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ABSTRACT

We study the waiting time distributions of solar flares observed in hard X-rays with ISEE-3/ICE, HXRBS/SMM,
WATCH/GRANAT, BATSE/CGRO, and RHESSI. Although discordant results and interpretations have been pub-
lished earlier, based on relatively small ranges (<2 decades) of waiting times, we find that all observed distributions,
spanning over 6 decades of waiting times (Δt ≈ 10−3–103 hr), can be reconciled with a single distribution function,
N (Δt) ∝ λ0(1 + λ0Δt)−2, which has a power-law slope of p ≈ 2.0 at large waiting times (Δt ≈ 1–1000 hr) and
flattens out at short waiting times Δt � Δt0 = 1/λ0. We find a consistent breakpoint at Δt0 = 1/λ0 = 0.80 ± 0.14 hr
from the WATCH, HXRBS, BATSE, and RHESSI data. The distribution of waiting times is invariant for sampling
with different flux thresholds, while the mean waiting time scales reciprocically with the number of detected events,
Δt0 ∝ 1/ndet. This waiting time distribution can be modeled with a nonstationary Poisson process with a flare rate
λ = 1/Δt that varies as f (λ) ∝ λ−1 exp −(λ/λ0). This flare rate distribution requires a highly intermittent flare
productivity in short clusters with high rates, separated by relatively long quiescent intervals with very low flare rates.
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1. INTRODUCTION

You might drive a car in a foreign city and have to stop at
many red traffic lights. From the statistics of waiting times you
probably can quickly figure out which signals operate indepen-
dently and which ones operate the smart way with inductive-loop
traffic detectors in a so-called demand-actuated mode. Thus,
statistics of waiting times bears crucial information on how a
system works, either having independent elements that act ran-
domly, or consisting of elements with long-range connections
that enable coupling and synchronization. In geophysics, after-
shocks have been found to exhibit different waiting time statis-
tics (Omori’s law) than the main shocks of earthquakes (e.g.,
Omori 1895; Bak et al. 2002; Saichev & Sornette 2006). In mag-
netospheric physics, waiting time statistics is used to identify
Poisson random processes, self-organized criticality, intermit-
tent turbulence, finite system size effects, or clusterization, such
as in auroral emission (Chapman et al. 1998, 2001), the auro-
ral electron jet (AE) index (Lepreti et al. 2004; Boffetta et al.
1999), or in substorms at Earth’s magnetotail (Borovsky et al.
1993; Freeman & Morley 2004; Uritsky et al. 2009). Waiting
time statistics is studied intensely in solar physics, where most
flares are found to be produced by a Poissonian random process,
but there are also so-called sympathetic flares that have a causal
connection or trigger each other (e.g., Simnett 1974; Gergely &
Erickson 1975; Fritzova-Svestkova et al. 1976; Pearce & Harri-
son 1990; Bumba & Klvana 1993; Biesecker & Thompson 2000;
Moon et al. 2002). Waiting time statistics of solar flares was stud-
ied in hard X-rays (Pearce et al. 1993; Biesecker 1994; Crosby
1996; Wheatland et al. 1998; Wheatland & Eddey 1998), in soft
X-rays (Wheatland 2000, 2001, 2006; Boffetta et al. 1999;
Lepreti et al. 2001; Wheatland & Litvinenko 2001; Wheatland &
Craig 2006; Moon et al. 2001; Grigolini et al. 2002), for coronal
mass ejections (Wheatland 2003; Yeh et al. 2005; Moon et al.
2003), for solar radio bursts (Eastwood et al. 2010), and for
the solar wind (Veltri 1999; Podesta et al. 2006a, 2006b, 2007,
Hnat et al. 2007; Freeman et al. 2000; Chou 2001; Watkins et al.
2001a, 2001b, 2002; Gabriel & Patrick 2003; Bristow 2008;

Greco et al. 2009a, 2009b). In astrophysics, waiting time dis-
tributions have been studied for flare stars (Arzner & Guedel
2004) as well as for black hole candidates, such as Cygnus
X-1 (Negoro et al. 1995). An extensive review of waiting time
statistics can be found in chapter 5 of Aschwanden (2010).

In this study, we focus on waiting time distributions of
solar flares detected in hard X-rays. The most comprehensive
sampling of solar flare waiting times has been gathered in soft
X-rays thus far, using a 25 year catalog of GOES flares
(Wheatland 2000; Boffetta et al. 1999; Lepreti et al. 2001),
but three different interpretations were proposed, using the very
same data: (1) a nonstationary (time-dependent) Poisson process
(Wheatland 2000), (2) a shell model of magnetohydrodynamic
turbulence (Boffetta et al. 1999), or (3) a Lévy flight model
of self-similar processes with some memory (Lepreti et al.
2001). All three interpretations can produce a power-law-like
distribution of waiting times. On the other side, self-organized
criticality models (Bak et al. 1987, 1988; Lu & Hamilton
1991; Charbonneau et al. 2001) predict a Poissonian random
process, which has an exponential distribution of waiting times
for a stationary (constant) flare rate, but can produce power-
law-like waiting time distributions with a slope of p � 3
for nonstationary variations of the flare rate (Wheatland &
Litvinenko 2002). A cellular automaton model with time-
dependent random walk modulations but otherwise stationary
driver produced a power-law distribution of waiting times with
a slope of p = 2.51 ± 0.16 (Norman et al. 2001). Therefore,
the finding of a power-law-like distribution of waiting times of
solar flares has ambiguous interpretations. The situation in solar
flare hard X-rays is very discordant: Pearce et al. (1993) and
Crosby (1996) report power-law distributions of waiting times
with a very flat slope of p ≈ 0.75, Biesecker (1994) reports a
near-exponential distribution after correcting for orbit effects,
while Wheatland et al. (1998) find a double-hump distribution
with an overabundance of short waiting times (Δt ≈ 10 s–10
minutes) compared with longer waiting times (Δt ≈ 10–1000
minutes), but are not able to reproduce the observations with a
nonstationary Poisson process. In this study, we analyze flare
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catalogs from HXRBS/SMM, BATSE/CGRO, and RHESSI
and are able to model all observed hard X-ray waiting time
distributions with a unified model in terms of a nonstationary
Poisson process in the limit of high intermittency. We resolve
also the discrepancy between exponential and power-law-like
waiting time distributions, in terms of selected fitting ranges.

2. BAYESIAN WAITING TIME STATISTICS

In the following derivation, we follow the framework and
notation used in Wheatland et al. (1998) and Wheatland &
Litvinenko (2002). The waiting time distribution P (Δt) for
a Poissonian random process can be approximated with an
exponential distribution,

P (Δt) = λe−λΔt , (1)

where λ is the mean event occurrence rate, with the probability∫
P (Δt)dΔt = 1 normalized to unity. If the average event

rate λ is time independent, we call it a stationary Poisson
process. If the average rate varies with time, the waiting time
distribution reflects a superposition of multiple exponential
distributions with different e-folding time scales, and may
even resemble a power-law-like distribution. The statistics of
such inhomogeneous or nonstationary Poisson processes can be
characterized with Bayesian statistics.

A nonstationary Poisson process may be subdivided into
time intervals where the occurrence rate is constant, within the
fluctuations expected from Poisson statistics, so it consists of
piecewise stationary processes, e.g.,

P (Δt) =

⎧⎪⎨
⎪⎩

λ1e
−λ1Δt for t1 � t � t2

λ2e
−λ2Δt for t2 � t � t3

............... .......

λne
−λnΔt for tn � t � tn+1

, (2)

where the occurrence rate λi is stationary during a time interval
[ti , ti+1] but has different values in subsequent time intervals. The
time intervals [ti , ti+1] where the occurrence rate is stationary
are called Bayesian blocks, and we talk about Bayesian statis-
tics (e.g., Scargle 1998). The variation of the occurrence rates
λ1, λ2, . . . , λn can be defined with a new time-dependent func-
tion λ(t) and the probability function of waiting times becomes
itself a function of time (e.g., Cox & Isham 1980; Wheatland
et al. 1998),

P (t, Δt) = λ(t + Δt) exp

[
−

∫ t+Δt

t

λ(t ′)dt ′
]
. (3)

If observations of a nonstationary Poisson process are made for
the time interval [0, T ], then the distribution of waiting times
for that time interval will be, weighted by the number of events
λ(t)dt in each time interval (t, t + dt),

P (Δt) = 1

N

∫ T

0
λ(t) P (t, Δt)dt (4)

where the rate is zero after the time interval t > T , i.e.,
λ(t > T ) = 0, and N = ∫ T

0 λ(t)dt . If the rate is slowly varying,
so that it can be subdivided into piecewise stationary Poisson
processes (into Bayesian blocks), then the distribution of waiting
times will be

P (Δt) ≈
∑

i

ϕ(λi)λie
−λiΔt (5)

where

ϕ(λi) = λiti∑
j λj tj

(6)

is the fraction of events associated with a given rate λi in the
(piecewise) time interval ti (or Bayesian block) over which the
constant rate λi is observed. If we make the transition from
the summation over discrete time intervals ti (Equations (5)
and (6)) to a continuous integral function over the time interval
[0 < t < T ], we obtain

P (Δt) =
∫ T

0 λ(t)2e−λ(t)Δt dt∫ T

0 λ(t)dt
. (7)

When the occurrence rate λ(t) is not a simple function, the
integral Equation (7) becomes untractable, in which case it is
more suitable to substitute the integration variable t with the
variable λ. Defining f (λ) = (1/T )dt(λ)/dλ as the fraction
of time that the flaring rate is in the range (λ, λ + dλ), or
f (λ)dλ = dt/T , we can express Equation (7) as an integral
of the variable λ,

P (Δt) =
∫ ∞

0 f (λ)λ2e−λΔt dλ∫ ∞
0 λf (λ) dλ

, (8)

where the denominator λ0 = ∫ ∞
0 λf (λ)dλ is the mean rate of

flaring.
Let us make some examples. In Figure 1, we show five cases:

(1) a stationary Poisson process with a constant rate λ0; (2)
a two-step process with two different occurrence rates λ1 and
λ2; (3) a nonstationary Poisson process with piecewise linearly
increasing occurrence rates λ(t) = λ0(t/T ), varying like a
triangular function for each cycle; (4) piecewise exponential
functions; and (5) a piecewise exponential function steepened
by a reciprocal factor. For each case, we show the time-
dependent occurrence rate λ(t) and the resulting probability
distribution P (Δt) of events. We see that a stationary Poisson
process produces an exponential waiting time distribution, while
nonstationary Poisson processes with a discrete number of
occurrence rates λi produce a superposition of exponential
distributions, and continuous occurrence rate functions λ(t)
generate power-law-like waiting time distributions at the upper
end.

We can calculate the analytical functions for the waiting time
distributions for these five cases. The first case is simply an
exponential function as given in Equation (1) because of the
constant rate λ(t) = λ0,

P (Δt) = λ0e
−λ0Δt . (9)

The second case follows from Equation (5) and yields

P (Δt) = 1

10
λ1e

−λ1Δt +
9

10
λ2e

−λ2Δt . (10)

The third case can be integrated with Equation (7). The time-
dependent flare rate grows linearly with time to a maximum rate
of λm = 2λ0 over a time interval T, with a mean rate of λ0,

λ(t) = λm

(
t

T

)
= 2λ0

(
t

T

)
. (11)

Defining a constant a = −λm(Δt/T ), the integral of
Equation (7) yields P (Δt) = (2λm/T 3)

∫ T

0 t2eatdt . The integral
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Figure 1. One case of a stationary Poisson process (top) and four cases of nonstationary Poisson processes with two-step, linearly-increasing, exponentially-varying,
and δ-function variations of the occurrence rate λ(t). The time-dependent occurrence rates λ(t) are shown on the left side, while the waiting time distributions
are shown in the right-hand panels, in the form of histograms sampled from Monte Carlo simulations, as well as in the form of the analytical solutions (given in
Equations (10)–(18)). Power-law fits N (Δt) ∝ Δt−p are indicated with a dotted line and labeled with the slope p.

∫
x2eaxdx = eax(x2/a − 2x/a2 + 2/a3) can be obtained from

an integral table. The analytical function of the waiting time
distribution for a linearly increasing occurrence rate is then

P (Δt) =

2λm

[
2

(λmΔt)3
− e−λ0Δt

(
1

(λmΔt)
+

2

(λmΔt)2
+

2

(λmΔt)3

)]
,

(12)

which is a flat distribution for small waiting times and ap-
proaches a power-law function with a slope of p = 3 at large
waiting times, i.e., P (Δt) ∝ Δt−3 (Figure 1, third case). The
distribution is the same for a single linear ramp or a cyclic

triangular variation, because the total time spent at each rate
[λ, λ + dλ] is the same.

The fourth case, which mimics the solar cycle, has an
exponentially growing (or decaying) occurrence rate, i.e.,

f (λ) =
(

1

λ0

)
exp

(
− λ

λ0

)
(13)

defined in the range of [0 < λ < ∞], and has a mean
of λ0. The waiting time distribution can therefore be written
with Equation (8) as

P (Δt) =
∫ ∞

0

(
λ

λ0

)2

exp

(
− λ

λ0
[1 + λ0Δt]

)
dλ, (14)
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which corresponds to the integral
∫ ∞

0 x2eaxdx = −2/a3 using
a = −(1 + λ0Δt)/λ0 and thus has the solution P (Δt) =
−2/(a3λ2

0), i.e.,

P (Δt) = 2λ0

(1 + λ0Δt)3
. (15)

For very large waiting times (Δt � 1/λ0) it approaches the
power-law limit P (Δt) ≈ (2/λ2

0)Δt−3 (see Figure 1, fourth
panel). This fourth case defined by Equations (13)–(15) cor-
responds to the model of Wheatland (2000), which yields a
somewhat too steep power-law slope when compared with
observations.

The fifth case has an exponentially growing occurrence rate,
multiplied with a reciprocal factor, i.e.,

f (λ) = λ−1 exp

(
− λ

λ0

)
(16)

and fulfills the normalization
∫ ∞

0 λf (λ)dλ = λ0. The waiting
time distribution can then be written with Equation (8) as

P (Δt) =
∫ ∞

0

(
λ

λ0

)
exp

(
− λ

λ0
[1 + λ0Δt]

)
dλ, (17)

which, when defining a = −(1 + λ0Δt)/λ0, corresponds to
the integral

∫
xeaxdx = (eax/a2)(ax − 1) and has the limit∫ ∞

0 xeaxdx = 1/a2, yielding the solution P (Δt) = 1/(a2λ2
0),

i.e.,

P (Δt) = λ0

(1 + λ0Δt)2
. (18)

For very large waiting times (Δt � 1/λ0) it approaches the
power-law limit P (Δt) ≈ (1/λ2

0)Δt−2 (see Figure 1, bottom
panel), which seems to fit the observations better than the fourth
case used in Wheatland (2000).

Thus, we learn from the last four examples that most contin-
uously changing occurrence rates produce power-law-like wait-
ing time distributions with slopes of p � 2, . . . , 3 at large
waiting times, despite the intrinsic exponential distribution that
is characteristic to stationary Poisson processes. If the variabil-
ity of the flare rate is gradual (third and fourth cases in Figure 1),
the power-law slope of the waiting time distribution is close to
p � 3. However, if the variability of the flare rate shows spikes
like δ-functions (Figure 1, bottom), which is highly intermittent
with short clusters of flares, the distribution of waiting times
has a slope closer to p ≈ 2. This phenomenon is also called
clusterization and has analogs in earthquake statistics, where
aftershocks appear in clusters after a main shock (Omori’s law).
Thus, the power-law slope of waiting times contains essential
information whether the flare rate varies gradually or in form of
intermittent clusters.

3. DATA ANALYSIS

We present an analysis of the waiting time distribution of solar
flares observed in hard X-rays, using flare catalogs obtained
from the Ramaty High Energy Solar Spectroscopic Imager
(RHESSI), the Compton Gamma Ray Observatory (CGRO), and
the Solar Maximum Mission (SMM), and also model previously
published data sets from SMM (Pearce et al. 1993), GRANAT
(Crosby 1996), and ISEE-3 (Wheatland et al. 1998).

3.1. RHESSI Waiting Time Analysis

RHESSI (Lin et al. 2002) was launched on 2000 February 5
and is still operating at the time of writing, for a continuous
period of eight years. The circular spacecraft orbit has a mean
period of 96 minutes (1.6 hr), a mean altitude of 600 km, and an
inclination of 38◦ with respect to the equator, so the observing
mode is interrupted by gaps corresponding to the spacecraft
night (with a duration of about 35% of the orbit), as well as
some other data gaps when flying through the South Atlantic
Anomaly (SAA). These data gaps introduce some systematic
clustering of waiting times around an orbital period (≈1.6 hr).

We are using the official RHESSI flare list (which can be
downloaded from the RHESSI Web page http://hesperia.gsfc.
nasa.gov/rhessidatacenter/). We are using data from the first
six years of the mission (from 2002 February 12 to 2007
December 31), when a uniform threshold for flare detection
was applied; a lower threshold was applied after this pe-
riod. We include all flare events that have a solar origin, in
the sense that they could be imaged in the energy range of
12–25 keV. The complete event catalog (sampled up to 2010
February 1) contains n = 52,014 events, of which 12,379 have
been confirmed to be solar. The number of confirmed solar
flare events we are using from the first six years includes 11,594
events, which corresponds to a mean flare rate of 〈λ〉 ≈ 5.5
events per day during 2002–2007.

A time series of the daily RHESSI flare rate is shown in
Figure 2 (top panel). The mean annual flare rate clearly drops
systematically from 2002 to 2008, but the daily fluctuations
are larger than the slowly varying mean trend. We calculate
the waiting times simply from the time difference between two
subsequent flare events,

Δti = ti − ti−1. (19)

If we plot the waiting time distribution on a log–log scale
(Figure 2, bottom right), we see that the waiting time distribution
N (Δt) = nP (Δt) can approximately be fitted with a power-
law function, i.e., N (Δt) ∝ Δt−p, with a power-law slope of
p ≈ 2.0. However, there is some clustering of events above one
orbital period of Δt � torbit ≈ 1.6 hr, as well as at the second to
fourth harmonics of the orbital period (Figure 1, bottom left),
which are caused by several reasons. The first reason is that
events that start at spacecraft night cannot be detected until the
spacecraft comes out of the night part of the orbit, causing some
clustering after one full orbital period. The second reason is that
large events that extend over more than one full orbital period
are double-counted in each subsequent orbit. These instrumental
biases have been modeled with Monte Carlo simulations in
previous waiting time studies (e.g., Biesecker 1994), but instead
of correcting for these erroneous waiting times, we will just
exclude the range of Δt ≈ (0.5–2) × torbit (≈0.4–2.4 hr) in the
fits of waiting time distributions.

Thus, our first result is that the waiting time distribution of
RHESSI flares is approximately consistent with a power-law
distribution in the time range of Δt ≈ 1–1000 hr, with a power-
law slope of p ≈ 2.0. For a nonstationary Poisson process,
we expect power-law slopes in the range of p ≈ 2.0, . . . , 3.0
(Figure 1), so the measured distribution is close to what
the theory predicts for very intermittently varying flare rates
(Figure 1, bottom). The high degree of intermittency is indeed
clearly recognizable in the data (Figure 2, top panel), where
the short-term fluctuations are much faster than the long-term
trend. One might subdivide the flare activity into two states, i.e.,

http://hesperia.gsfc.nasa.gov/rhessidatacenter/
http://hesperia.gsfc.nasa.gov/rhessidatacenter/
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Figure 2. Top: flare rate per day observed with RHESSI during 2002–2009, containing a total of 52,014 events. Quiescent time intervals with Δt > 5 hr are marked
in the form of a “bar code” at the top of the panel. Bottom left: the frequency distribution of waiting times N (Δt) is shown for short time intervals Δt � 10 hr, which
shows peaks at subharmonics of the orbital period of ≈ 1.6 hr. Bottom right: the longer waiting time intervals Δt ≈ 2–24 hr can be fitted with a power-law function
with a slope of p = 2.0.

“quiescent” and “flare-active” states, similar to the quiescent
periods (soft state) and active periods (hard state) of pulses
from accretion disk objects and black hole candidates (e.g.,
Cygnus X-1; Mineshige et al. 1994). We indicate quiescent
periods with waiting times Δt � 5 hr in Figure 2 (top panel),
where it can be seen that they occur every month through all eight
years, but more frequently during the (extended) solar minimum
(2006–2008). Thus, flare-active periods are very intermittent
and do not last contiguously over extended periods of time. The
situation is also similar to earthquakes, where aftershocks appear
clustered in time intervals after larger main shocks (Omori’s
law).

In the next step, we investigate the effect of flux thresh-
olds in the event definition on the distribution of waiting
times, an issue that has been raised in previous studies (e.g.,
Buchlin et al. 2005; Hamon et al. 2002). Hamon et al. (2002) find
for the Olami–Feder–Christensen model (Olami et al. 1992),
which is a cellular automaton model for systems with self-
organized criticality, that event definitions without any thresh-
old lead to stretched exponential waiting time distributions,
while threshold-selected events produce an excess of longer
waiting times. We investigate this problem simply by apply-
ing various flux thresholds to the RHESSI flare catalog, e.g.,
P = 10, 100, 300, 1000, 3000 counts s−1 and by re-sampling
the waiting times for events above these flux thresholds. The
corresponding six waiting time distributions are shown in
Figure 3, which contain n = 11,594 events detected without
a threshold, and nT = 9596, 2038, 781, 271, and 108 events for
the thresholded subsets. The waiting time distributions clearly
show an increasing excess of longer waiting times with progres-
sively higher thresholds, which is expected due to the filtering
out of shorter time intervals between flares with weaker fluxes

below the threshold. Based on the reduction in the number n
of events as a function of the flux threshold, we can make a
prediction how the mean waiting time interval increases with
increasing threshold, namely a reciprocal relationship, since the
total duration T of waiting times is constant,

T =
n∑
i

Δti = 〈n〉〈Δt〉 = 〈nT 〉〈Δt〉T . (20)

Thus, from the number of events nT detected above a selected
threshold we can predict the mean waiting time,

〈Δt〉T = 〈n〉
〈nT 〉 〈Δt〉. (21)

Using the full set of data with 〈n〉 = 11,594 events and a
mean waiting time of 〈Δt〉 = 0.71 hr (Figure 3, top left),
we can predict the distributions and average waiting times
for the thresholded subsets, based on their detected numbers
nT using Equation (21): 〈Δt〉T = 0.9, 4.0, 10.5, 30.4, 76.3 hr.
We fit our theoretical model of the waiting time distribution
(Equation (18)) of a nonstationary Poisson process and predict
the distributions for the threshold data sets, using the scaling
of the predicted average waiting times 〈Δt〉T . The predicted
distributions (thick curves in Figure 3) match the observed
distributions of thresholded waiting times (histograms with error
bars in Figure 3) quite accurately, and thus demonstrates how
the waiting time distribution changes in a predictable way when
flux thresholds are used in the event selection.

Regarding the mean flare waiting time we have to distinguish
between the theoretical model value Δt0 and the mean detected
interval 〈Δt〉obs. The theoretical value is calculated based on
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Figure 3. Waiting time distributions for six different subsets of the data selected by thresholds, P � 0, 10, 100, 300, 1000, 3000 counts s−1. The full distribution (with
no threshold) is fitted with a model of a nonstationary Poisson process (Equation (18)) with a power-law slope of = 2 (thick solid curve in the top left panel). The same
model functions are predicted (using the scaling of Equation (21)) for the threshold-selected five subsets based on the number of detected events above the threshold.

a complete distribution in the range of Δt = [0,∞]. For
RHESSI data we obtain a value of Δt0 = 0.71 hr. For the
observational value, which is about the total observing time
span (≈5.8 yr) multiplied with the spacecraft duty cycle, which
is about q = 0.65 for RHESSI (based on spacecraft nights
with a length of 32–38 minutes), and divided by the number
of observed events n, we obtain a mean time interval of
〈Δt〉obs = T q/n = 5.8 × 365 × 24 × 0.65/11, 594 ≈ 3.0 hr.
This value is about a factor of 4 longer than the theoretical
value. This discrepancy results from either missing short waiting
times predicted by the model (since the observed distribution
falls off at waiting times of Δt � 0.02 hr, i.e., ≈1 minute), or
because the model overpredicts the maximum flare rate, and
thus needs to be limited at the maximum flare rate or lower
cutoff of waiting times. Nevertheless, whatever lower cutoff of

observed waiting times or flux threshold is used, the theoretical
value Δt0 always indicates where the breaking point is in the
waiting time distribution, between the power-law part and the
rollover at short waiting times.

3.2. BATSE/CGRO Waiting Time Analysis

The CGRO was launched on 1991 April 5, and de-orbited on
2000 June 4. The CGRO spacecraft had an orbit with a period
of torbit ≈ 1.5 hr also and thus is subject to similar data gaps as
we discussed for RHESSI, which causes a peak in the waiting
time distribution around Δt ≈ (0.5–1.1)torbit.

We use the solar flare catalog from the Burst and Transient
Source Experiment (BATSE) on board CGRO, which is accessi-
ble at the NASA/GSFC homepage, http://umbra.nascom.nasa.
gov/batse/. Here, we use a subset of the flare catalog obtained

http://umbra.nascom.nasa.gov/batse/
http://umbra.nascom.nasa.gov/batse/
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Figure 4. Waiting time distributions of six different data sets: HXRBS/SMM (top left and right), WATCH/GRANAT (middle left), ISEE-3/ICE (bottom left),
BATSE/CGRO (middle right), and RHESSI (bottom right). The distribution of the observed waiting times is shown with histograms, fits of nonstationary Poisson
processes with dashed curves (with a power-law tail with slope of p = 2), and the best fit in the fitted range with thick solid curves. Power-law fits in the range of
Δt ≈ 0.1–2.0 hr as fitted in the original publications (Pearce et al. 1993; Crosby 1996) are also shown (straight line and slope p). The excess of events with waiting
times near the orbital period (torbit ≈ 1.6 hr) is an artificial effect and is not included in the model fits.

during the maximum of the solar cycle between 1991 April 19
and 1993 November 12, containing 4113 events during a span
of 1.75 years, yielding a mean event rate of 〈λ〉 ≈ 6.4 events per
day. BATSE has eight detector modules, each one consisting of
an uncollimated, shielded NaI scintillation crystal with an area
of 2025 cm2, sensitive in the energy range of 25 keV–1.9 MeV
(Fishman et al. 1989).

The waiting time distribution obtained from BATSE/CGRO
is shown in Figure 4 (middle right), which ranges from Δt ≈
0.01 hr up to ≈200 hr. We fit the same theoretical model of
the waiting time distribution (Equation (18)) as for RHESSI,
and the power-law slope of p = 2 fits equally well. Since the
obtained mean flare rate (Δt0 = 0.92 hr) is similar to RHESSI
(Δt0 = 0.71 hr), the thresholds for selected flare events seems
to be compatible.

3.3. HXRBS/SMM Waiting Time Analysis

While RHESSI observed during the solar cycles 23 and 24,
CGRO observed the previous cycles 22 and 23, and the SMM
the previous ones, 21 and 22, none of them overlapping with
each other. SMM was launched on 1980 February 14 and lasted
until orbit decay on 1989 December 2. The hard X-ray burst
spectrometer (HXRBS; Orwig et al. 1980) is sensitive in the
range of 20–260 keV and has a detector area of 71 cm−2. The
orbit of SMM initially had a height of 524 km and an inclination
of 18.◦6, which causes similar data gaps as RHESSI and CGRO.
HXRBS recorded a total of 12,772 flares above energies of
�20 keV during a life span of 9.8 yr, so the average flare rate
is 〈λ〉 ≈ 3.6 flares per day, which is about half that of BATSE
and slightly less than RHESSI, which results as a combination
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of different instrument sensitivities, energy ranges, and flux
thresholds.

The waiting time distribution obtained from HXRBS/SMM
is shown in Figure 4 (top right), which has a similar range
of Δt ≈ 0.01–500 hr as BATSE and RHESSI. We fit the
same waiting time distribution (Equation (18)) with a power-
law slope of p = 2 and find similar best-fit value for the
average waiting times, i.e., Δt0 = 1.08 hr, so the sensitivity and
threshold is similar. Also, the orbital effects modify the observed
distributions exactly the same way. Thus, we can interpret the
distributions of waiting times for HXRBS in the same way as
for BATSE and RHESSI, in terms of a nonstationary Poisson
process with high intermittency.

An earlier study on the waiting time distribution of HXRBS/
SMM flares was published by Pearce et al. (1993), containing
a subset of 8319 events during the first half of the mission,
1980–1985 (Figure 4, top left panel). However, the published
distribution contained only waiting times in a range of Δt =
1–60 minutes (≈0.02–1.0 hr) and was fitted with a power-
law function with a slope of p = 0.75 ± 0.1 (Pearce et al.
1993; Figure 5 therein). We fitted the same intermediate range
of waiting times (Δt ≈ 0.1–1.0 hr) and found similar power-
law slopes, i.e. p ≈ 0.72 for HXRBS, p = 0.84 for BATSE,
and p = 0.65 for RHESSI, so all distributions seem to have
a consistent slope in this range. This partial power-law fits are
indicated with a straight line in the range of Δt ≈ 0.02–1.0 hr
in all six cases shown in Figure 4. However, the waiting time
distribution published by Pearce et al. (1993) extends only over
1.7 orders of magnitude, and thus does not reveal the entire
distribution we obtained over about 5 orders of magnitude with
HXRBS, BATSE, and RHESSI. If we try to fit the same waiting
time distribution (Equation (18)) to the data set of Pearce et al.
(1993), we obtain a similar fit but cannot constrain the power-
law slope for longer waiting times.

3.4. WATCH/GRANAT Waiting Time Analysis

A waiting time distribution of solar flares has earlier been pub-
lished using WATCH/GRANAT data (Crosby 1996), obtained
from the Russian GRANAT satellite, which was launched on
1989 December 1. GRANAT has a highly eccentric orbit with
a period of 96 hr, a perigee of 2000 km, and an apogee of
200,000 km. Such a high orbit means that the spacecraft can
observe the Sun uninterrupted without Earth occultation (i.e.,
no spacecraft night), which makes the waiting time distribution
complete and free of data gaps. WATCH is the Wide Angle Tele-
scope for Cosmic Hard X-Rays (Lund 1981) and has a sensitive
detector area of 95 cm2 in the energy range of 10–180 keV.

Waiting time statistics was gathered during four time
epochs: 1990 January–December, 1991 April–December, 1992
January–April, and 1992 July. Crosby (1996) obtained a waiting
time distribution for n = 182 events during these epochs with
waiting times in the range of Δt ≈ 0.04–15 hr. The distribution
was found to be a power law with a slope of p = 0.78 ± 0.13 in
the range of Δt � 3 hr, with an exponential falloff in the range of
Δt ≈ 3–15 hr. We reproduce the measured waiting time distri-
bution of Crosby (1996; Figure 5.16 therein) in Figure 4 (middle
left panel) and are able to reproduce the same power-law slope
of p = 0.78 by fitting the same range of Δt ≈ 0.1–2.0 hr
as fitted in Crosby (1996). We also fitted the model of the
waiting time distribution for a nonstationary Poisson process
(Equation (18)) and find a similar mean waiting time of
Δt0 = 0.97 hr (Figure 4), although there are no data for wait-
ing times longer than �15 hr. Thus, the partial distribution

measured by Crosby (1996) is fully consistent with the
more complete data sets analyzed from HXRBS/SMM,
BATSE/CGRO, and RHESSI.

3.5. ISEE-3/ICE Waiting Time Analysis

Another earlier study on waiting times of solar flare hard
X-ray bursts was published by Wheatland et al. (1998), which
is of great interest here because it covers the largest range of
waiting times analyzed previously and the data are not affected
by periodic orbital data gaps. The International Sun–Earth/
Cometary Explorer (ISEE-3/ICE) spacecraft was inserted into
a “halo” orbit about the libration point L1 some 240 Earth radii
upstream between the Earth and the Sun. This special orbit
warrants uninterrupted observations of the Sun without orbital
data gaps. ISEE-3 had a duty cycle of 70%–90% during the first
five years of observations and was falling to 20%–50% later on.
ISEE-3 detected 6919 hard X-ray bursts during the first eight
years of its mission, starting in 1978 August.

Wheatland et al. (1998) used a flux selection of >
4 photons cm−2 s−1 to obtain a near-complete sampling of
bursts, which reduced the data set to n = 3574 events. The re-
sulting waiting time distribution extends over Δt ≈ 0.002–14 hr
and could not be fitted with a single nonstationary process,
but rather exhibited an overabundance of short waiting times
Δt � 0.2 hr (Wheatland et al. 1998). We reproduce the measured
waiting time distribution of Wheatland et al. (1998; Figure 2
therein) in Figure 4 (bottom left panel) and fit the combined
waiting time distribution of a nonstationary Poisson process
(Equation (18)) and an exponential random distribution for the
short waiting times (Equation (1)). We find a satisfactory fit with
the two waiting time constants Δt0 = 0.03 hr and Δt1 = 1.84 hr.
The primary component of Δt0 = 0.03 hr (≈ 2 minutes) is much
shorter than for any other data set, which seems to correspond
to a clustering of multiple hard X-ray bursts per flare, but is con-
sistent with a stationary random process itself. The secondary
component contains 45% of the hard X-ray bursts and has a
waiting time scale of Δt1 = 1.84 hr. This component seems to
correspond to the generic waiting time distribution we found
for the other data, to within a factor of 2. Since there are no
waiting times longer than 20 hr, the power-law section of the
distribution is not well constrained for longer waiting times, but
seems to be consistent with the other data sets.

4. CONCLUSIONS

We revisited three previously published waiting time dis-
tributions of solar flares (Pearce et al. 1993; Crosby 1996;
Wheatland et al. 1998) using data sets from HXRBS/SMM,
WATCH/GRANAT, and ISEE-3/ICE and analyzed three ad-
ditional data sets from HXRBS/SMM, BATSE/CGRO, and
RHESSI. While the previously published studies arrive at three
different interpretations and conclusions, we are able to recon-
cile all data sets and the apparent discrepancies with a unified
waiting time distribution that corresponds to a nonstationary
Poisson process in the limit of high intermittency. Our conclu-
sions are the following.

1. Waiting time statistics gathered over a relatively small range
of waiting times, e.g., � 2 decades as published by Pearce
et al. (1993) or Crosby (1996), does not provide sufficient
information to reveal the true functional form of the
waiting time distribution. Fits to such partial distributions
were found to be consistent with a power-law function
with a relatively flat slope of p ≈ 0.75 in the range
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of Δt ≈ 0.1–2.0 hr, but this power-law slope does not
extend to shorter or longer waiting times, and thus is not
representative for the overall distribution of waiting times.

2. Waiting times sampled over a large range of 5–6 decades
all reveal a nonstationary waiting time distribution with a
mean waiting time of Δt0 = 0.80 ± 0.14 hr (averaged from
WATCH/GRANAT, HXRBS/SMM, BATSE/CGRO, and
RHESSI) and an approximate power-law slope of p ≈ 2.0.
This value of the power-law slope is consistent with a
theoretical model of highly intermittently variations of the
flare rate, in contrast to a more gradually changing flare
rate that would produce a power-law slope of p ≈ 3.0.
Waiting time studies with solar flares observed in soft
X-rays (GOES) reveal power-law slopes in the range from
p ≈ 1.4 during the solar minimum to p ≈ 3.2 during the
solar maximum (Wheatland & Litvinenko 2002), which
would, according to our model, correspond to a rather
gradual variation of the flare rate with few quiescent periods
during the solar maximum, but a high intermittency with
long quiescent intervals during the solar minimum. The
flare rate essentially rarely drops to a low background
level during the solar maximum, so long waiting times are
avoided, and the frequency distribution is steeper due to the
lack of long waiting times.

3. For the data set of ISEE-3/ICE there is an overabundance of
short waiting times with a mean of Δt = 0.03 hr (2 minutes),
which seems to be associated with the detection of clusters
of multiple hard X-ray bursts per flare (Wheatland et al.
1998).

4. The threshold used in the detection of flare events modifies
the observed waiting time distribution in a predictable
way. If a first sample of n1 flare events is detected with
a low threshold and a second sample of n2 events with
a high threshold, the waiting time distributions of the
form N (Δt) = (1/Δti)/(1 + Δt/Δti)2 relate to each other
with a reciprocal value for the mean waiting time, i.e.,
Δt2/Δt1 = (n1/n2). This relationship could be confirmed
for the RHESSI data set for six different threshold levels.

The main observational result of this study is that the waiting
time distribution of solar flares is consistent with a nonstationary
Poisson process, with a highly fluctuating variability of the
flare rate during brief active periods, separated by quiescent
periods with much lower flaring variability. This behavior is
similar to the quiescent periods (soft state) and active periods
(hard state) of pulses from accretion disk objects and black
hole candidates (Mineshige et al. 1994), or to the two types of
low- and high-latitude particle precipitation events that cause
magnetospheric substorms with different waiting time statistics
(Uritsky et al. 2009). The fact that solar flares are consistent
with a nonstationary Poissonian process does not contradict
interpretations in terms of self-organized criticality (Bak et al.
1987, 1988; Lu & Hamilton 1991; Charbonneau et al. 2001),
except that the input rate or driver is intermittent. Alternative
interpretations, such as intermittent turbulence, have also been
proposed to drive solar flares (Boffetta et al. 1999; Lepreti et al.
2001), but they have not demonstrated a theoretical model that
correctly predicts the waiting time distribution over a range
of 5 orders of magnitude, as observed here with five different
spacecraft.
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