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The Radiation Assessment Detector (RAD) on-board NASA’s Mars Science Laboratory (MSL) rover will
measure charged particles as well as neutron and gamma radiation on the Martian surface. Neutral par-
ticles are an important contribution to this radiation environment. RAD measures them with a CsI (Tl)
and a plastic scintillator, which are both surrounded by an anticoincidence. The incident neutron/gamma
spectrum is obtained from the measurements using inversion methods which often fit a functional
behavior, e.g., a power law, to the measured data applying the instrument response function and, e.g.,
a least-squares method. In situations where count rates are small, i.e., where the stochastic nature of
the measurement is evident, maximum likelihood estimates with underlying Poissonian statistics
improve the resulting spectra. We demonstrate the measurement and inversion of gamma/neutron spec-
tra for a detector concept featuring one high-density scintillator and one high-proton-content scintillator.
The applied inversion methods derive the original spectra without any strong assumptions of the func-
tional behavior. Instrument response functions are obtained from Monte-Carlo simulations in matrix
form with which the instrument response is treated as a set of linear equations. Using the response matri-
ces we compare a constrained least-squares minimization, a chi-squared minimization and a maximum
likelihood method with underlying Poissonian statistics. We make no assumptions about the incident
particle spectrum and the methods intrinsically satisfy the constraint of non-negative counts. We ana-
lyzed neutron beam measurements made at the Physikalisch Technische Bundesanstalt (PTB) and
inverted the measurement data for both neutron and gamma spectra. Monte-Carlo-generated measure-
ments of the expected Martian neutron/gamma spectra were inverted as well, here the maximum like-
lihood method with underlying Poissonian statistics produces significantly better results.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Realizing neutron and gamma measurements on-board a space-
craft is often difficult due to the limitations of the instruments size
and weight. One possible approach is the use of a combination of a
high-proton-content and a high-density scintillator material which
have different sensitivities for neutrons and gammas. This concept
is used in the Radiation Assessment Detector (RAD) which is a part
of the Mars Science Laboratory (MSL) mission and will measure the
charged particle spectrum up to several 100 MeV/nuc and the neu-
tron/gamma particle spectra up to 100 MeV on the surface of Mars.
Unlike for stopping charged particles, where the energy deposit
equals the particle energy, neutral particles create an energy de-
posit which can be randomly distributed and ranging up to their
incident energy. Therefore, a measured spectrum does not neces-
All rights reserved.
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ler).
sarily reflect the energy spectrum of the incoming particles. How-
ever, using the measurement and a carefully modeled and
calibrated instrument response function, the incoming particle
spectrum can be determined by inversion methods.

The choice of inversion method is important to ensure its suc-
cess. In our case in which we want to measure sometimes low
count rates of neutral particles, this aspect is crucial. Because the
number of counts may be very low or possibly even zero, the sig-
nals must be modeled as a Poissonian process, i.e., using Poissonian
statistics. The correct statistical approach is the dominant factor for
the investigation of such problems [1–4]. When the uncertainties
or noise in the experimental data are distributed with Gaussian
statistics the least-squares methods or other variants of chi-square
minimization [5–7] can be used for the solution of inverse prob-
lems. One can easily show that the least-squares method is a max-
imum likelihood estimator of the fitted parameters if the
measurements errors are independent and normally (Gaussian)
distributed.

http://dx.doi.org/10.1016/j.nimb.2011.07.021
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Fig. 1. Schematic view of the RAD sensor head consisting of three silicon solid
state detectors A, B, C (red), a CsI scintillator D (gray) and a the plastic
scintillator E (dark yellow). Both scintillators are surrounded by a plastic
anticoincidence F1/2 (yellow). A, B, C, D, E are used as a telescope for charged
particles. Neutral particles are detected in the D, and E scintillator in anticoin-
cidence with F1/2 and C.
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For an uncertainty distribution with Poisson statistics least-
squares methods or minimizing chi-square do not maximize the
likelihood that the fitted parameters reflect the data. The strategy
of solving inverse problems with Poissonian noise is similar to
the strategy of solving problems with Gaussian statistics but leads
to more difficult optimization problems that are non-quadratic
with non-negatively constrained and, possibly, with non-convex
objective functions.

Using a log-likelihood function with Poissonian or Gaussian
noise for a maximum likelihood solution one can formulate a var-
iational problem that connects the known measurements with the
unknown, but non-negative, original energy spectrum using the
modeled and calibrated instrument response function.

The problem of obtaining model parameters from data which
are distributed according to Poissonian statistics occurs in many
practical applications such as medical imaging, remote sensing,
optical microscopy, and astronomy. Therefore various maximum
likelihood methods are used with different modifications that
can accelerate the convergence of these algorithms [8] and in-
crease the smoothness of the inverted data [9] or are used for
wavelet, multiscale analysis or regularization methods [10,11].

In this paper we estimate the original energy spectrum of neu-
trons and gammas by inverting neutron and gamma scintillator
measurements. We solve the non-linear inversion problem by opti-
mization methods using Gaussian or Poissonian statistics. Similar
inversion approaches, applied to counting experiments, have been
considered in [12] and in [13].

The paper is organized as follows. In Section 1 we give a
description of the RAD instrument and of the inversion methods
used. In Section 2 we show the instrument response function, Sec-
tion 3 describes the strategies for obtaining initial guesses and
compares several inversion methods using well-defined neutron
beam measurements. In Section 4 we apply and compare different
inversion methods to Monte-Carlo generated measurements of the
expected neutron/gamma fluxes at Martian surface and show that
correct use of the Poissonian method yields the best results.
2. Methods

2.1. Instrumental background

The Radiation Assessment Detector (RAD) measures gammas
and neutrons with two scintillators which are enclosed by an anti-
coincidence (see Fig. 1). One of the scintillators has a high sensitiv-
ity for gammas, the other has high sensitivity for neutrons. The
surrounding anticoincidence prevents the measurement from
being polluted by charged particles.

In this work, the inversion of the neutron/gamma spectra is per-
formed for the RAD sensorhead which, in addition to gammas and
neutrons, also measures charged particles. It is shown schemati-
cally in Fig. 1 and consists of several detectors. Charged particles
are measured by a telescope of silicon detectors A, B, C, followed
by to scintillators D and E. Besides the detection of charged parti-
cles the D and E scintillator are also used to detect neutral parti-
cles. The D scintillator, which consists of cesium iodide, is highly
sensitive to gamma particles. The E detector, which consists of
plastic, is highly sensitive to neutrons. For the detection of neutral
particles the C, F1/2 detectors are used as an anticoincidence. The
energy analysis is done via pulse height analysis on-board, the
measured spectra are sent back to earth.

Although the D scintillator in mainly sensitive to gamma radia-
tion, it also detects a significant fraction of incident neutrons, sim-
ilarly, the E detector also measures gammas. This ambiguity in the
detector measurements leads to the need for four detector re-
sponse matrices which need to be considered when inverting a
measurement. In other words, we need one response function for
D for gammas, one for D for neutrons, one for E for gammas, and
one for E for neutrons.

In contrast to stopping particles in silicon, neutral particles do
not create an energy deposit strictly proportional to the incident
particles energy. For example, the electron cascade, caused by a
high energy gamma, is not necessarily contained in the scintillator.
Incident neutrons create secondary protons whose energies de-
pend on the collision angle and are randomly distributed up to
the energy of the incident neutron. Some protons can also escape
from the scintillator before fully depositing their energy. Therefore,
the detector response matrices are expected to show a roughly tri-
angular shape and to be far from diagonal, as the response matrix
for a perfect detector would be.

2.2. Mathematical background

Let us consider a spectrum of incoming neutron or gamma par-
ticles ~f ¼ ðf1; f2; . . . ; f nÞ, which is binned in the energy bins
~E ¼ ðE1; . . . ; EnÞ. A mapping between a spectrum of incoming parti-
cles and the measured detector response~z ¼ ðz1; z2; . . . ; znÞ can be
performed by

~z ¼ A �~f ; ð1Þ

where the matrix A is the detector response matrix and the compo-
nents of ~z are the counts per measurement bin, henceforth called
measurements. One possible solution would be to fit a small num-
ber of parameters which describe a model for f to the large number
of measurements z. Here, we will not follow this more traditional
approach, but will attempt to perform a full inversion of the system
(Eq. (1)). In other words, we optimize for the same number of
parameters as there are measurements.

As described in the previous section, the D detector is also
somewhat sensitive to neutrons while the E detector is some-
what sensitive to gammas. Unfortunately, it is not possible to
distinguish between a neutron and a gamma signal in either
detector. All we have available are the measurements in the D
and E detectors, ~zD and ~zE. These are the instrument responses
to an input spectrum of neutrons ~f N and gammas ~fc. This can
be described by
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~zD ¼ AD;c � ~fc þ AD;N � ~fN ð2Þ
~zE ¼ AE;c � ~fc þ AE;N � ~fN: ð3Þ

Let us define the stacked vector ~f :¼~f c �~f N ¼ ðf1c; . . . ;

f nc; f1N; . . . ; f nNÞ and ~z ¼~zD �~zE. We can than apply Eq. (1), where
A consists of the matrices of the D and E detector and each for neu-
trons and gammas

A ¼
AD;c AD;N

AE;c AE;N

� �
:

In principle, we can now solve Eq. (1). However, this generally leads
to non-physical results (such as negative counts) for three reasons.
First, A is often singular and therefore the inverse matrix A�1 can
not be obtained, nevertheless there exist several methods to obtain
pseudo inverse matrices, e.g., the singular value decomposition,
which can provide solutions of Eq. (1) [7]. Second, A is only known
with limited accuracy which means that the exact Eq. (1) is not
known. Third, the measurement vector contains measurement er-
rors such as electronic noise, incomplete light collection, and statis-
tical fluctuations. The latter means that a simple inversion of Eq. (1)
(~f ¼ A�1 �~z) does not consider the stochastic nature of the measure-
ment process. For instance, a single incident particle is detected in
one measurement channel only, it is not distributed over a wide
range of channels which Eq. (1) would suggest.

These effects often lead to unphysical results such as negative
values in ~f .To obtain a non-negative solution of ~f , the problem
Eq. (1) can for instance be replaced by a constrained minimization
problem, which can be formulated as a non-negative least-squares
(NNLS) problem,

min
X

i

X
j

aijfj � zi

 !2

; with f i P 0; ð4Þ

where aij are the components of the matrix A. NNLS methods have
been considered in [6,5]. As is true with other methods, the least-
squares problem always has a solution but it is non-unique if the
rank of the matrix A is less than its dimension n.

A similar method is given by the minimum chi-square method
with constraints [7]:

min
X

i

P
jaijfj � zi

r2
i

� �2

; with f i P 0: ð5Þ

With r2 = zi one can consider Eq. (5) as a new variant of the mini-
mum chi-square method [14].

Another way to solve the problem lies in reformulating it as a
similar maximum likelihood problem with underlying Poisson sta-
tistics [12,13]. According to the Poisson distribution, the probabil-
ity that a measurement with an expectation value of ki ¼ ðA �~f Þi
results in zi counts is given by

pðzi; kiÞ ¼
kzi

i e�ki

zi!
: ð6Þ

The corresponding probability function, Pð~z;~f Þ that includes all
parameters fi and all independent measurements zi, which maxi-
mizes the likelihood function Lð~f Þ, is given by

Lð~f Þ ¼ Pð~z;~f Þ ¼
Yn

i¼1

pðzi; kiÞ: ð7Þ

The corresponding log-likelihood function has the following form [3]

�lð~f Þ ¼
X

i

ðki � zi ln kiÞ þ c; ð8Þ

where c ¼
P

i lnðzi!Þ. For the estimation of the spectrum~f we must
solve the constrained minimization problem
min
X

i

ki � zi ln kið Þ; with f i P 0: ð9Þ

We solve the optimization problems Eqs. (4), (5) and (9) with the
constraints fi > 0 "fi using the SciPy [15] implementation of the L-

BFGS-B algorithm [16,17].

3. Monte-Carlo simulations of instrument response functions

In this section we explain the instrument response matrix for
gammas and neutrons (i.e., of the D and E detectors). It shows
our best effort at reproducing the behavior of the sensorhead in
combination with the associated electronics.

The detector response matrix is calculated as described in [7],
the energy deposits in the scintillators are calculated with GEANT4

[18]. To calculate the light output of the scintillator, which is mea-
sured by photodiodes, a ray-tracing Monte-Carlo-readout model is
used [19]. Further, electronic noise is added and the light output is
mapped to measurement channels as obtained from various cali-
bration runs. Effects such as direct particle hits in the photodiodes
are considered as well. We focus on energies 619 MeV, where
GEANT4 calculates neutron interaction with a model based on mea-
surements. Above 20 MeV GEANT4 uses theoretical models which
produces a discontinuity in the detector response, which we do
not believe.

The resulting detector response matrix A is shown in Fig. 2. The
range of the measurement bins was chosen to cover the whole
range of relevant detector responses, the first bin (number 2500)
is not influenced by the noise peak or the trigger threshold, com-
pare Figs. 2 and 3.

4. Applying inversion methods to neutron beam measurements

In this section we compare measurements with simulations of
the instrument response, and then proceed to invert the measure-
ments using A as described in Section 2. For the inversion we use
the L-BFGS-B algorithm which searches for the minimum of the
given merit function, starting from an initial guess. To find a min-
imum close to the global minimum, several initial guesses are cal-
culated which are used as a starting point for the L-BFGS-B

algorithm.

4.1. Comparing measurement and simulation

As a test of the inversion methods we choose calibration mea-
surements performed at the Physikalisch-Technische Bundesan-
stalt (PTB) in Braunschweig. The sensorhead was calibrated with
14.8 and 19 MeV neutron beams [20]. Before applying inversion
methods the ability of the GEANT4 Monte Carlo and the photodiode
readout model to predict the behavior of the sensorhead is tested.

Fig. 3 compares the calibration runs with GEANT4 simulations of
monoenergetic 14.8 and 19 MeV neutron beams which enter the
instrument (from above in Fig. 1). Measurements and simulation
agree very well for both D and E detector. Because the trigger
threshold is not included in the simulation we do not expect agree-
ment in measurement channels 62500. We can therefore assume,
that the detector response matrix is able to describe both the 14.8
and 19 MeV run correctly.

4.2. The inversion: initial guesses and procedure

To obtain the measurement vector ~z, the PTB measurements
shown in Fig. 3 were rebinned to match the detector response ma-
trix (Fig. 2). Since both the gamma and the neutron spectra now
consist of 18 energy bins, the number of inverted parameters is
36. The choice of the initial guess is crucial for the minimization
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algorithm to find a minimum which is close to the global mini-
mum. Although the minimization requires no knowledge of the
functional behavior of the input spectrum, an initial guess which
is close to the solution significantly improves the result.

Instead of searching the parameter space for initial guesses
from a purely mathematical perspective, we chose to provide ini-
tial guesses from a more physical point of view.

We begin with a first initial guess which would provide the cor-
rect solution for a detector with a response matrix which merely
consists of diagonal elements
fi;init ¼
ziP

j
aji
: ð10Þ

Although the solution for this initial guess differs significantly
from~f in most cases, it gives a first impression of the intensity of
gamma Ic and neutron IN spectra.

Since computation time is becoming increasingly cheaper, it is
no problem to invert the measurement for a large number of differ-
ing initial guesses, e.g., different monoenergetic neutron beams.
For poor initial guesses, one of the problems encountered is that
the inverted solution often exhibits unphysical features, for in-
stance, alternating high and low counts per bin. To address this,
we scale the next initial guess with the integral inverted spectrum,
and repeat the inversion procedure. Most of the times it takes �4
inversions to find the optimal intensity for an initial guess. We re-
peat this procedure with varying estimates of the neutron beam
energy. For each such full inversion, we evaluate the merit func-
tion, and subsequently choose the best inversion. This results in
our best estimate for the energy and intensity of the incident cali-
bration neutron beam. Not unexpectedly, we obtained the correct
values of �15 and 19 MeV.
We found that slightly improved solutions could be found by
randomizing the best inversion and using it as a new initial guess.
The randomization was achieved by

fi;init ¼ fið1þ anÞ; ð11Þ

where 0 < a < 1 and n is a uniformly distributed random variable in
the interval [� 1,1].

To test the stability of this algorithm for multiple beams or
other functional behaviors, we mixed the measured data of the
two beams taking 25% of the 14.8 MeV and 100% of the 19 MeV cal-
ibration measurements. With this new set of ’measurements’ we
repeated the procedure described above, but allowed for/selected
multiple optimal solutions (in the sense of optimal merit func-
tions). We then inverted all combinations of these optimal solu-
tions to find the optimal combination. This could be a
combination of many incident neutron beam energies. Neverthe-
less, in this fashion, we obtained neutron beams of �15 and
19 MeV in proportion similar to their admixture. This same proce-
dure was also applied to the single-energy neutron beams (15 and
19 MeV) separately. In that case no combination could improve the
single-energy result.

Thus, the algorithm presented here is capable of reliably invert-
ing measurements from multiple beams without any explicit or
implicit knowledge of the number of beams or their respective
energies.

4.3. Comparing inversion methods

In this subsection we compare the inversion results using the
algorithm described above, but with three different merit func-
tions, Poissonian, non-negative least-squares, and straight-forward
chi-squared. To compare various inversion methods, an accurate
knowledge of the error bars is required. We computed them with
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a bootstrap Monte-Carlo method of the neutron-beam measure-
ments similar to that described, e.g., in [21]. Based on the actual
data set, a number of synthetic data sets are generated. In each
synthetic dataset a random fraction of the original points are re-
placed by duplicated original points, for each synthetic dataset a
measurement histogram~z is calculated and inverted.

Fig. 4 shows the resulting inversions for the 14.8 MeV neutron
beam and the 19 MeV neutron beam in the top two panels. As de-
scribed above, an additional combined measurement vector from
the 14.8 and 19 MeV measurement~z ¼ 0:25~z14:8MeV þ~z19MeV was in-
verted, the results are shown in the lower panel. For all methods
the neutron beams can be identified remarkably well. However a
gamma background is also found. Unfortunately, the spectrum of
the induced gamma radiation is not known, therefore we have
no way of determining the accuracy of the inverted gamma
spectrum.

For the 14.8 MeV neutron beam both the chi-square and the
Poisson method show a clear beam in the 14.5 MeV energy bin,
the NNLS inversion finds most neutrons in the 15.5 MeV bin and
only few neutrons in the 14.5 MeV bin. The chi-square method
finds some neutrons in the 12.5 MeV bin. For the 19 MeV neutron
beam all methods clearly identify the 19 MeV neutrons and do not
show any significant deviation in intensities. Although not as clear
as for the 14.8 and 19 MeV measurement, the combined neutron
beams are clearly resolved. As before the NNLS method finds the
maximum of the 14.8 MeV beam in the 14.5 MeV bin. In contrast
to the 14.8 MeV measurement, the chi-square method finds no
neutrons at 12.5 MeV. The inverted beam intensities differ from
method to method. This is especially visible for the 19 MeV beam
of the combined measurement. While the Poisson and chi-squared
methods reproduce the total number of counts in the two separate
neutron beams, the NNLS method overestimates the 19 MeV
intensity.

The results shown in Fig. 4 were obtained using the randomiza-
tion of initial guesses described above. This improved the Poisson
merit function considerably, but had a much lesser effect on the
NNLS and chi-squared merit functions. Our interpretation is that
NNLS and chi-square perform much better in finding the global
minimum.
5. Monte-Carlo measurements in a simulated Martian radiation
environment

The demonstrated inversion methods performed very well for a
beam of monoenergetic neutrons and a combination thereof. Those
input spectra are however, quite different from the expected neu-
tron and gamma spectra on Mars. In the previous section we
showed that the detector response matrix describes the detector
behavior correctly for 14.8 and 19 MeV neutrons. In this section
we assume the detector response matrix as correct and use it to
generate Monte-Carlo detector measurements. The expected
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GCR-proton and helium induced, omnidirectional neutron and
gamma flux on the Martian surface~f are calculated with PLANETO-

COSMICS [22] for present day Mars at ground level under solar
minimum conditions.

To generate an artificial measurement~z, each column of the re-
sponse matrix is used as a probability distribution function. For
each energy bin a number of particles, given by the input spectrum,
is distributed according to this probability distribution. This way a
large number of Monte-Carlo measurements can be generated to
evaluate the performance of different inversion methods depen-
dent on available statistics, i.e., the number of detected particles.

The artificial measurements generated as just discussed were
then inverted with the methods described above. As initial guesses,
we used various power laws and also some functional shapes
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which were based on the expected spectra but different from
these.

The black curve in the top (bottom) panel of Fig. 5 shows the
average of 1000 generated gamma (neutron) spectra. Together,
they consist of a total of 200,000 particles. These artificial spectra
were inverted, the mean results hfii are shown as solid dots to-
gether with the corresponding mean errors hDfii for each energy
bin. As for the calibration neutron beam inversion, the errors for
each inversion, Dfi, were computed via bootstrap Monte Carlo.
The mean is always within a factor of two of the average input
spectrum. However, this good agreement of the average inversion
does not guarantee that individual spectra also agree well with the
input spectra. The errors however, give information about the
uncertainty of each inverted spectrum and are plotted as an error
bar in the same color as the mean. The mean and the errors for
the Poisson and chi-squared methods are slightly shifted by
±0.1 MeV to enhance readability. The errors are small compared
to the mean of the inverted spectra only for the low energy bins
where count rates are high. All methods perform well for gammas,
but the Poisson method produces significantly better results for
neutrons where NNLS and chi-square method show large errors
for energies above 4 MeV.

To compare the accuracy of the three studied inversion meth-
ods, we have plotted the relative erros hDf(E)i/hf(E)i of the inverted
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Fig. 5. Average gamma (top) and neutron (bottom) spectra for 1000 Monte-Carlo
generated measurements of as expected on the Martin surface are shown as a
blackline. A total of 200,000 particles were generated, which corresponds to
�3400 s (i.e., about an hour) of exposure for RAD. The mean hfii values and the mean
errors hDfii of the inverted spectra are shown for the Poisson, NNLS and chi-square
methods in red, green, and blue, respectively. To enhance visibility, data points for
the chi-square and the Poisson method have been shifted by ± 0.1 MeV.
spectra in Fig. 6 for 200,000, 500,000 and 1,000,000 generated par-
ticle events using the same color code as in Fig. 5. While the NNLS
and the chi-square methods produce similar results, the Poisson
method produces clearly better results for neutron and slightly
better results for gammas. As expected, the relative errors decrease
with an increasing number of generated particles. Interestingly, the
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Fig. 6. Relative error hDf(E)i/h f(E)i for 200,000, 500,000 and 1,000,000 generated
particles, for the Poisson (red), NNLS (green) and chi-square (blue) methods.
Relative errors of the inverted gamma spectra are plotted as solid lines and as
dashed lines for neutrons.



Table 2
The runtime, given in units of runtime for the Poisson method, for 200,000, 500,000
and 1,000,000 generated particles.

N Poisson NNLS Chi-square

200,000 1 1.47 1.24
500,000 1 1.56 1.30
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Poisson method shows a large improvement for neutrons, while
NNLS and chi-square method show only moderate improvements.

As in the previous section the NNLS and chi-square method
could not be improved using randomized initial guesses. As in Sec-
tion 4 the results of the Poisson method could be improved in this
more realistic case as well.
1,000,000 1 2.40 1.81
6. Discussion and conclusion

We compared three inversion techniques for gamma-neutron
measurements with the MSL RAD instrument. Instead of fitting a
known functional behavior to the measured data, the inversion
treats each energy bin of the inverted spectrum as a free parame-
ter. All analyzed methods use a merit function, which is mini-
mized, to find the input spectra for a measurement. All methods
reconstruct the known input spectrum for the neutron beam cali-
bration measurement performed at the PTB.

We investigated the effect of increased counting statistics for all
three methods using Monte-Carlo generated ‘‘measurements’’ of
the expected Martian input spectra.

To give a quantitative overview of the performance of the differ-
ent methods the mean relative errors and their runtime are shown
in Tables 1 and 2. As already apparent in Fig. 6, the Poisson method
clearly produces more accurate results than the NNLS and chi-
square method. The uncertainties of the Poisson method are be-
tween 10% and 30% smaller than for the NNLS and chi-square
method. Nevertheless, one should note that the results from the
Poisson method are strongly improved using an additional ran-
domization of the initial guesses, while the other methods do not
improve significantly and seem to be better at finding the global
minimum even for inaccurate initial guesses. This increases the
number of necessary initial guesses for the Poisson method, how-
ever, even including this extra burden, the Poison method is still
faster than the two other methods by a factor of �1.5. For both
the PTB neutron measurement and the artificial Martian measure-
ments, the Poisson method performed as good as-or better than
the NNLS or chi-square method. Comparing performance and run-
time for the different methods, the Poisson method is the most
promising candidate for the future inversion of Martian gamma/
neutron measurements with RAD.

In general, the instrument response function, A, is singular and,
therefore, not invertible. In our case, it turns out that A is non-sin-
gular and invertible. Therefore, any measurement can, in principle,
be inverted ~z ¼ A �~f ()~f ¼ A�1 �~z, however, for measurements
plagued by stochastic noise, such as a counting process with finite
countrates this approach rarely produces accurate and useful re-
sults. Application of this ‘‘method’’ to the inversion of the PTB neu-
tron beams resulted in large alternating positive and negative
values with no resemblance at all to the neutron beam. For
Monte-Carlo measurements this method started to produce results
with similar quality as the minimizations for N� 107 particles, i.e.,
requiring at least 10–50 times better counting statistics than the
inversion methods described above in this paper.

The demonstrated measurement and inversion of the Martian
neutron/gamma spectra should not be viewed as a final estimation
of the instruments performance, but as a proof of concept. The
resulting spectra can be improved tremendously when fitting less
Table 1
The mean relative errors for 200,000, 500,000 and 1,000,000 generated particles.

N Poisson NNLS Chi-square

200,000 0.65 0.74 0.72
500,000 0.45 0.65 0.65

1,000,000 0.41 0.59 0.59
energy bins or an expected functional behavior, such as a power
law.

One remaining problem is the discontinuity in the GEANT4 neu-
tron interaction process, which at the moment restricts the re-
sponse matrix to energies below 19 MeV. Neutron beam
measurements for energies above 20 MeV are planned and will al-
low us to extend the detector response matrix.
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