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Abstract. The evolution of structures associated with mir-
ror modes during their flow in the Earth’s magnetosheath is
studied. The fact that the related magnetic fluctuations can
take distinct shapes, from deep holes to high peaks, has been
assessed in previous works on the observational, modeling
and numerical points of view. In this paper we present an
analytical model for the flow lines and velocity magnitude
inside the magnetosheath. This model is used to interpret al-
most 10 years of Cluster observations of mirror structures:
by back tracking each isolated observation to the shock, the
“age”, or flow time, of these structures is determined together
with the geometry of the shock. Using this flow time the
evolutionary path of the structures may be studied with re-
spect to different quantities: the distance to mirror threshold,
the amplitude of mirror fluctuations and the skewness of the
magnetic amplitude distribution as a marker of the shape of
the structures. These behaviours are confronted to numerical
simulations which confirm the dynamical perspective gained
from the association of the statistical analysis and the ana-
lytical model: magnetic peaks are mostly formed just behind
the shock and are quickly overwhelmed by magnetic holes
as the plasma conditions get more mirror stable. The am-
plitude of the fluctuations are found to saturate before the
skewness vanishes, i.e. when both structures quantitatively
balance each other, which typically occurs after a flow time
of 100–200 s in the Earth’s magnetosheath. Comparison with
other astrophysical contexts is discussed.
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1 Introduction

Mirror modes have been studied extensively in recent years
both by theoretical and observational means. Despite this ac-
tivity a global physical description is still lacking. Mirror
modes are mostly studied in the framework of the mirror in-
stability which develops in anisotropic plasma (T⊥/T‖ > 1)
with large β although alternative views exist (Stasiewicz,
2004). Theoretical studies are generally confined to a certain
regime of parameters: close/far from instability threshold
(Hellinger, 2007; Califano et al., 2008) or type of approach
(linear Hall MHD (Hau et al., 2005), Landau fluid model re-
taining finite Larmor radius corrections (Passot et al., 2006),
kinetic theory (Hasegawa, 1969; Hall, 1979). Observational
works (Kaufmann et al., 1970; Gary et al., 1993; Fazakerley
and Southwood, 1994; Schwartz et al., 1996; Bavassano Cat-
taneo et al., 1998; Horbury et al., 2004; Lucek et al., 2001),
on the other hand, inherently lack the dynamical view nec-
essary for a full understanding of the processes at work. In-
deed mirror structures evolve significantly during their travel
from the bow shock, where the instability is supposedly trig-
gered, to the depletion layer close to the magnetopause or
flank magnetosheath. In the following we propose to infer
the history of observed plasma structures from an analytical
magnetosheath model. By assuming that mirror structures
are created at, or close to the shock, we use this model to
gain an understanding of the structure evolution.

The rationale in the development of a “light” model is
its ability to be used in the context of large scale statistical
analysis and in the perspective of extending the result ob-
tained in a previous paper (Génot et al., 2009a). We base
our approach on the one developed inTátrallyay and Erd̈os
(2002) andTátrallyay et al.(2008), two studies which make
use of a magnetic field model initially exposed inKobel and
Flückiger (1994) (hereafter KF model). In the following
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Fig. 1. Flow lines in the XY plane with parabolic models for the shock (Rbs =12.8 RE) and the

magnetopause (Rmp =9.8 RE). These lines corresponds to the magnetic field lines of the KF model

for an IMF aligned with the Sun-Earth line. Crosses are superposed on each line and correspond

to elapsed times (flow times) of 100s, 200s, 300s, ... from the shock crossing. The striped region

corresponds to flow times in the 100s-200s range (vSW =400 km/s).
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Fig. 1. Flow lines in the XY plane with parabolic models for
the shock (Rbs= 12.8RE) and the magnetopause (Rmp = 9.8RE).
These lines corresponds to the magnetic field lines of the KF model
for an IMF aligned with the Sun-Earth line. Crosses are superposed
on each line and correspond to elapsed times (flow times) of 100 s,
200 s, 300 s, . . . from the shock crossing. The striped region corre-
sponds to flow times in the 100 s–200 s range (vSW= 400 km s−1).

we shall use this model to obtain the flow lines pattern in
the magnetosheath. However we shall refine our approach
concerning the velocity distribution to include 3-D aspects
to be used in the observational context. More refined ana-
lytic models of magnetosheath magnetic field than the KF
model have been proposed.Kallio and Koskinen(2000) de-
veloped a semi-empirical 3-D magnetosheath model. They
use parabolic coordinates and an analytic expression for
the 3-D velocity field from which the magnetic field is de-
rived assuming the frozen-in-the-flow condition. An analytic
magnetospheric model must also be supplied.Romashets
et al. (2008) developed a model also considering parabolic
bow shock and magnetopause. The magnetic field is de-
termined from a vector potential after specifying Rankine-
Hugoniot relations at the shock and a dipolar magnetospheric
field. Analytical expressions obtained in these studies are far
less tractable than those fromKobel and Fl̈uckiger(1994)’s
model which will be preferred in the present paper as it fits
our need of computational simplicity. The aim of the paper is
indeed not to accurately model the magnetosheath magnetic
and velocity fields but to make use of them in a systematic
procedure.

To locate mirror structures in the magnetosheath, previous
works (includingGénot et al., 2009a) made use of a frac-
tional distanceF in the magnetosheath between the magne-
topause (F = 0) and the shock (F = 1) which does not take
into account the history of the plasma parcel journey in the
magnetosheath. Indeed this parameterF was calculated by

tracing a ray from the Earth centre and, successively, trough
a modeled magnetopause, the observed point and a modeled
shock (see for instanceVerigin et al., 2006).

The aim in developing an analytic magnetosheath model
is two-fold:

1. the flow lines allows a correct back tracking from an ob-
servation to the originating shock crossing, enabling to
determine the shock geometry by calculating the shock
angle (w.r.t. the IMF orientation),

2. the velocity magnitude distribution inside the magne-
tosheath, together with the tracking to the shock, allows
to compute the flow time between the shock crossing
and a given observation in the magnetosheath.

This applies to a plasma parcel or blob which propagates with
a velocity negligible with respect to the flow velocity. Non
propagating mirror modes are very well suited in that respect.

In the following section of the paper we expose our mag-
netosheath model which is used to analyse observations. An-
alytic developments are deferred to the Appendix. In the
third section we present the magnetosheath observations and
the way mirror structures are selected. The fourth section
before the conclusion is devoted to the discussion of the re-
sults of the statistical analysis taking into account the novel
information provided by the model.

2 Magnetosheath model

The velocity is the crucial quantity to model: the vector
enables to computes the flow lines in the magnetosheath,
whereas the magnitude is necessary to compute the flow time
between the shock and a given position or observation. Both
aspects are now addressed.

2.1 Flowlines

Similarly to the work ofTátrallyay and Erd̈os (2002) and
Tátrallyay et al.(2008) the flow lines are calculated from
the KF model. The KF model is an analytic model origi-
nally developed for the magnetosheath magnetic field. It is
based on parabolic shapes for the shock and magnetopause
and takes the IMF as input. Specifically the magnetic field
lines of the KF model for the caseB IMF = (Bx,0,0)GSE are
identical to the plasma flow lines (i.e. whenB IMF is nor-
mal to the shock at the subsolar point). Assuming that the
flow properties in the magnetosheath do not depend on the
IMF orientation, the flow lines for all IMF orientation are
exactly given by the magnetic field lines for this particular
caseB IMF = (Bx,0,0)GSE. This is illustrated on Fig.1. The
flow lines satisfy the relationvx,y,z/vz,x,y = Bx,y,z/Bz,x,y.
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2.2 Flowtime

To compute the velocity magnitude requires more caution.
We start from the stationary situation for which

div(ρv) = divB = 0, (1)

and we look for solution of the form

ρv = CB +rot8, (2)

whereC is a function of the position and8 a vector. Fol-
lowing the above hypothesis (the flow lines are identical
to the magnetic field lines of the KF model forB IMF =

(Bx,0,0)GSE) we shall assume thatrot8 = 0. To satisfy
Eq. (1) C must also be constant along a flow line, i.e.
∇C ·B = 0. Therefore the equation

ρv = CB (3)

must be satisfied along a given flow line and in particular
just behind the shock on the magnetosheath side.C may
therefore be written

C = ρbs
vx

Bx
(4)

whereρbs is the magnetosheath density just behind the shock
and vx and Bx are the components of the velocity and
magnetic field vectors downstream of the shock which can
be determined by the Rankine-Hugoniot relations (see Ap-
pendix A for details). Finally our modeled velocity is given
by

v =
ρbs

ρ

vx

Bx
B (5)

At this stage the density profile in our modeled magne-
tosheath is unknown. We envisaged three approaches: (1) a
constant density, (2) a density satisfying the condition∇ρ ·

v = 0, i.e. the density is constant along a flow line, and (3) a
specific density profile. The two first approaches are equiva-
lent to considering the simpler expressionv = CB in lieu of
Eq. (3) and thereforev is given by

v =
vx

Bx
B (6)

Although this gives satisfactory results for the general ve-
locity magnitude, it has the tendency to underestimate the
velocity close to the magnetopause. To circumvent this is-
sue we shall use the third approach by considering a density
profile with a constant value from the shock to a distance
close to the magnetopause and a sharp decrease (of a factor
1.25) thereafter. Such a configuration models the depletion
layer close the magnetopause. Our reduction factor is con-
servative compared to the values between 1.5 and 2 which
are indeed observed in the subsolar region (Paschmann et al.,
1978). However it should be noted that, in our crude model,
this value is constant along the entire magnetopause whereas
the 1.5–2 factors are observed at the subsolar point where the

Fig. 2. Density profile in the magnetosheath exhibiting a depletion layer close to the magnetopause

(with a 20% decrease). The coordinate system is the one used in the KF magnetic field model

(Rbs =12.8 RE and Rmp =9.8 RE are used).

24

Fig. 2. Density profile in the magnetosheath exhibiting a deple-
tion layer close to the magnetopause (with a 20 % decrease). The
coordinate system is the one used in the KF magnetic field model
(Rbs= 12.8RE andRmp= 9.8RE are used).

depletion process is enhanced (by increased magnetic pile-
up). Smaller values are expected on the flanks. We chose the
following expression whereρmp is the magnetosheath den-
sity close to the magnetopause:

ρ

ρbs
=

ρmp

ρbs
+(1−

ρmp

ρbs
)× tanh

(
α

ν −νmp

νbs−νmp

)
(7)

with ρmp/ρbs = 0.8, α = 4 and whereνbs and νmp are the
parabolic parameters associated to the shock and the mag-
netopause locations respectively. They are defined in the
KF model asνbs=

√
2Rbs−Rmp andνmp =

√
Rmp. ν is the

parabolic coordinate which varies betweenνbs andνmp and
Rbs andRmp are the stand-off positions of the shock and the
magnetopause respectively. The density profile is shown on
Fig. 2.

With the above assumptions it is possible to compute the
velocity magnitude in the 3-D magnetosheath. The velocity
contours in the XY plane are shown on Fig.3. Consistently
the velocity strongly decreases close to the nose of the mag-
netopause and increases in the flank of the magnetosheath.
These contours compare very well with those obtained from
gas dynamics models, for instance the one bySpreiter et al.
(1966) (for which the shock and magnetopause surfaces are
not parabolic). The comparison with their Fig. 7 (computed
for MA = 8 andγ = 2) shows that in our model contours
are more curved in the middle magnetosheath which implies
slightly smaller velocities compared to gas dynamics values.
In both models the Y-axis intersects thev/vSW = 0.75 con-
tour in a similar region (vSW is the solar wind velocity).

To follow the evolution of convected mirror structures,
which are inherently linked to the growth of the mirror insta-
bility, the cyclotron gyroperiod is the relevant characteristic
time. Similarly to what is done in hybrid simulation model-
ing (see the discussion in Sect. 4) this characteristic time is
used for normalization, by evaluating it in the magnetosheath
side just behind the shock (using our flowline model, the
IMF magnitude and the shock parameterR described in Ap-
pendix A).
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Fig. 3. Velocity contours in the XY plane with parabolic models for the shock (Rbs =12.8 RE) and

the magnetopause (Rmp =9.8 RE). Each contour value (from 0.1 to 0.7) represents the ratio of the

magnetosheath velocity v to the solar wind velocity vSW (the upper one is 0.7).
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Fig. 3. Velocity contours in theXY plane with parabolic models for
the shock (Rbs= 12.8RE) and the magnetopause (Rmp = 9.8RE).
Each contour value (from 0.1 to 0.7) represents the ratio of the mag-
netosheath velocityv to the solar wind velocityvSW (the upper one
is 0.7).

Finally the flowtimeT along a given magnetosheath flow-
line and normalized to the “magnetosheath side” shock gy-
roperiod is given by the integral

T =
q

m
BMS(shock)

∫ observation

shock

ds

V (s)
(8)

whereBMS(shock) is the magnetosheath magnetic field just
behind the shock.

2.3 Shock angle

Once the trajectory of a plasma blob is tracked back to the
shock along its associated flowline, it is possible to compute
the shock normal and therefore the angle between this normal
and the IMF (θBn in the following).

3 Observations

Data are selected is a similar way to the one described in
Génot et al.(2009a). We summarize the process below. The
novelty concerns the determination of (1) the flowtime since
the shock crossing and (2) the shock angle for each event
using the model described above.

3.1 Data

Almost 10 years (from 1 February 2001 to 31 Decem-
ber 2009) of the Cluster mission are considered. Cluster 1
and Cluster 3 magnetic fields (FGM,Balogh et al., 2001) and
on-board calculated ion moments (from the HIA experiment
on the CIS instrument,Rème et al., 2001) data are used at
4 s resolution. ACE plasma and IMF data are also used to
determine the magnetopause and bow shock positions, us-
ing Shue et al.(1997) andVerigin et al.(2006) models re-
spectively. From these data, we construct a “magnetosheath”
dataset which is further reduced to a “magnetosheath – mir-
ror” dataset as it is explained below. Based on the same
dataset a statistical analysis of mirror mode occurrence (lo-
calisation, fluctuation amplitude) has recently been published
by Génot et al.(2009b). The results compare favorably with
those of a study based on ten years of ISEE data (Verigin et
al., 2006). Cluster orbital configuration is ideally designed
to study the magnetosheath whose various regions are cor-
rectly sampled in our analysis, with a majority of events close
to the magnetopause. Note that for the present study the
time frame has been extended in comparison with the one
in Génot et al.(2009a). A web-based version of the statis-
tical analysis tool developed at CDPP (the French Plasma
Physics Data Centre) and used in this study is available at
the URL: http://cdpp-amda.cesr.fr. Access is granted upon
request (mail to amda@cesr.fr).

3.2 Magnetosheath identification

The first step of our analysis is to determine whether Cluster
is located in the magnetosheath. Data are analyzed by 5 min
window: a delay procedure is applied to obtain associated
solar wind and IMF parameters from ACE. Shock and mag-
netopause models, as described byVerigin et al.(2006) and
Shue et al.(1997) respectively, are computed dynamically
from these parameters in order to locate Cluster as “inside”
or ”outside” the magnetosheath.

3.3 Identification and characteristics of mirror-like
structures

The procedure used to determine the presence of mirror-
like structures and the way to characterize them depending
on their shape has been extensively exposed inGénot et al.
(2009a). For consistency we summarize here the main steps
of the procedure but we refer the reader to the previous pa-
per in which instrumental and methodological effects are dis-
cussed.

Magnetic field variations associated with mirror modes
are almost linearly polarized in the direction of the ambient
field. They may be of large amplitude (a few 10 %). From
these characteristics, a criterion has been established which
follows closely those used byTátrallyay and Erd̈os (2002);
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Soucek et al.(2008); Génot et al.(2009a,b); it requires two
conditions:

– in order to select a linear polarization with field vari-
ations in directions close to that of the ambient mag-
netic field, the angle between the maximum variance
direction and the mean magnetic field is prescribed to
be smaller than 20◦.

– to prescribe relatively large amplitude, the variance of
the field must be larger than 10 %.

In order to perform a large statistical survey we use relatively
low resolution data (4 s), which limits the lower sampled mir-
ror event size to 8 s. The above criterion is then applied to
all 5 min magnetosheath intervals selected previously. The
mean magnetic field is calculated on 10 min window, and the
Minimum Variance Analysis (MVA (Sonnerup and Cahill,
1967)) is performed on 5 min windows. At this stage, we
do not make any restriction on the values of plasma parame-
ters, as we are interested in mirror-like structures appearing
above as well as below the linear mirror instability threshold
defined below. In particular no constraint has been imposed
on the eigenvalues resulting from the MVA (see discussion
in Génot et al., 2001). In order to characterize the plasma
with respect to the mirror instability, we define the mirror
parameterCM by

CM = β⊥(T⊥/T‖ −1) (9)

where the symbols⊥ and‖ refer to the direction of the ambi-
ent magnetic field.CM −1 is then the distance to the mirror
instability threshold. The conditionCM < 1 (CM > 1) cor-
responds to mirror stable (unstable) plasma, whileCM = 1
refers to marginal stability, for which the linear growth rate is
zero. Let us note that the above expression is obtained for bi-
Maxwellian distribution functions and evaluated in the low-
frequency, long-wavelength limit of the Vlasov-Maxwell
equations for cold electrons (Hall, 1979; Hellinger, 2007).
The interested reader is referred toGénot et al.(2009a) for
further caution to take due to the specificity of the ion detec-
tor.

An automatized detection of the shape of the structures
is a prerequisite for any long term analysis.Tátrallyay and
Erdös (2005), analyzing 10 years of ISEE-1, used an algo-
rithm searching for symmetrical shapes of magnetic depres-
sions;Joy et al.(2006) proposed a statistical method based
on the determination of the background magnetic field level;
Soucek et al.(2008) defined the peakness as the skewness
of the time series representing the total wavelet content, be-
tween two chosen scales, of the original magnetic field fluc-
tuations. Here we compute the skewness (i.e. the normal-
ized third moment) of the distribution of the magnetic fluc-
tuations (δB = B− < B >, where the average<> is taken
on a 10 min window). Like for the peakness, a positive
(negative) value reflects a distribution skewed towards higher
(smaller) values, which corresponds to an interval dominated

by peaks (holes). A vanishing or small value corresponds
to sinusoidal-like (symmetric) fluctuations or alternatively to
an interval composed of peaks and holes equally distributed.
The latter regime is usually associated with transition peri-
ods. The method proved to be efficient by showing that it
correctly captures peak- or hole-filled intervals identified by
visual inspection. Finally let us recall that larger (smaller)
values of the skewness are not related to higher (deeper)
structures but to a larger deviation from the sinusoidal shape
which also translates into the presence of more isolated struc-
tures. The main result ofGénot et al.(2009a) was to reveal
a positive correlation between the skewness andCM based
on a threefold approach combining observations, numerical
simulations and theoretical modeling.

4 Results and discussion

4.1 Statistical analysis

The procedure described above has been performed and the
result are summarized on the left column of Fig. 4. The to-
tal number of events is above 25 000. As a function of the
normalized flowtimeT we plot successively the median val-
ues of the mirror instability threshold, the magnetic fluctu-
ations (obtained from the standard deviation) and the skew-
ness. The insert in the top panel shows the distribution of
mirror events as a function of the normalized flowtime. The
variation of these quantities are now compared with results
from numerical simulations.

4.2 Mirror mode dynamics: comparison with hybrid
simulations

By providing a dating time or timing, the flow time, the
magnetosheath model allows to gain a dynamical perspec-
tive which can directly be compared with simulation results.
Indeed direct simulations of the Vlasov-Maxwell equations
enables to study the evolution of mirror modes and the for-
mation of coherent structures. Here we shall refer to hybrid
simulations in an expanding box (HEB code, seeHellinger
and Tŕavńıček, 2005, and references therein). The expanding
box simulation models an evolution of a small fraction of the
plasma which expands under the effect of the global magne-
tosheath flow around the magnetospheric cavity. The model
replaces the spatial dependence by a temporal one and ne-
glects global inhomogeneities/heat fluxes (physical lengths
increase linearly with time). In this way, it provides a self-
consistent means to study the dynamical properties of waves
driven by the magnetosheath plasma. The simulation dis-
cussed hereafter is described inTrávńıček et al.(2007) and
also discussed inGénot et al.(2009a). Initial conditions cor-
respond to an homogeneous plasma only weakly unstable
with respect to the mirror and proton cyclotron instabilities:
CM = 1.4. From the simulation the skewness is evaluated
from the magnetic fluctuations in the parallel direction. The
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Fig. 4. [Left column, observations]. As a function of the normalized flow time:(top) median value

of Cm, (middle) median value of δB/B, (bottom) median value of the skewness. The error bars

are proportional to σ/
√
N where σ is the standard deviation and N is the number of mirror events

in each flow time bin (∆t =20). [Right column, simulation]. As a function of the normalized

time, and averaged in the perpendicular to B direction: (top) Cm, (middle) total δB/B (solid line),

mirror contribution (dash line) and proton cyclotron contribution (dot-dash line), (bottom) skewness

of parallel magnetic fluctuations. The insert shows the distribution of mirror events as a function of

the normalized flowtime.
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Fig. 4. Left column, observations. As a function of the normalized flow time: (top) median value ofCm, (middle) median value ofδB/B,
(bottom) median value of the skewness. The error bars are proportional toσ/

√
N whereσ is the standard deviation andN is the number

of mirror events in each flow time bin (1t = 20). Right column, simulation. As a function of the normalized time, and averaged in the
perpendicular to B direction: (top)Cm, (middle) totalδB/B (solid line), mirror contribution (dash line) and proton cyclotron contribution
(dot-dash line), (bottom) skewness of parallel magnetic fluctuations. The insert shows the distribution of mirror events as a function of the
normalized flowtime.

modeled quantities equivalent to those obtained from the sta-
tistical survey on Cluster data are plotted on the right column
of Fig. 4, apart from the wave amplitude fluctuations which
are split in contributions from the mirror wave activity and
proton cyclotron wave activity together with the total am-
plitude (second panel, no wave diagnostics were performed
beforeT ∼ 400).

In the following we give a global scenario for the develop-
ment of mirror structures based on an inter-comparison be-
tween simulations and observations illustrated on Fig. 4. At
the shock crossing temperature anisotropy is created by the

preferential heating of particle in the perpendicular direction
such that plasma conditions are well above the mirror thresh-
old (CM , see top left panel on Fig. 4). Accordingly, mirror
structures created at the shock evolve from quasi sinusoidal
fluctuations to magnetic peaks. This phase corresponds to
the growth of the skewness from small or vanishing to posi-
tive values (see bottom panels on Fig. 4). However this early
phase is very short living and quickly the peaks are super-
seded by holes, i.e. the skewness goes back to vanishing and
then negative values as plasma conditions get more mirror
stable. Both simulations and observations show this distinct

Ann. Geophys., 29, 1849–1860, 2011 www.ann-geophys.net/29/1849/2011/
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behaviour. The transition occurs atT ∼ 240 andT ∼ 1650
respectively. The physics underlying the transitional phase
from peak to hole is not fully understood although some
theoretical works have tackled this question:Passot et al.
(2006) invoked energetics considerations in an anisotropic
MHD model, whereas a dynamical kinetic model has been
proposed byKuznetsov et al.(2007) (see also the discussion
in Génot et al., 2009a).

During the early phase total and mirror amplitudes from
the simulation quickly increase and saturate. Similarly to
observations this saturation occurs when the skewness goes
to vanishing values, i.e. when unstable peaks are less and
less present to the expense of magnetic holes. After van-
ishing the skewness remains negative corresponding to the
long-term predominance of magnetic holes both in the sim-
ulation box and in the magnetosheath. In the simulation a
trend, not clearly observed in the statistical survey, shows a
reversal toward less negative skewness. This occurs when
the plasma turns stable with respect to the mirror instabil-
ity (CM < 1); accordingly the mirror wave activity decreases
and is superseded by proton cyclotron wave activity as it
is illustrated on the second panel of the right column of
Fig. 4. This behaviour (the progressive prominence of IC
waves) may be extrapolated to the magnetosheath itself but
the statistics at largeT is not sufficient to conclude. In con-
clusion, for the later phase of the simulation or for long flow
times which correspond to magnetosheath observations on
the flanks or close to the magnetopause, the plasma essen-
tially turns stable (CM < 1) which is followed by a decrease
of the fluctuation amplitude, i.e. mirror holes are slowly
damped. The existence of mirror structures for mirror sta-
ble plasma conditions has been explained by a bistability
phenomenon (Baumg̈artel, 2001; Passot et al., 2006). It was
shown that in such conditions only magnetic holes survive;
this explains why magnetic holes may be observed isolated
whereas magnetic peaks are observed in trains (filling the
whole unstable plasma volume).

Despite the good similarities in the general behaviour of
the simulation and observational approaches, a difference re-
mains concerning the temporal development of the mirror in-
stability process. The simulation time scale is indeed about
an order of magnitude larger than the observational one. The
main reason is that the simulation setting was performed (in
the original workTrávńıček et al., 2007) with the main goal
of having a good separation of expansion and proton kinetic
time scales. In any case, a precise quantification of the real
expansion time is a difficult task. According to these con-
straints the expansion time of the mimicked magnetosheath
(te, see also the Appendix B) was chosen to be on the order
of the inverse of the maximum growth rate of the proton in-
stabilities (about 1000 inverse proton gyrofrequencies,te '

γ −1
' 1000�−1

p ). The comparison with observations shows
that this choice, albeit convenient for simulation purposes, is
probably not the more appropriate to mimic the real magne-
tosheath. However other factors come into play which pre-

vent from expecting a close simulation/observations match
only by adjusting the expansion time parameter: observa-
tions are analyzed in a statistical manner where as the sim-
ulation is presented for a given set-up; furthermore, in the
simulation there is no real shock, solar wind turbulence, al-
pha particles, . . . . In conclusion the comparison can only be
qualitative based on the global variations.

The relatively quick saturation of mirror fluctuations evi-
denced here in data and simulation differs from the conclu-
sion byTsurutani et al.(2011). Indeed these authors claimed
that no saturation is evidenced inside the magnetosheath and
that the mirror fluctuations reach their maximum amplitudes
near the magnetopause. This should be nuanced. In the sta-
tistical work byGénot et al.(2009b) it was shown that the
largest mirror fluctuations were indeed observed in the mid-
dle magnetosheath (as peaks), at about a fractional distance
of one third from the magnetopause. This observation is con-
sistent with the saturation process reported here; and also
in Bavassano Cattaneo et al.(1998) which reports continu-
ous observations of mirror structures throughout the Kronian
magnetosheath, evolving from quasi-sinusoidal oscillations
at the shock, towards peaks and finally holes near the magne-
topause. A major difference between our analysis and those
of Tsurutani et al.(2011) andTátrallyay and Erd̈os (2005)
(among other) is that we are considering both peak and hole
structures whereas the above cited works only deals with
magnetic dips or magnetic decreases (MD). This difference
and its consequences have already been discussed inGénot
et al.(2009b), in particular through their Fig. 5 which shows
the distribution ofCM in a plane fractional distance – zenith
angle. In agreement with the present study it illustrates the
fact that the most mirror-unstable region is the middle mag-
netosheath (mostly filled by magnetic peaks). The large free
energy available there is a probable consequence of an ad-
ditive combination of effects: shock compression and field
line draping. Even though peaks are short living structures
(as simulations and observations show), they occur under the
most mirror unstable plasma conditions; therefore any statis-
tical survey on mirror events should encompass all structural
shapes in order to approach a full understanding. Finally the
ambivalent role of field line draping must be evoked. Indeed
the field line draping at the subsolar magnetopause is cer-
tainly a cause of increased anisotropy (this is one conclusion
of Tátrallyay and Erd̈os, 2005, based on a work byZwan and
Wolf, 1996) but it also a cause of decreasingβ through the
increase of the magnetic field and the decrease of the density
in the PDL. Therefore the plasma conditions are often stable
with respect to the mirror instability and the large amplitude
magnetic holes observed there are most probably explained
by the bi-stability process described inPassot et al.(2006)
andKuznetsov et al.(2007).

The preceding description can also be envisaged from an-
alytical considerations also used in the HEB model. Immedi-
ately after the shock crossing, the anisotropy increases what-
ever the location is in the magnetosheath (subsolar region
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or flank). This is what is observed in the simulation and in
observations although the observed anisotropy only slightly
increases after the wave saturation is reached,T ∼ 100 (for
referenceT = 100 corresponds to about 65 s; see below). In-
deed, in the case of a slow perturbation one expects that the
first and the second adiabatic invariants will be conserved as
long as wave activity is negligible. This perturbation may
be compression (subsolar region case) or expansion (flank
magnetosheath case): in both cases it can be showed that
anisotropy increases (see Appendix B) whereas the plasma
β decreases. This translates into an increase of the mirror
threshold which is readily observed in the early phase of the
mirror growth, at least until a normalized flowtimeT ∼ 40
in observations andT ∼ 350 in the simulation which corre-
sponds to the stage of wave activity growth. Then the mirror
thresholdCM decreases to reach stable plasma conditions at
longer times (the behaviour of the mirror instability threshold
CM is in agreement with the one described for the skewness
as both quantities are statistically positively correlated). It is
possible to postulate that this behavior is due to the growth
of waves which become of sufficiently high amplitudes such
that the wave-free description presented in Appendix B is
no longer valid: invariants are not longer conserved and the
simple description of the variations of the anisotropy andβ

obtained from analytical conservation does not hold. This
also expresses the fact that the free energy contained in the
anisotropy is consumed by the wave activity produced by in-
stabilities.

In conclusion simulations and observational results (the
latter being associated to the magnetosheath flow model)
show strong similarities in the general behaviour of charac-
teristic parameters tracking the mirror instability evolution.

4.3 Comparison withSoucek et al.(2008) in the
magnetosheath

The evolution of the mirror threshold in our study may be
compared to the behaviour described in Fig. 9 ofSoucek et
al. (2008): as a function ofXGSE (−4RE ≤ XGSE≤ 8RE,
corresponding to 2 months of Cluster 1 data) their statisti-
cal parameterR (equivalent to our parameterCM) slowly
decreases to reach below one values in the night side (for
XGSE' −3RE). In our analysis, the normalized flow time
for which this transition occurs isT ∼ 550: this translates
to 380 s if one assumes an average magnetosheath magnetic
field amplitude of 15 nT. A 200 km s−1 plasma flow would
then correspond to a propagation of 12RE inside the magne-
tosheath from the shock. This indeed also corresponds to the
night side of the magnetosphere for stream lines not originat-
ing too close to the subsolar region.

4.4 Comparison with observations at Jupiter

Similar to our dynamical approach is the work byJoy et al.
(2006) in which observed mirror structures (also character-

ized in hole/peak categories, with a different scheme though)
are positioned in a simulated Jovian magnetosheath (from a
global MHD simulation byOgino et al., 1998). Flow times
are computed along stream lines and show that peak struc-
tures (observed by Voyager 1, Galileo and Pioneer 11) are
mainly seen close to the shock whereas observations further
down the magnetosheath (observed by Galileo, Pioneer 11
and Ulysses) show magnetic holes. Geometrical consider-
ations in normalized (to the planetary radius) units lead to
think that the peak/hole transition occurs at the same average
location in both Earth’s and Jupiter’s magnetosheaths. The
question remains whether the flow time may also be rela-
tively compared. One should therefore consider how to scale
Jovian observations with respect to Earth’s. We identify the
following ratios (Jupiter/Earth):

– ∼11 in the planetary radius: 71 490/6380 (km),

– ∼10 in the magnetosheath size: 40/4 (planetary radii),

– ∼1/5 in the magnetosheath magnetic field amplitude:
3/15 (nT)

The Jupiter data scaled in the MHD simulation show that the
peak/hole transition occurs in the range 30–40 h. Comparing
this to the 170 s in the Earth’s case (obtained from a tran-
sition atT ∼ 240 and mean magnetic field value of 15 nT)
yields a ratio of∼1000 for the time scale. The mirror in-
stability dynamics (via its growth phase) is scaled by the
cyclotron frequency, at least in the linear phase. From the
ratios above, the growth is expected to be five times slower
in Jupiter’s magnetosheath. The peak/hole transition on the
contrary is governed by changes in local plasma conditions
(β and anisotropy, orCM) which are themselves governed by
the MHD flow around the magnetospheric obstacle (consid-
ering the solar wind to be identical). Timescales are therefore
planetary and not plasma. However one should take into ac-
count the fact that the Jovian magnetosheath flow is slower
than on Earth. This comes from the higher compressibility
of the magnetosphere due to the non negligible role of the
magnetospheric plasma in controlling the internal pressure.
This effect induces the possibility for reduced (and even sun-
ward) flows into the magnetosheath which have a global de-
celerating effect. From the simulation byOgino et al.(1998)
and computed flowtimes one deduces an average speed of
50 km s−1 which is a factor∼4 less than for the Earth case.
From scaling considerations together with this mean flow
evaluation we arrive to a factor 440 (to be compared to the
factor 1000 cited above), i.e. to a typical peak/hole transition
flowtime of 20 h (instead of 30–40 h). From the uncertainties
and different approximations made in this coarse comparison
we conclude that, despite large differences in the character-
istic length scales and plasma environments of Earth’s and
Jupiter’s magnetosheaths, the mirror peak/hole transition oc-
curs at similar (normalized) locations. These locations are
constrained by the large scale evolution of plasma parame-
ters in the magnetosheath flow.
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It should also be noted that the mirror structures observed
in both environments have a similar characteristic length
scales of 20–25 proton gyro-radii (Tsurutani et al., 1982).

5 Conclusions

In this paper it was shown how to build and use a sim-
ple analytic model of magnetosheath magnetic and veloc-
ity fields in order to obtain the timing of mirror structures,
i.e. their “age” since their formation. It is assumed that
these structures are formed at the bow shock by the tempera-
ture anisotropy which naturally develops there. The analysis
of a database of mirror events covering almost 10 years of
Cluster data shows that magnetic peaks are young structures
whereas magnetic holes are relatively aged structures, a re-
sult which was already obtained from numerical simulations.
The model helped to gain the dynamical perspective absent
from sole in-flight measurements.

The present study also emphasizes the fact that both mag-
netic peaks and holes must be considered as equally impor-
tant elements of the same evolutionary process. In order to
understand mirror mode physics, studying only one type of
structures and neglecting others may lead to partial or erro-
neous conclusions.

A coarse comparison with data from several crossings of
the Jovian magnetosheath revealed that the locations of the
peak-to-hole transition is located in similar regions than in
the Earth case when normalized quantities (magnetosheath
sizes, flows, . . . ) are considered. If the ubiquitous nature
of the mirror mode micro-physics was already assessed, the
large scale communality in the evolution of these waves is
possibly illustrated here. The dynamical scenario described
in this paper may also apply to other environments where
mirror waves were observed. For instance, and consistently
with our scenario,Burlaga et al.(2006) reported the presence
of magnetic humps behind the termination shock crossed by
Voyager 1 whereas magnetic holes were observed later and
further down in the heliosheath.

Appendix A

Rankine-Hugoniot relations

Once the location of the shock has been determined by track-
ing back the flow lines (the velocity magnitude is not re-
quired for this operation), the normal to the shock (n =

(nx,ny,nz)) is computed from the KF model. In order to
apply the transformation between the upstream/downstream
reference frame(x,y,z) and the normal/tangential(n,t) one
in which the Rankine-Hugoniot relations are expressed, po-
lar and azimuthal angles are defined (θ andφ respectively).
Transformingx into n gives the following relations:

tanθ =
nz

(n2
x +n2

y)
1/2

(A1)

and

tanφ =
ny

nx
(A2)

The incident velocityv1 is first transformed into the nor-
mal/tangential reference frame. We then apply the Rankine-
Hugoniot relationsρ1vn1 = ρ2vn2 andvt1 ' vt2 (this is com-
monly used but justified below) and rotate the velocity back
to the original reference frame. The x-component of the
downstream velocity is finally given by

v2x = ρ1/ρ2cosθ cosφ[cosφ(v1xcosθ −v1zsinθ)−v1ysinφ]

+cosθ sinφ[sinφ(v1xcosθ−v1zsinθ)+v1ycosφ] (A3)

where (v1x,v1y,v1z) is the incident solar wind velocity vec-
tor. Asv1x � v1y,v1z this relation essentially reduces to

v2x ' v1xcos2θ(1+(ρ1/ρ2−1)cos2φ) (A4)

Similarly v2y andv2z may be obtained.
v2x is the downstream velocity component which enters

into the evaluation of the parameterC given in Eq. (4). An-
other parameter which needs to be determined is the density
contrastR = ρ2/ρ1. Its exact value has however a minor in-
fluence on our modeled velocity magnitude. The exact ap-
proach is derived from the main assumption, i.e. that the ve-
locity flow lines are the magnetic field lines of the KF model
for B IMF = (Bx,0,0)GSE which may be written

vz

vx
=

Bz

Bx
(A5)

where quantities are taken in the magnetosheath. When this
is evaluated just downstream of the shock, Eqs. (A4) and
(A5) may be used together with the KF model value ofBz

Bx
to solve forR; one shows that

1

R
= 1−

Bz
Bxcos2φ

Bzcos2θ
Bx

−cosθ sinθ
(A6)

Equation (A6) enables to account for the changes in the den-
sity ratio with the position on the shock surface. Without
large discrepancies in the velocity magnitude it is alterna-
tively possible to use an empirically value derived from gas
dynamics models and which depends on the actual stand off
distances of the magnetopause and bow shock (see for in-
stanceSpreiter et al., 1966)

R =
1.1Rmp

Rbs−Rmp
(A7)

Finally, let us evaluate the validity of the approximation
vt1 ' vt2 used above. Rearranging exact Rankine-Hugoniot
relations (see for instanceGénot, 2008; Génot, 2009) it is
possible to show that

vt2 = vt1+vn1
1−1/R

M2
a

Rcos2θBn
−1

tanθBnt (A8)
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or

vt2/vn1 = tanθVn +
1−1/R

M2
a

Rcos2θBn
−1

tanθBn (A9)

whereθVn is the angle between the upstream velocity vector
and the shock normal. For typical values (R = 4, upstream
Ma = 10) the factor 1−1/R

M2
a

Rcos2θBn
−1

tanθBn maximizes at 0.015 as

a function ofθBn. Therefore forθVn & 2◦ the second term
above is negligible in front of tanθVn and the approximation
vt2 = vt1 is valid (this angle increases to 12◦ for low Mach
number, i.e.Ma = 3, and decreases withR). Practically this
approximation fails only in a restricted region close to the
subsolar point.

Appendix B

Compression/expansion in the magnetosheath

Depending on the region in the magnetosheath, the plasma
will encounter either a compression (subsolar region) or an
expansion (on the flanks). In the following we estimate the
variations of relevant parameters. This approach was used
in order to introduce concepts of the HEB code in which are
implemented compressed or expanding simulation domains.

During transformation the coordinatesx are modified such
that

x → L̄x (B1)

B1 Expansion

It acts (equivalently) in two directions: one parallel and one
perpendicular to the magnetic field (seeTrávńıček et al.,
2007), i.e. diag(L̄) = (Le,Le,1) with

Le= 1+
t

te
(B2)

From the conservation of the first and second invariants, one
gets

T⊥

T‖

∝ Le (B3)

β‖ ∝
1

L2
e

(B4)

B2 Compression

It acts in one direction perpendicular to the magnetic field
(along the magnetopause normal direction, seeHellinger and
Trávńıček, 2005), i.e. diag(L̄) = (1,Lc,1) with

Lc = 1−
t

tc
(B5)

From the conservation of the first and second invariants, one
gets

T⊥

T‖

∝
1

Lc
(B6)

β‖ ∝ Lc (B7)

B3 Conclusion

From the above results, for both transformations, the
anisotropy and the mirror threshold increase with time, and
β‖ decreases, as long as the wave activity is negligible.
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Génot, V., Schwartz, S. J., Mazelle, C., Balikhin, M., Dunlop, M.,
and Bauer, T. M.: Kinetic study of the mirror mode, J. Geophys.
Res., 106, 21611–21622,doi:10.1029/2000JA000457, 2001.
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