density. This shows that fluctuations with amplitudes above
∼4 to 5σ (

√
Fσ ) are drastically affecting the scaling properties

of all components of the magnetic and velocity fields. They are
directly responsible for the multifractal behavior of magnetic
field and solar wind velocity fluctuations.
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Figure 4. Slope of the scaling exponents ζp of the conditioned structure
functions (see Figure 3) for different values of the conditioning factor F, varying
from 5 to 5000, normalized to the slope for F = 5. Each panel from (a) to
(j) represents a different variable, the magnetic field and solar wind velocity
components Bx, By, Bz, Vx, Vy, and Vz, the magnetic field strength |B|, the
solar wind speed |V |, the magnetic energy B2, and the electron density Ne,
respectively.

Furthermore, the plasma density Ne and the magnetic energy
B2 both display a K41-like scaling in the inertial range (not
shown here). The slopes of the scaling exponents of their
structure functions are observed to be quite constant with F (see
Figures 4(a) and (b)), up to F ∼ 1000 above which conditioning
becomes negligible (i.e., almost no conditioning is applied for
such values of F). This shows that Ne and B2 are much less
intermittent than the components of the magnetic field and/or
velocity vectors, in agreement with recent results obtained by
Hnat et al. (2007) using a conditioning scheme similar to ours.
This also means that intermittency is not completely absent for
Ne and B2, as has been shown in recent analyses that did not use
any conditioning scheme(Podesta et al. 2006b; Podesta 2007;
Chang et al. 2008).

To emphasize the fundamental difference in scaling for
magnetic field and velocity fluctuations, and the fact that they
are both extremely close (or almost equal) to the K41 and
IK scaling respectively, we took a close look at the scaling
exponents for the components By and Vy. The K41 theory
predicts ζ3 = ζ (p = 3) = 1; It’s actually an exact result (Frisch
1995). The IK phenomenology predicts that ζ4 = ζ (p = 4) = 1.
Is this observed in our data set? How does this result vary with
the conditioning factor F? So, we determined the values of
scaling exponent for p = 3 for By and for p = 4 for Vy for our
range of conditioning factor F. The result is shown in Figure 5.
Again, one can see, indeed, that for By (Figure 5, upper panel),

Figure 5. Panel (a) shows the value of ζp for p = 3 for the conditioned structure
function of By as a function of the conditioning factor F; ζ3 = 1 (dotted line)
is what is expected in the K41 phenomenology; Panel (b) shows the value of
ζp for p = 4 for the velocity component Vy as a function of F. The dotted line
indicates ζ4 = 1, value that is expected in the IK phenomenology.

ζ3 ∼ 1 for F � 20, and for Vy (Figure 5, the lower panel),
ζ4 ∼ 1 for F � 50.

5. SCALING OF PROBABILITY DISTRIBUTION
FUNCTIONS

A different description of the same information is through
the PDFs of the fluctuations. PDFs of turbulent fluctuations
are recognized as an important diagnostic of fluid turbulence
(Frisch 1995; Biskamp 1993, 2003). The information they
contain is in principle equivalent to that contained in the
whole set of structure functions, for all values of the order
p. It has been shown (Burlaga 1993; Marsch & Tu 1994;
Feynman & Ruzmaikin 1994; Marsch & Tu 1997; Sorriso-
Valvo et al. 1999; Salem 2000; Sorriso-Valvo et al. 2001;
Bruno et al. 2004) that these PDFs are approximately Gaussian
for timescales longer than a few hours (for scales larger than
those of the inertial range), but show strong deviations from a
Gaussian PDF at smaller scales, with heavy tails and statistical
properties dominated by intermittent bursts of large amplitude
perturbations.

Figure 6 displays the PDF of the Haar Wavelet coefficient
WTBx

for the Bx component of the magnetic field for the scale
m = 1 (τ = 6 s). Note that the wavelet coefficient is directly
proportional to the corresponding fluctuation, δBx(m, i) =√

22−m WTBx
(m, i) (Equation (28)). The vertical dashed lines

indicate the threshold
√

F σW , for F = 20. Basically, the
conditioning process (Equations (36) and (37)) consists of
cutting the tails of the PDFs above the chosen threshold. The
wavelet coefficients above the threshold represent in this case
0.4% of the data set or time series, and they characterize the most
active, intermittent structures that drastically alter the linear
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Figure 6. Probability Distribution Function (PDF) of the Haar wavelet coeffi-
cient for the component Bx at the smallest scale m = 1 is plotted. Note that
the wavelet coefficients of a given variable are proportional to the fluctuation
of that variable, according to Equation (28). The vertical dashed lines indicate
the threshold

√
F σW , for F = 20. The wavelet coefficients above the threshold

represent in this case 0.4% of the corresponding data set or time series, and
they characterize the most active, intermittent structures that drastically alter
the linear scaling exponents ζp .

scaling exponents ζp. Table 1 summarizes, for each variable
at the smallest scale m = 1 (or τ = 6 s), the percentage of
singular points removed from the original data set for different
conditioning factors F. The last column of this table gives the
percentage of singular points when all variables are combined
together. As shown in Table 1, the singular points responsible
for the multifractal properties of the fluctuations represent a
tiny fraction of the original data set: less than 1% for F = 20 at
m = 1. Those percentages drop significantly for scales m > 1,
and the larger the scale the smaller the percentages; note that in
our conditioning scheme F is constant and independent of scale.

Using Equation (28), we can easily calculate the PDFs (of
increments) for any variable φ by computing the histogram
of the wavelet coefficients. It is commonly believed that PDFs
of solar wind fluctuations do not rescale in the inertial (e.g.,
Bruno et al. 2004, 2005). However, we find that they actually
rescale naturally all throughout the inertial range using a simple
scaling relation, provided that a proper conditioning is applied.
The self-similar scaling of those truncated PDFs is compatible
with the scaling of conditioned structure functions (see below).
Let P (δφm) be the PDF of a fluctuating quantity δφm at a scale
m. The corresponding structure function is proportional to the
moments of the PDF

〈
δφp

m

〉 =
∫ +∞

−∞
dδφmδφp

mP (δφm). (39)

Now, if we assume that the PDF are self-similar and rescale in
the inertial range according to

δφm = 2αmδφ1, (40a)

P (δφm) = 2βmP (δφ1), (40b)

where are two coefficients depending on the scale m, then the

structure function (Equation (39)) can be rewritten as:

〈
δφp

m

〉 = 2αm (p+1)+βm
〈
δφ

p

1

〉
. (41)

The normalization condition
∫ +∞
−∞ P (δφm) dδφm = 1 leads to

αm + βm = 0, so that 〈
δφp

m

〉 = 2αm p
〈
δφ

p

1

〉
. (42)

Using Equation (15) and τm = 2m, we can easily show that

〈
δφp

m

〉 = 2(m−1) ζ (p) 〈
δφ

p

1

〉
. (43)

Therefore, by identification of Equations (42) and (43), and
using ζ (p) = γ · p (γ ∼ 1/3 for the scaling of Bx,y,z and γ ∼
1/4 for Vx,y,z, see Figure 3), we get αm = −βm = (m − 1) γ ,
and, thus, the following scaling for the PDFs throughout the
inertial range

δφm = 2γ (m−1) δφ1, (44a)

P (δφm) = 2−γ (m−1) P (δφ1). (44b)

To illustrate the above scaling properties, we have plotted in
Figure 7, the PDFs of all three components of the magnetic field
fluctuations (upper three panels) and all three components of
the velocity fluctuations (lower three panels), conditioned with
F = 20, at scale m = 1, and overplotted the corresponding
scaled PDFs for m = 2 to 7, using Equations (44a) and (44b)
(and different colors). This demonstrates that there is indeed a
self-similar structure throughout the inertial range. As discussed
for instance by Bruno et al. (2005), if there is scale invariance and
if we use the standardized variable δΦm = δφm

/〈
δφ2

m

〉1/2
instead

of δφm, the PDFs of the fluctuations of δΦm should converge
to the same PDF. This is completely consistent with our scaling
above: if we use δΦm in the scaling above, then Equation (44a)
reduces to δΦm = δΦ1, and consequently P (δΦm) ≡ P (δΦ1).

Several authors (e.g. Sorriso-Valvo et al. 1999, 2001; Forman
2003; Forman & Burlaga 2003), assuming that PDFs do not
rescale in the inertial range, have used the Castaing model
(Castaing et al. 1990) to characterize the shape of the PDFs
via the scaling laws of parameters that describe the variation
of the shape of the PDFs with scale. In this model, the final
PDF is the convolution of Gaussian distributions of width σ , the
distribution of which is chosen to be log-normal. The impression
that the PDFs do not rescale in the inertial range may be due to
the fact that the largest scale of the inertial range is not always
known a priori, unless one looks at power spectra at the same
time to define it (see Section 4.1). For example, Sorriso-Valvo
et al. (1999, 2001) fitted the Castaing model to observed PDFs
at scales ranging between 81 s and 23 hr, using solar wind
data at 1 AU. But the Castaing parameters of their fit exhibit a
well-defined scaling only at scales smaller than 1.5 hr, which
correspond to the inertial range (as discussed in Section 4.1).

Finally, it is worth emphasizing the conditioning criterion
used to remove intermittency as the key feature of our wavelet
technique. The conditioning scheme within the Haar Wavelet
transform induces a self-similar behavior of the fluctuations, by
rejecting very large amplitude singular points (above

√
F σW )

from the standard fluctuations.
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Figure 7. PDFs of the magnetic field and solar wind velocity fluctuations (Equation (28)), basically the increments of a given quantity or variable) at scales m = 1 to
7, conditioned with F = 20. The top panels show the PDFs of the magnetic field components, and the bottom panels the PDFs of the solar wind velocity components.
For each variable, the PDF at scale m has been rescaled with respect to the PDF at scale m = 1 according to the scaling given by Equations (44a)–(44b). As a result,
the conditioned PDFs fall on top of each other for each scale m throughout the inertial range: the black PDFs correspond to scale m = 1, dark blue to m = 2, light
blue to m = 3, green to m = 4, light green to m = 5, yellow to m = 6 and red to m = 7.

(A color version of this figure is available in the online journal.)

Table 1
Percentage of Singular Points (Equation (37)) at Scale m = 1 for Different Values of the Conditioning Factor F, for Each Variable Individually

F Bx Bx Bx |B| Vx Vy Vz Ne T e Tp All

5 1.77 1.79 1.68 1.35 1.77 1.77 1.77 1.62 1.57 1.97 9.20
10 0.86 0.87 0.83 0.69 0.77 0.82 0.85 0.72 0.58 0.84 4.58
20 0.38 0.39 0.38 0.34 0.32 0.34 0.37 0.29 0.18 0.31 2.05
50 0.11 0.12 0.12 0.12 0.08 0.09 0.11 0.08 0.03 0.08 0.63

Note. The last column gives the percentage of singular points when all variables are combined.

6. THE ALFVÉN RATIO, KINETIC TO MAGNETIC
ENERGY RATIO

The Alfvén ratio (e.g. Bruno et al. 1985; Goldstein et al.
1995a) is defined as:

RA(f ) = EV (f )

Eb(f )
, (45)

where EV (f ) and Eb(f ) = EB(f )/(4πρ) are the power spectral
density of the velocity and magnetic field fluctuations. In the
IK phenomenology (Kraichnan 1965), where equipartition is
reached at small scales, the Alfvén ratio should remain close
to 1. However, for reasons which are still unclear, in the solar
wind, the magnetic energy is observed to dominate, RA < 1, at
least in the low frequency part of the inertial range (Bruno et al.

1985; Goldstein et al. 1995a; Tu & Marsch 1995; Bavassano
et al. 1998). Goldstein et al. (1995a), using Helios data, have
observed a decrease of RA with distance from the sun, from
RA � 1 at 0.3 AU to RA ∼ 0.5 at 1 AU.

The Alfvén ratio for the present set of observations is shown
in Figure 8. While kinetic energy dominates at the larger scale,
in the inertial range RA increases from the commonly observed
value RA � 0.5 at 10−4–10−3 Hz (Bruno et al. 1985; Roberts
et al. 1987a, 1987b, 1990, 1992; Matthaeus & Goldstein 1982;
Goldstein et al. 1997) to a near equipartition value RA � 1 at
smaller scale and above (see also Salem 2000; Podesta et al.
2007). However, for timescales τ � 30 s, the kinetic energy
seems to be dominating.

The observed values of the Alfvén ratio in the inertial range
are not really understood yet. This unbalance between magnetic
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Figure 8. Alfvén ratio (kinetic to magnetic energy ratio) shown as a function of
frequency. The diamonds represent the data points, corresponding to the scales
sampled here.

and kinetic energy can be explained (see Grappin et al. 1991;
Müller & Grappin 2004, 2005; Bruno & Carbone 2005) as a
competing action between the Alfvén effect (Kraichnan 1965)
leaning toward equipartition (see Section 2), and the nonlinear
terms (Grappin et al. 1983). This competing action could lead
to either an excess of magnetic energy or an excess of kinetic
energy, as it is observed in the solar wind. In addition, recent
theoretical studies seem to find a similar unbalance between
magnetic and kinetic energy in the inertial range when nonlocal
effects are involved, such as large and small k-coupling (Galtier
2006; Mininni et al. 2007).

Finally, given the unbalance between magnetic and kinetic
energies, and the different scaling properties of the magnetic
field and velocity fluctuations, would the description of MHD
turbulence in terms of Elsässer variables (Elsässer 1950),
z± = δV ± δB/

√
4 π ρ coupling δV and δB together, even

be theoretically appropriate? Figure 9 displays two-dimensional
histograms of the Alfvénicity of the standard fluctuations (below
4–5 σ ), i.e. the correlation between the X-GSE component of
the velocity fluctuations δVx and the same component of the
magnetic field fluctuations δBx/

√
4πρ in units of speed, at

different scales of the inertial range. The different contours
represent the number of occurrence. This figure shows that
the correlation between δV and δB throughout the inertial
range is highly variable (see Figure 9) and scattered around
δV ± δB/

√
4 π ρ = 0 (Salem et al. 2007). Therefore, the

Elsässer variables are no better of a choice than the variables δV
and δB separately.

7. DISCUSSION AND CONCLUSION

In this paper, we have discussed, improved and generalized
results that have been presented by Veltri (1999), Veltri &
Mangeney (1999), Salem (2000), Mangeney et al. (2001),
and Veltri et al. (2005), concerning the scale invariance and
intermittency properties of MHD turbulence as derived from a
wavelet analysis of solar wind data.

An important aspect of the present work is the use of very
long samples of Wind 3 s resolution magnetic field and particle
data, allowing to investigate simultaneously magnetic field
and plasma fluctuations with the same, relatively high, time
resolution.

As usual, the statistics of all these fluctuations are observed to
be non-Gaussian all throughout the inertial range, and display
anomalous (multifractal) scaling, when analyzing their PDFs
and structure functions, respectively. However, as previously
reported by Salem (2000), Mangeney et al. (2001), and Podesta
et al. (2006a), we confirm that the magnetic field and plasma
bulk velocity have fundamentally different scaling laws, close to
K41 for the magnetic field components, and close to IK for the
velocity components, a result which poses a puzzling theoretical
problem in MHD turbulence. Kinetic effects are not expected to
be responsible for the different scaling of magnetic and velocity
fields, but the strong anisotropy of solar wind fluctuations,
or the influence of compressibility may however play a role.
Our conditioning scheme is presently being generalized to
include the effects of the solar wind speed, compressibility, and
fluctuation anisotropies in order to gain further insight on the
different scaling properties of the magnetic and velocity fields
in various states of the solar wind (fast and slow streams, for
example).

Although the fluctuations of all usual fields display a mul-
tifractal character, we found that eliminating the most intense
bursts of fluctuations by using a conditioning scheme, allows
to recover a monofractal behavior. The PDFs still remain non-
Gaussian, but the conditioning removes the “fat tails” for the
highest amplitudes; the resulting truncated PDFs rescale per-
fectly at all scales in the inertial range, while the conditioned
scaling exponents follow a linear law, with a Hurst exponent
H ∼ 1/3 (similar to K41) for the magnetic field components
and H ∼ 1/4 (close to IK) for the velocity components.

Basically, the use of the conditioning scheme reveals the self-
similar behavior of the fluctuations. Such a behavior under con-
ditioning has been observed in several instances. For example,
Katul et al. (1994a), studying atmospheric surface layer turbu-
lence, noticed that eliminating events beyond a certain threshold
in the inertial subrange also eliminated the multiscaling charac-
teristic of intermittency. Similarly, Chainais et al. (1999), con-
sidering turbulence in a swirling flow, could define, by using
a suitable conditioning criterion, what they call a background
flow characterized by a monofractal structure.

Studies of the quantities δnp, δ(B2), and δ(npV 2) in the
solar wind have shown that they display some intermittent
behavior (Hnat et al. 2002; Kiyani et al. 2006; Hnat et al.
2007; Podesta 2007; Chang et al. 2008). Furthermore, using
a conditioning technique similar to ours, Kiyani et al. (2006)
and Hnat et al. (2007) have shown that, after removing a small
but sufficient number of particularly “singular” points in the
time series, the fluctuations took a monofractal character, with
a relatively well defined Hurst exponent. They concluded that
the multifractality observed without conditioning was probably
an artifact, “spurious multi-affinity” (Chechkin & Gonchar
2000), due to the finite length of the time series, which affects
the statistics of extreme events (see also Dudok de Wit &
Krasnoselskikh 1996; Kiyani et al. 2009). This is actually a
particular case of phenomenon, known as “linearization,” which
can be given a simple although not mathematically rigorous
explanation (see Abry et al. 2007).

This linearization is due to the fact that the PDF of the
fluctuations are heavy tailed, with a small but finite probability
of having a very large fluctuation combined with a finite sample
size of the time series. This means that the tails are poorly
sampled statistically, so that the large fluctuations may be
present or not in the observed time series. The impact on the
high order statistical moments of the PDFs may be considerable.
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Figure 9. Two-dimensional histograms of the Alfvénicity of the fluctuations below 4–5 σ (conditioned with F = 20) at different scales throughout the inertial range.
The different panels show the velocity fluctuations versus the magnetic fluctuations (in the X-GSE direction) in the same units (of speed) at different scales from
m = 1 (panel a) to m = 10 (panel f). The dashed lines indicate δVi = ±δBi/

√
μ0 ρ, lines where the Alfvénicity is maximum and equal to ±1.

To illustrate that point, let us return to the definition of the
average structure function S

p

φ (τm) of order p (Equation (31)),
where the separation distance is the scale τm = 2m Δt , and
the average is taken over the Nm = N/2m = 2M−m times
tj = (2mj ) Δt , with j ∈ [1, Nm]. The scaling exponents ζ (p) are
calculated via a linear regression of the logarithm of the structure
function over a limited range of scales τm, m � m� � M , so
that in what follows

∑
stands for

∑m�

m=1. This results in the
estimate of ζ̂ (p) which can be expressed as:

ζ̂ (q) =
∑

wm log2 S
p

φ (τm), (46)

the weigths wm satisfying
∑

wm = 0 and
∑

m wm = 1.
For large values of p, the structure functions S

p

φ (τm) are driven

by the largest fluctuations
∣∣WT

(m)
φ (j )

∣∣p at scale m, obtained from
the Nm samples of the time series,

W (m)
max = max

j

[∣∣WT
(m)
φ (j )

∣∣
2( m

2 −1)

]
, (47)

i.e. for large p,

S
p

φ (τm) ∼ 1

Nm

(
W (m)

max

)p
,

and
log2 S

p

φ (τm) ∼ − log2 Nm + p log2 W (m)
max. (48)

Note that the definition of Nm implies that
∑

wm log2 Nm = 1.
The statistical properties of extreme values of the fluctuations
of multifractal processes, in the heavy tails of their PDF, are

not known theoretically, but various numerical simulations are
more or less consistent with a power law

W (m)
max ∼ cNτhc

m . (49)

For a multifractal, the exponent hc may be interpreted as the
smallest local Hölder exponent for the Nm samples of the times
series. Indeed the multifractal analysis associates to each time
position tj a Hölder exponent such that

∣∣WT
(m)
φ (j )

∣∣ ∼ cj τ
h(t)
m ,

the largest increments being obtained for the smallest h, where
φ is the most singular. Then, as p → ∞,

ζ̂ (p) ∼
∑

wj (log2 Nm + phcj + cste) = 1 + phc, (50)

meaning that the scaling exponent ζ̂ (p) becomes a linear
function of p. On the other hand, for small values of p, the
estimation of the scaling exponent becomes close to the actual
exponent, ζ̂ (p) = ζ (p). Thus, for a monofractal with a Hurst
exponent H, the estimated scaling exponent is expected to follow
a linear relation with a slope H for small values of p and another
linear relation with a new slope hc for large values of p.

Extreme events are therefore particularly relevant to the
description of the scaling properties of random phenomena,
involving a heavy tailed PDF that decreases slowly and roughly
follows a power law. As discussed by Muzy et al. (2006), the
observed extreme value statistics result from a competition
between an increase of the number of independent samples
(which tends to increase typical extreme values) and a decrease
of the sampling scale (which tends to decrease typical observed
values). It is also clear that conditioning with an increasing
threshold (i.e., fewer and fewer intermittent structures to be
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removed) will tend to diminish the tendency toward linearization
of the scaling exponents, as demonstrated by Kiyani et al.
(2006).

Thus we are faced with the question: is MHD turbulence in
the solar wind actually monofractal, the finite size of the time
series producing a “spurious multi-affinity,” or does a proper
conditioning allow to separate efficiently the fluctuations into a
monofractal “background” and localized, intermittent, coherent
structures. The answer is not an easy one; one may think of two
ways to obtain an answer.

The first one is to study the local regularity of the fluctuations,
instead of limiting oneself to a study of the statistical description
of this regularity as done when using the multifractal formalism;
those two approaches should then give the same statical results.
However, such a study is a difficult one, as discussed for example
by Katul et al. (2001). However, new methods have been
developed (see, e.g., Turiel et al. 2008, and references therein),
which could be applied in the solar wind context. Furthermore,
since the conditioning appears to produce the same results in
widely different situations, it would be interesting to apply it to
some artificial time series whose properties are well known.

The second approach aims at studying the coherent structures,
i.e., the extreme events. The thresholding technique used here,
based on a simple classification of the wavelet coefficients,
allows for a direct and systematic identification of the most
active, singular structures responsible for the intermittency in the
solar wind. A close look at the data shows that the intermittent or
singular fluctuations are very localized in time and scale. Using
1 minute resolution ISEE 3 magnetic field and plasma data,
Veltri & Mangeney (1999) were able to show for the first time
that the most intermittent fluctuations were coherent structures,
represented by one-dimensional current sheets and shock waves
(Veltri et al. 2005, 2009). The higher time resolution of our Wind
data sets reveal new structures at smaller scales, some of which
are identified as magnetic holes, small-scale magnetic flux tubes
and soliton-like Alfvènic perturbations, for the first time directly
detected in the data. The physical nature and properties of these
intermittent structure will be presented in a forthcoming paper.

In parallel, different techniques to detect coherent structures
in turbulent signals are being developed. The first one is a
new technique by Li (2008) aimed to detect current sheet-
like structures in the solar wind. The second one is a new
method by Sahraoui (2008) based on the use of the Fourier
phases to detect coherent structures in turbulent time series
and to relate them to intermittency. The emergence of such
powerful techniques will allow for a full investigation of the
physical nature and properties of intermittent structures in the
turbulent solar wind. This is important for a good understanding
of how these structures form and where they originate from.
Whether these coherent structures originate at the Sun or are
locally generated by turbulence dynamics still remains an open
question.
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