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ABSTRACT

Kinetic plasma theory is used to generate synthetic spacecraft data to analyze and interpret the compressible
fluctuations in the inertial range of solar wind turbulence. The kinetic counterparts of the three familiar linear
MHD wave modes—the fast, Alfvén, and slow waves—are identified, and the properties of the density–parallel
magnetic field correlation for these kinetic wave modes are presented. The construction of synthetic spacecraft
data, based on the quasi-linear premise—that some characteristics of magnetized plasma turbulence can be usefully
modeled as a collection of randomly phased, linear wave modes—is described in detail. Theoretical predictions
of the density–parallel magnetic field correlation based on MHD and Vlasov–Maxwell linear eigenfunctions are
presented and compared to the observational determination of this correlation based on 10 years of Wind spacecraft
data. It is demonstrated that MHD theory is inadequate to describe the compressible turbulent fluctuations and that
the observed density–parallel magnetic field correlation is consistent with a statistically negligible kinetic fast wave
energy contribution for the large sample used in this study. A model of the solar wind inertial range fluctuations is
proposed composed of a mixture of a critically balanced distribution of incompressible Alfvénic fluctuations and
a critically balanced or more anisotropic than critical balance distribution of compressible slow wave fluctuations.
These results imply that there is little or no transfer of large-scale turbulent energy through the inertial range down
to whistler waves at small scales.
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1. INTRODUCTION

Despite more than 40 years of direct spacecraft measurements
of turbulence in the near-Earth solar wind (Coleman 1968), our
understanding of turbulence in a magnetized plasma remains
incomplete. One of the primary goals is to understand the
role of the turbulence in mediating the transfer of energy
from large to small scales. Within the turbulent inertial range
of scales, corresponding to spacecraft-frame frequencies of
10−4 Hz � fsc � 1 Hz or length scales 106 km � λ � 102 km,
the fluctuations involved in this energy transfer are a mixture
of compressible and incompressible fluctuations, with around
90% of the energy in the incompressible component (Tu &
Marsch 1995; Bruno & Carbone 2005). These incompressible
fluctuations have been identifed as Alfvén waves (Belcher &
Davis 1971), but the nature of the compressible component
remains uncertain.

The compressible turbulent fluctuations have often been inter-
preted as a combination of magnetoacoustic (fast MHD) waves
and pressure-balanced structures (PBS; Tu & Marsch 1995;
Bruno & Carbone 2005). Early studies of thermal and magnetic
pressure fluctuations in the solar wind found an anti-correlation
of the thermal pressure and magnetic pressure at timescales
of 1 hr, corresponding to an interval of constant total pres-
sure, or a PBS (Burlaga 1968; Burlaga & Ogilvie 1970). Fur-
ther studies found evidence of PBSs out to 24 AU (Burlaga
et al. 1990). Related investigations discovered a similar anti-
correlation between the density n and magnetic field magnitude
B from 0.3 AU to 18 AU on timescales ranging from several
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hours to 1.8 minutes (Vellante & Lazarus 1987; Roberts et al.
1987a, 1987b; Roberts 1990). Theoretical studies of compres-
sive MHD fluctuations in the low-Mach number, high-β limit
interpreted these anti-correlated density–magnetic field strength
observations as nonpropagating “pseudosound” density fluctu-
ations (Montgomery et al. 1987; Matthaeus et al. 1991). Later, a
more comprehensive observational investigation confirmed the
general density–magnetic field magnitude anti-correlation but
also identified a few positively correlated intervals consistent
with the magnetosonic (fast MHD) wave (Tu & Marsch 1994).
Analysis of Ulysses observations found evidence for PBSs at
inertial range scales in the high-latitude solar wind (McComas
et al. 1995; Reisenfeld et al. 1999; Bavassano et al. 2004).
Studies of the electron density up to f = 2.5 Hz also found
PBSs but interpreted these as ion acoustic (slow MHD) waves
and recognized that PBSs are simply the ion acoustic (slow
MHD) wave in the perpendicular wavevector limit (Kellogg &
Horbury 2005), a fact previously noted by Tu & Marsch (1994).
Recently, measurements of the anti-correlation between elec-
tron density and magnetic field strength indicated the existence
of PBSs over timescales ranging from 1000 s down to 10 s
(Yao et al. 2011).

An important consideration in the study of the compressible
fluctuations of solar wind turbulence is the fact that the mean
free path in the solar wind plasma is about 1 AU, so the dynamics
over the entire inertial range is weakly collisional. The impli-
cations of this fact have not been seriously addressed in any
of the aforementioned studies of compressible fluctuations in
solar wind turbulence. The MHD description is rigorously valid
only in the limit of strong collisionality, so a kinetic description
is formally required to describe the inertial range turbulence.
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In the limit k‖ � k⊥ predicted by anisotropic MHD turbu-
lence theories4 (Goldreich & Sridhar 1995; Boldyrev 2006),
it has been demonstrated that, even in the weakly collisional
limit, the turbulent dynamics of the Alfvén waves decouples
from the compressible fluctuations and is rigorously described
by the equations of reduced MHD (Schekochihin et al. 2009).
The compressible fast and slow wave modes, on the other
hand, require a kinetic description to resolve both the wave
dynamics and the collisionless kinetic damping mechanisms.
The study presented here is the first to examine the proper-
ties of the compressible fluctuations in the turbulent solar wind
using Vlasov–Maxwell kinetic theory. Specifically, we use the
predicted correlation between the density fluctuations and par-
allel magnetic field fluctuations to determine the nature of the
compressible fluctuations in the solar wind.

In Section 2, we explore the connection between the famil-
iar linear wave modes in MHD and the corresponding kinetic
wave modes in Vlasov–Maxwell kinetic theory and demon-
strate that weakly collisional conditions do not change the
qualitative properties of the density–parallel magnetic field
correlation. In Section 3, we discuss the quasi-linear premise
upon which the method of synthetic spacecraft data is based
and describe in detail the procedure for generating synthetic
spacecraft data. The synthetic spacecraft data predictions of
the density–parallel magnetic field correlation based on lin-
ear MHD and Vlasov–Maxwell eigenfunctions are presented in
Section 4. A comparison of the synthetic spacecraft data predic-
tions to the observational determination of the density–parallel
magnetic field correlation is presented in Section 5, showing a
statistically negligible fast wave energy contribution to the com-
pressible fluctuations. The implications of this finding are dis-
cussed before summarizing the findings of this investigation in
Section 6.

2. COLLISIONAL VERSUS COLLISIONLESS DYNAMICS
OF COMPRESSIBLE FLUCTUATIONS

The inertial range of solar wind turbulence is observed to
be a mixture of incompressible and compressible motions,
with around 90% of the energy due to the incompressible
component (Tu & Marsch 1995; Bruno & Carbone 2005). If
these fluctuations are interpreted as some mixture of the three
MHD linear wave modes, then Alfvén waves are responsible
for the incompressible component, while slow and fast MHD
waves make up the compressible component. In the limit of large
scales compared to the thermal ion Larmor radius, kρi � 1,
these modes may be distinguished by the correlation between
the density and parallel magnetic field fluctuations: fast waves
are positively correlated, slow waves are negatively correlated,
and the density and parallel magnetic field fluctuations are both
zero for Alfvén waves. As the wave amplitude is increased to
nonlinear levels, even in the limit that they form discontinuities
or shocks, these qualitative properties persist, corresponding
to tangential and rotational discontinuities or fast and slow
shocks (Baumjohann & Treumann 1996). In this section, we
will explore the properties of the kinetic counterparts to the
fast and slow MHD wave modes in the inertial range using
Vlasov–Maxwell kinetic theory.

4 Parallel and perpendicular are defined with respect to the direction of the
local mean magnetic field.

2.1. The Inertial Range Limit of the Compressible
Linear Wave Modes

As derived in Appendix A, the normalized compressible
MHD linear dispersion relation depends on only two parameters,
ω/(kvA) = ωMHD(β, θ ): the plasma beta, β = c2

s /v
2
A, where

the sound speed is cs = √
γp0/ρ0 and the Alfvén velocity

is vA = B0/
√

4πρ0; and the angle θ between the local mean
magnetic field B0 and the direction of the wavevector.

To establish precisely the connection between the three linear
MHD wave modes and their kinetic counterparts in the linear
Vlasov–Maxwell system, we specify a fully ionized proton and
electron plasma with isotropic Maxwellian velocity distributions
and a realistic mass ratio mi/me = 1836. In general, the
linear Vlasov–Maxwell dispersion relation depends on five
parameters: the ion plasma beta βi = 8πniTi/B

2
0 , which is

the ratio of the ion thermal pressure to the magnetic pressure,5

the normalized wavenumber kρi , the angle θ between the local
mean magnetic field B0 and the direction of the wavevector,
the ion-to-electron temperature ratio Ti/Te, and the ratio of ion
thermal velocity to the speed of light vti/c. The solution may
then be expressed as ω = ωV M (βi, kρi, θ, Ti/Te, vti/c) (Stix
1992; Quataert 1998; Howes et al. 2006). To connect to the
single fluid theory of MHD, we take equal ion and electron
temperatures, Ti/Te = 1. In the inertial range limit, kρi � 1,
and for the non-relativistic conditions appropriate to the solar
wind, vti/c � 1, the normalized linear Vlasov–Maxwell
dispersion relation simplifies to ω/(kvA) = ωV M (βi, θ ). Since
β = βi + βe = βi(1 + Te/Ti), direct quantitative comparison
between the solutions of the MHD and Vlasov–Maxwell linear
dispersion relations is possible by choosing β = 2βi (Howes
2009).

The Vlasov–Maxwell solutions presented in this section use
the parameters kρi = 2.2 × 10−4, vti /c = 10−4, and Ti/Te = 1
and employ a realistic mass ratio mi/me = 1836. The complex
eigenfrequencies are solved numerically (Quataert 1998; Howes
et al. 2006) with Bessel function sums evaluated to 100 terms
to ensure accurate results.

2.2. Connection between MHD and Vlasov–Maxwell
Linear Wave Modes

Previous studies have compared the properties of linear
Vlasov–Maxwell wave modes with the linear modes from two-
fluid theory (Krauss-Varban et al. 1994) and Hall MHD (Howes
2009). Here we restrict ourselves to establishing the connection
between MHD wave modes and Vlasov–Maxwell wave modes
in the inertial range limit, kρi � 1. Due to the reduced parameter
space of the Vlasov–Maxwell system in the inertial range limit,
the comparison between the three linear MHD wave modes and
their kinetic counterparts is concisely expressed by the use of
normalized Freidrichs diagrams, polar plots of the wave phase
velocity normalized to the Alfvén speed ω/(kvA) versus polar
angle θ , as shown in Figure 1 for four values of βi .

As discussed by Krauss-Varban et al. (1994), the identifica-
tion of corresponding wave modes is complicated by the ex-
istence of a branch cut in the complex solution space of the
Vlasov–Maxwell dispersion relation. At inertial range scales
kρi � 1, this branch cut exists only at small angles θ ; for
wavevectors in the perpendicular limit, the kinetic fast, Alfvén,
and slow modes are always easily distinguished. Therefore, we

5 In this study, the Boltzmann constant is absorbed into the temperature to
yield temperature in units of energy.
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Figure 1. Fredrichs diagrams of normalized phase speed ω/(kvA) for MHD (left column) and Vlasov–Maxwell (middle column) modes for kρi = 2.2 × 10−4 and
values of β = 2βi = 0.2, 2.5, 3.16, and 20. Parallel wavevectors, θ = 0◦ with respect to the local mean magnetic field, lie along the vertical axis, while perpendicular
wavevectors, θ = 90◦, lie along the horizontal axis. Dashing indicates −γ /ω > 0.25, which implies heavy collisionless damping of that wave mode. On the right are
the paths of the Vlasov–Maxwell solutions in complex ω space, running from the nearly parallel limit (crosses) to the nearly perpendicular limit (open circles), with
γ /ω = −0.25 plotted as a dashed gray line.

(A color version of this figure is available in the online journal.)
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Figure 2. Normalized correlation by Fourier mode, Ck(δn, δB‖), for the kinetic fast (left), Alfvén (center), and slow (right) modes over the plane (θ, βi ). A positive
correlation is found for the kinetic fast modes and a generally negative correlation for the slow modes.

(A color version of this figure is available in the online journal.)

adopt the strategy that we label the modes according to their
properties in the perpendicular wavevector limit and retain those
labels for the linear dispersion relation solutions as the angle is
decreased from θ = 90◦ to θ = 0◦. Further discussion of the
properties of the kinetic fast and slow wave modes at small
angles θ is presented in Appendix B.

Results of the MHD to Vlasov–Maxwell comparison are
presented in Figure 1. In the left column are the normalized
Freidrichs diagrams for the MHD results for the fast wave
(red), Alfvén wave (black), and slow wave (blue). In the center
column are the Vlasov–Maxwell results for the kinetic fast wave
(red), Alfvén wave (black), and kinetic slow wave (blue). Note
that the strongly damped Vlasov–Maxwell modes (defined by
−γ /ω > 0.25, where ω + iγ is the complex Vlasov–Maxwell
eigenfrequency) are given by dashed lines. In the right column
are the paths of the Vlasov–Maxwell solutions in complex ω
space, running from the nearly parallel limit (crosses) to the
nearly perpendicular limit (open circles). The region below the
gray dashed line is −γ /ω > 0.25, indicating strong collisionless
damping. Rows present different values for ion plasma beta,
βi = 0.1, 1.25, 1.58, and 10.0.

For most values of βi and θ presented in the leftmost two
columns of Figure 1, the correspondence between the MHD and
kinetic wave modes is clear. It is worth noting, however, several
distinctions between the fluid and kinetic behavior. First, the
kinetic slow wave has a greater phase speed than the Alfvén
wave for βi � 1. In fact, for sufficiently parallel wavevectors
and βi ∼ 1, the kinetic slow mode also has a greater phase
velocity than the fast mode. Second, the typical magnetic-to-
acoustic mode conversion that occurs for the MHD fast and
slow modes at β = 1 is replaced by a conversion between the
compressible kinetic roots at βi ∼ 1.3. This conversion leads
to damping of the fast waves at small angles θ in the large βi

limit. This general identification of the kinetic fast and slow
wave modes is used in the construction of synthetic spacecraft
data, as described in Section 3.

2.3. Density–Parallel Magnetic Field Correlation for
Kinetic Fast and Slow Modes

With a clearly defined identification of the kinetic fast
and slow modes complete, we may now calculate the
density–parallel magnetic field correlation for the kinetic fast
and slow modes. This will enable us to verify whether the
general qualitative properties of this correlation—that fast
waves are positively correlated, and slow waves negatively
correlated—remain unchanged for collisionless conditions. The
density fluctuation δn and parallel magnetic field fluctuation
δB‖ may be calculated from the complex solution of the linear

Vlasov–Maxwell dispersion relation. For a chosen wavevector
k, we obtain complex Fourier coefficients δn(k) and δB‖(k),
and we define the normalized correlation by Fourier mode, Ck,
given by

Ck(δn, δB‖) = Re

(
δn(k)δB‖(k)∗

|δn(k)||δB‖(k)|
)

. (1)

Note here that the Fourier coefficients of both density and
parallel magnetic field fluctuations satisfy the reality condition,
e.g., δn(k) = δn∗(−k).

In Figure 2, Ck(δn, δB‖) is plotted for the kinetic fast (left),
Alfvén (center), and kinetic slow (right) modes as a function
of the parameters (θ, βi). The remaining parameters for the
Vlasov–Maxwell eigenfunction solutions are kρi = 2 × 10−4,
Ti/Te = 1, and vti /c = 10−4. The kinetic fast mode (left)
always has a positive correlation, with Ck(δn, δB‖) > 0.9 over
most of the (θ, βi) plane. The kinetic slow mode (right) has
a negative correlation with Ck(δn, δB‖) < −0.9 over most of
the (θ, βi)-plane; the correlation becomes slightly positive for
θ < 30◦ and βi � 1.3. The Alfvén mode (center), presented
for completeness, has a more complicated behavior, but it is
worthwhile noting that the amplitudes of δn(k) and δB‖(k) are
both very small (compared to the characteristic amplitudes for
either of the compressible waves) at inertial range scales, so
this correlation for Alfvén waves is likely to be unmeasurable
in the solar wind. In general, these results confirm that the
general qualitative properties of the density–parallel magnetic
field correlation remain unchanged for the kinetic fast, Alfvén,
and slow modes in a weakly collisional plasma.

3. CONSTRUCTING SYNTHETIC SPACECRAFT DATA

The primary methodology employed in this study of the com-
pressible fluctuations in the solar wind inertial range is the con-
struction of synthetic spacecraft data for direct comparison to
actual single-point spacecraft measurements. For the present
study of the correlation between the density and parallel mag-
netic field fluctuations, this technique enables us to determine
the characteristics of the correlation in the presence of a tur-
bulent spectrum of wave modes. This method of analysis is
based on the quasi-linear premise that some characteristics of
magnetized plasma turbulence can be usefully modeled as a
collection of randomly phased, linear wave modes; the justifi-
cation for this premise is discussed in Section 3.1. The result
from Section 2.1—that, in the inertial range, the dynamics of
both MHD and Vlasov–Maxwell plasmas depend only on two
parameters, the ion plasma beta βi and the wavevector angle
θ—significantly simplifies the construction of synthetic plasma
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data. Upon adoption of the quasi-linear premise and specifica-
tion of the plasma βi , one need only choose the partitioning of
power among the contributing linear wave modes (fast, Alfvén,
or slow) and the wavevector distribution of power (isotropic or
critically balanced) for each of those modes, as described in
Section 3.2.

3.1. The Quasi-linear Premise: Modeling Turbulence as a
Spectrum of Linear Wave Modes

The theoretical investigation of turbulence using synthetic
data is based on a concept that we denote the quasi-linear
premise. The quasi-linear premise6 states that some proper-
ties of magnetized plasma turbulence can be understood by
modeling the turbulence as a collection of randomly phased,
linear waves. In this picture, the nonlinear turbulent interac-
tions serve to transfer energy from one linear wave mode to
another—thus, the picture is quasi-linear. The mathematical
properties of the equations that describe turbulence in a mag-
netized plasma, in conjunction with a phenomenological under-
standing of the properties of the turbulence, provide the moti-
vation for this quasi-linear approach. This concept can be most
easily explained using the following example of turbulence in
an incompressible MHD plasma.

The Elsasser form of the ideal incompressible MHD equations
(Elsasser 1950) is given by

∂z±

∂t
∓ (vA · ∇)z± = −(z∓ · ∇)z± − ∇p

ρ0
, (2)

where the magnetic field has been decomposed into its equi-
librium and fluctuating parts B = B0 + δB, the Alfvén ve-
locity due to the equilibrium magnetic field B0 is given by
vA = B0/

√
4πρ0, and z± = δv ± δB/

√
4πρ0 are the Elsasser

fields describing the velocity and magnetic field behavior of
waves traveling down (up) the mean magnetic field. The sec-
ond term on the left-hand side of Equation (2) represents the
linear propagation of the Elsasser fields along the mean mag-
netic field at the Alfvén speed, while the terms on the right-hand
side represent the nonlinear interactions between upward- and
downward-propagating waves, where the pressure gradient term
ensures incompressibility of the fluctuations.

The theory of strong incompressible MHD turbulence
(Goldreich & Sridhar 1995; Boldyrev 2006) suggests that the
turbulent fluctuations at small scales become anisotropic, where
the nonlinear cascade of energy generates turbulent fluctuations
with smaller scales in the perpendicular direction than in the par-
allel direction, k‖ � k⊥. This inherent anisotropy of magnetized
plasma turbulence has long been recognized from early studies
in laboratory plasmas (Robinson & Rusbridge 1971; Zweben
et al. 1979; Montgomery & Turner 1981) and in early numerical
simulations (Shebalin et al. 1983). It has been conjectured that
strong turbulence in incompressible MHD plasmas maintains a
state of critical balance between the linear timescale for Alfvén
waves and the nonlinear timescale of turbulent energy transfer
(Higdon 1984; Goldreich & Sridhar 1995). There exists signifi-
cant evidence consistent with the predictions of critical balance
from analysis of numerical simulations (Cho & Vishniac 2000;
Maron & Goldreich 2001; Cho & Lazarian 2003) and solar
wind observations (Horbury et al. 2008; Podesta 2009; Wicks

6 Note that the quasi-linear premise is not the same as, and does not require,
the quasi-linear approximation, a rigorous mathematical procedure that
requires weak nonlinear interactions such that perturbation theory can be
applied.

et al. 2010; Luo & Wu 2010; Chen et al. 2011; Forman et al.
2011). In a state of strong turbulence, critical balance implies
that the linear term (vA · ∇)z± and nonlinear term (z∓ · ∇)z± in
Equation (2) are of the same order.7 It is this property that mo-
tivates the adoption of the quasi-linear premise, as discussed
below.

In the absence of the nonlinear terms (setting the first term on
the right-hand side of Equation (2) to zero), the behavior of the
plasma is entirely determined by the linear term. If the right-hand
side of the equation is considered to be an arbitrary perturbing
source term, the linear term determines the instantaneous
response of the plasma to the imposed perturbation. In the case
of weak turbulence (Sridhar & Goldreich 1994; Montgomery
& Matthaeus 1995; Ng & Bhattacharjee 1996; Goldreich &
Sridhar 1997; Ng & Bhattacharjee 1997; Galtier et al. 2000;
Lithwick & Goldreich 2003), the nonlinear terms on the right-
hand of Equation (2) are indeed a small perturbation to the linear
system, representing the nonlinear transfer of energy between
the linear wave modes. Perturbation theory may be applied to the
study of the turbulent dynamics in this limit, so the quasi-linear
premise is clearly valid for the case of weak turbulence.

For strong turbulence, the condition of critical balance implies
that the energy in a particular linear wave mode may be
transferred nonlinearly to other modes on the timescale of its
linear wave period. But since the linear and nonlinear terms
are of the same order in critical balance, the linear term still
contributes significantly to the instantaneous response of the
plasma, even in the presence of strong nonlinearity. Therefore,
the fluctuations in a strongly turbulent magnetized plasma
are expected to retain at least some of the properties of the
linear wave modes. In particular, for a turbulent fluctuation
with a given wavevector, the amplitude and phase relationships
between different components of that fluctuation are likely to
be related to linear eigenfunctions of the characteristic plasma
wave modes. In the construction of synthetic plasma turbulence
data, a spectrum of randomly phased linear wave modes can
be specified, with the amplitude of each of the linear modes
adjusted to satisfy a chosen observational constraint, such as the
turbulent magnetic energy spectrum (the second-order moment).
By adopting the quasi-linear premise, the properties of the
synthetic turbulence data may then be compared directly to
spacecraft measurements to explore the nature of turbulent
fluctuations.

The third- and higher-order moments of the turbulence, on the
other hand, are clearly not described by this simplified quasi-
linear approach. Such higher-order statistics depend critically
on the phase relationships between different linear wave modes,
and these phase relationships are determined by the nonlinear
interactions responsible for the turbulent cascade of energy from
large to small scales. For a collection of randomly phased linear
waves, such higher-order statistics of synthetic data constructed
using the quasi-linear premise will average to zero, yielding no
useful information.

Although our illustration of the application of the quasi-
linear premise above specifies the case of turbulence in an
incompressible MHD plasma, the necessary general properties
of the linear and nonlinear terms, as well as the inherent
anisotropy of magnetized plasma turbulence, continue to hold
for less restricted plasma conditions, including kinetic plasmas
(Howes et al. 2006; Schekochihin et al. 2009). In particular, the

7 Note that, in the case of incompressible hydrodynamic turbulence (Euler or
Navier–Stokes), the absence of a linear term prohibits the possibility of a
quasi-linear approach.
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arguments for the importance of the linear physics even in a
strongly turbulent plasma also hold for the linear collisionless
damping rates, providing the foundation for simple models of
the turbulent energy cascade, encompassing both the inertial
and dissipation ranges (Howes et al. 2008a, 2011a).

Besides the feasibility arguments for the validity of the quasi-
linear premise outlined above, we give here no a priori proof for
its validity in strongly nonlinear plasma turbulence. Nonlinear
simulations of plasma turbulence and observational studies
of solar wind turbulence provide two avenues for testing the
validity of the premise—at present, there exist arguments in the
literature both for and against its validity. Analysis of nonlinear
numerical simulations of plasma turbulence using gyrokinetics
(Howes et al. 2008b, 2011b) and both Hall MHD and Landau
fluid theory (Hunana et al. 2011), as well as observational
analysis of multi-spacecraft data in the solar wind (Sahraoui
et al. 2010), support the validity of the quasi-linear premise.
In addition, given that the idea of critical balance in strong
MHD turbulence (Goldreich & Sridhar 1995) is essentially a
quasi-linear concept—that the timescale of the nonlinear energy
transfer remains of order the linear wave frequency—evidence
in support of critical balance (Cho & Vishniac 2000; Maron &
Goldreich 2001; Cho & Lazarian 2003; Horbury et al. 2008;
Podesta 2009; Wicks et al. 2010; Forman et al. 2011) also
indirectly supports the quasi-linear premise. In contrast, studies
of 3D incompressible MHD simulations (Dmitruk & Matthaeus
2009) and 2D hybrid simulations (Parashar et al. 2010) of
plasma turbulence, as well as an observational analysis of multi-
spacecraft data in the solar wind (Narita et al. 2011), have called
into question the validity of the quasi-linear premise. A review
of this supporting and conflicting evidence for the quasi-linear
premise is presented in G. G. Howes et al. (2012, in preparation),
focusing in particular on questionable aspects of the conflicting
studies that cast doubt on the validity of their conclusion that the
quasi-linear premise is inapplicable to the case of strong plasma
turbulence.

It is also important to note that the utility of the quasi-linear
premise for the study of plasma turbulence, however, may also
be judged a posteriori by the insights gained from such an
approach.

3.2. Procedure for Constructing Synthetic Spacecraft Data

Upon adopting the quasi-linear premise, the construction and
analysis of synthetic spacecraft data require three steps:

1. Populate a synthetic plasma volume with a spectrum of
linear wave modes with a chosen distribution of power in
wavevector space.

2. Sample the synthetic plasma volume at the position of
a probe moving with respect to the plasma to generate
reduced time series comparable to single-point spacecraft
measurements.

3. Perform the requisite analysis on the synthetic time series to
compare to spacecraft data analysis, for example, the zero-
lag cross-correlation of the density and parallel magnetic
field fluctuations.

For the study of the density and parallel magnetic field correla-
tion of the solar wind compressible turbulent fluctuations, each
of these steps is detailed below.

3.2.1. Creating the Synthetic Turbulent Plasma

As discussed in Section 2.1, for the inertial range of solar wind
turbulence, the appropriately normalized linear physics of both

the MHD (collisional fluid) and Vlasov–Maxwell (collisionless
kinetic) systems depends on a reduced set of two parameters:
the ion plasma beta βi and the wavevector angle θ . Therefore,
a completely general synthetic turbulent plasma requires the
specification of just three properties: (1) the plasma beta,
(2) the fraction of power in each of the possible linear wave
modes, and (3) the distribution of power in wavevector space
for each of these wave modes. Both observational constraints
and phenomenological models of plasma turbulence guide our
choices for these properties.

First, we discretize the three-dimensional wavevector space
on a uniform grid of 323 points, where each wavevector
component spans kiρi ∈ [−4.8 × 10−2, 4.8 × 10−2] with a
minimum grid spacing k0ρi = 3 × 10−3. Taking an equilibrium
magnetic field B0 = B0ẑ and specifying the ion plasma beta βi ,
we may solve for the normalized linear frequencies ω(k) and
the linear eigenfunctions δB(k), δE(k), δU(k), δn(k) for each
wavevector k using our chosen plasma description (MHD or
Vlasov–Maxwell). Note that we adopt the convention ω � 0,
so that the direction of the wave group velocity (in the case
of Alfvén waves, up or down the mean magnetic field) is
determined by the wavevector.

Next, we specify the fraction of the turbulent magnetic power
for each Fourier component due to the combination of the fast,
Alfvén, and slow waves. After specifying the parititioning of
turbulent power among the linear wave modes, we adjust the
amplitudes of the Fourier coefficients of the linear wave modes
so that the fluctuating magnetic power |δB(k)|2 (due to the
linear superposition of all of the contributing wave modes at
a given wavenumber k) is consistent with the inertial range
observational constraint that the one-dimensional magnetic
energy spectrum scales as EB ∝ k−5/3. The amplitudes of the
Fourier coefficients for the remaining fields δE(k), δU(k), and
δn(k) are specified by the eigenfunction solution of each of the
linear wave modes. Random phases are also applied to each
wave mode.

Finally, the distribution of energy in wavevector space for
each of the constituent wave modes must be specified to model
the inherently anisotropic nature of magnetized plasma turbu-
lence. Imbalance between the turbulent energy fluxes propa-
gating up and down the magnetic field, as well as anisotropy
in the angular distribution of turbulent energy with respect to
the mean-field direction, may be incorporated in this final step.
For this initial synthetic data investigation of the compressible
fluctuations in the inertial range, we always set the upward-
and downward-propagating wave energy fluxes in balance. Nu-
merical simulations of compressible MHD plasma turbulence
suggest that fast wave energy is distributed isotropically while
both the Alfvén and slow wave energies obey a critically bal-
anced distribution with energy concentrated mainly in modes
with k‖ � k

1/3
0 k

2/3
⊥ , where k0 is the isotropic driving scale of

the turbulence (Cho & Lazarian 2003). Therefore, we allow for
two possible wavevector distributions of energy: (1) an isotropic
distribution, such that the distribution of power is independent
of θ ; and (2) a simplified critically balanced distribution, where
all modes with k‖ > k

1/3
0 k

2/3
⊥ are set to zero, where k0 is the

minimum wavenumber of the simulation domain.
Note that the adjustment of the fraction of turbulent power due

to each wave mode is performed for each Fourier component,
so that changes in the wavevector distribution of energy—e.g.,
from isotropic to critically balanced by zeroing out all modes
with k‖ > k

1/3
0 k

2/3
⊥ —do not affect the fluctuation amplitudes of

the non-zero modes.
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Figure 3. Probe trajectory (red) through a synthetic turbulent plasma volume generated using a spectrum of linear eigenfunctions (blue, green, and purple surface plots
on the left). Measurements of the plasma fluctuations along the probe trajectory yield synthetic single-point time series of the parallel magnetic field fluctuation δB‖
(upper right) and the density fluctuation δn (lower right).

(A color version of this figure is available in the online journal.)

3.2.2. Generating Synthetic Reduced Time Series

Once the synthetic turbulent plasma has been completely
specified in the Fourier domain, the turbulent fields may be
computed at any position r and time t by summing over all
contributing Fourier modes of all constituent linear waves, for
example,

δB‖(r, t) =
∑
m

∑
k

δB‖m(k)ei[k·r−ωm(k)t+φmj ]. (3)

Here, the index m indicates the contributions from fast, Alfvén,
and slow modes, and each contributing Fourier mode k for each
wave mode m is given a constant, random phase φmj , where
j = 1, . . . , nxnynz. Note that the linear frequency ωm(k) for
each constituent wave is a function of the wavevector k, as well
as the wave type m.

Unfortunately, single-point satellite measurements do not
provide full spatial information about the turbulence for com-
parison to the synthetic data. To mimic spacecraft measurements
made as the super-Alfvénic solar wind streams past the satellite
with velocity v, we sample the synthetic plasma volume at the
position of a probe moving with velocity −v through the volume,
r(t) = r0 − vt , where for simplicity we set r0 = 0. Sampling
along the probe trajectory at an interval Δt generates single-
point time series at times tn = nΔt for each of the turbulent
fluctuating fields, where n = 1, . . . , N and the total time inter-
val is therefore T = NΔt . This reduced set of data is directly
comparable to single-point spacecraft measurements. The time
series of the parallel magnetic field fluctuation δB‖n ≡ δB‖(tn),
for example, is given by

δB‖n = δB‖(r, t)
∣∣
r=−vtn

=
∑
m

∑
k

δB‖m(k)e−i[(k·v+ωm)tn−φmj ].

(4)

Note that the frequency ω′ of the signal measured by the mov-
ing probe is Doppler shifted by the probe velocity, ω′ = ω+k·v.
Normalizing this Doppler-shifted frequency by kvA to ob-
tain ω′ = ω′/(kvA), we find ω′ = ω + k̂ · (v/vA), where
k̂ is the unit vector in the direction of the wave vector. The
Taylor hypothesis—that the temporal fluctuations measured in
the super-Alfvénic solar wind flow are dominated by spatial
fluctuations swept past the probe at the solar wind velocity—is
equivalent to the limit k̂ · (v/vA) � ω (Taylor 1938). Be-
cause the ratio v/vA � 10 in the super-Alfvénic solar wind
flow (Tu & Marsch 1995; Bruno & Carbone 2005), the Taylor
hypothesis is frequently a useful simplification for stud-
ies of the non-dispersive linear wave modes of the inertial
range. For the present study of the compressible fluctuations
in the inertial range, we adopt the Taylor hypothesis that
ω′ � k · v, so

δB‖n =
∑
m

∑
k

δB‖m(k)e−i[k·vtn−φmj ]. (5)

In Section 4.5, we test the effect that violation of the Taylor
hypothesis has on the density–parallel magnetic field correlation
C(δn, δB‖).

This procedure of sampling the synthetic plasma volume is
depicted schematically in Figure 3. Here the blue, green, and
purple surface plots represent the spatial variation for a few of the
contributing Fourier modes to the turbulent fields. The synthetic
plasma volume is sampled at uniform time intervals along the
probe trajectory (red line), generating single-point time series
of the parallel magnetic field fluctuation δB‖n (upper right) and
the density fluctuation δnn (lower right). These synthetic time
series may then be analyzed using the same procedures as the
actual spacecraft measurements.

7
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3.2.3. Analysis of Synthetic Spacecraft Data

As discussed in Section 2.3, the correlation between the
density fluctuation δn and the parallel magnetic field fluctuation
δB‖ distinguishes fast from slow compressible modes in either
the fluid MHD or kinetic Vlasov–Maxwell systems. The zero-
lag cross-correlation of the two time series δnn and δB‖n is given
by

C(δn, δB‖) =
∑

n(δnn − δn)(δB‖n − δB‖)√∑
n(δnn − δn)2

√∑
n(δB‖n − δB‖)2

, (6)

where δn and δB‖ are the averages over the time interval
T. Comparison of the theoretical predictions of C(δn, δB‖)
to the correlation from spacecraft measurements, assuming
the validity of the quasi-linear premise, provides a means of
constraining the nature of the compressible fluctuations in the
solar wind.

4. THEORETICAL PREDICTIONS OF C(δn, δB‖) USING
SYNTHETIC SPACECRAFT DATA

Our theoretical investigation of the compressible fluctuations
in the inertial range of solar wind turbulence uses the method
outlined in Section 3 to generate synthetic spacecraft data
to provide predictions of the density–parallel magnetic field
correlation C(δn, δB‖) as a function of the following turbulent
plasma properties: the plasma βi , the fraction of fast-to-total
compressible wave power F , and the angular distribution of
the turbulent power in wavevector space. These theoretical
predictions may then be compared directly to the C(δn, δB‖)
computed from satellite measurements to constrain the nature
of the compressible fluctuations.

Below we present a comparison of four methods to pre-
dict and interpret the behavior of C(δn, δB‖) as a function
of βi and F : (1) an analytical estimate using MHD eigen-
functions; (2) synthetic spacecraft data using MHD eigenfunc-
tions, including contributions from fast, Alfvén, and slow waves;
(3) synthetic spacecraft data using Vlasov–Maxwell eigenfunc-
tions using only the compressible kinetic fast and slow waves;
and (4) synthetic spacecraft data using Vlasov–Maxwell eigen-
functions, including contributions from fast, Alfvén, and slow
waves. For each of these cases, we explore three combinations
of the angular distribution of the constituent wave mode power:
(1) all isotropically distributed wave power distributions, (2) all
critically balanced wave power distributions, and (3) isotropic
fast wave and critically balanced Alfvén and slow wave power
distributions. Based on intuition gained from numerical simula-
tions of compressible MHD turbulence (Cho & Lazarian 2003),
we expect that the third case of isotropic fast waves and critically
balanced Alfvén and slow waves is the most realistic choice; the
alternative selections are included to demonstrate the sensitiv-
ity of the method to different power distributions in wavevector
space.

All of the synthetic spacecraft data results of C(δn, δB‖) in
this section are relatively insensitive to the angle of the probe
trajectory with respect to the equilibrium magnetic field, as long
as the trajectory is not exactly parallel or perpendicular to the
field; all results here used an angle of 45◦ with respect to both the
equilibrium magnetic field and the x-axis. As a test of the validity
of the Taylor hypothesis, we created sets of synthetic data from
a time-evolving plasma in which the Taylor hypothesis is not
assumed. The time evolution of each Fourier component for each

wave mode was prescribed by its linear frequency, and the rate
of time evolution is parameterized by the ratio of solar wind
to Alfvén velocities v/vA. The correlations C(δn, δB‖) from
the time-evolved and stationary cases were indistinguishable as
long as the motion is sufficiently super- Alfvénic (v/vA � 10),
which is typically satisfied in the solar wind (Tu & Marsch 1995;
Bruno & Carbone 2005). Therefore, we assume that the Taylor
hypothesis is valid and presents results derived from stationary
synthetic data sets. For each choice of βi and F , the values of
C(δn, δB‖) plotted in Figure 4 are the mean of 256 ensembles;
the error bars are the standard deviation from this statistical
averaging procedure. The ensembles are used to average over
the random phases of the fluctuations.

4.1. Analytical Estimate of C(δn, δB‖)

To build our intuition about the behavior of C(δn, δB‖) for
turbulence modeled as a spectrum of randomly phased lin-
ear wave modes, we use the normalized compressible MHD
eigenfunctions presented in Appendix A to construct an ana-
lytical estimator Ξ(β) for C(δn, δB‖). For a plasma with an
equilibrium magnetic field B0 = B0ẑ, the density and parallel
magnetic field fluctuation for a Fourier mode with wavevector
k = k sin θ x̂ + k cos θ ẑ are generally given by the normalized
Fourier coefficients δn̂(β, θ ) and δB̂‖(β, θ ). We can estimate the
correlation by integrating the correlations of the Fourier coeffi-
cients over the specified angular distributions of power for each
wave mode,

Ξ(β) =
∫ ∑

m

[
δn̂m(β, θ )

] ∑
m

[
δB̂‖m(β, θ )

]
dθ√(∫ ∑

m

[
δn̂m(β, θ )

]
dθ

)2
√(∫ ∑

m

[
δB̂‖m(β, θ )

]
dθ

)2
,

(7)

where the sum over m includes the contribution from each of
the constituent wave modes. The expected dependence on β is
explicit in the expression, while the choice of mode fraction
F is implicit in the choice of the fraction of power in each of
the contributing wave modes. Since the Alfvén wave mode in
the MHD limit has Fourier coefficients δn̂ = δB̂‖ = 0, it is
unnecessary to include a contribution from Alfvén waves to the
estimated correlation Ξ(β). In the top row of Figure 4, Ξ(β)
is plotted for the three angular power distribution cases: all
isotropic (left), all critically balanced (center), and isotropic
fast and critically balanced slow (right). For each case, we
compute the estimator Ξ(β) for three fractions of fast-to-total
compressible wave power F = 0 (orange), F = 0.5 (blue), and
F = 1 (black).

Two qualitative features are immediately apparent from the
top row of Figure 4. First, the behavior for the mixture of fast
and slow modes is dominated by the slow mode in the β < 1
region and by the fast mode in the β > 1 region. This result
can be understood by comparing the magnitude of the fast- and
slow-mode density fluctuations in these regions. In the small-β
region, the slow-mode density fluctuations are one to two orders
of magnitude larger than the fast-mode fluctuations; the opposite
case holds for the high-β region, where the density fluctuations
for the fast mode are much larger than for the slow mode.
Second, for the case of both isotropic wave power distributions
(left), we see a dependence on β both for pure fast modes at
β � 1 and for pure slow modes at β � 1. Noting that these
pure modes have practically no β dependence for the critical
balance case (center), we can surmise that the parallel modes
are the cause of the deviations seen in the isotropic case. The

8



The Astrophysical Journal, 755:159 (16pp), 2012 August 20 Klein et al.

-1

-0.5

 0

 0.5

 1

-1

-0.5

 0

 0.5

 1

 0.1  1  10

β

F=1.0
F=0.9

F=0.75
F=0.5

F=0.25
F=0.1
F=0.0

 0.1  1  10

β
 0.1  1  10

β

-1

-0.5

 0

 0.5

 1

F=1.0
F=0.9

F=0.75
F=0.5

F=0.25
F=0.1
F=0.0

-1

-0.5

 0

 0.5

 1

 0.1  1  10
βi

F=1.0
F=0.9

F=0.75
F=0.5

F=0.25
F=0.1
F=0.0

 0.1  1  10
βi

 0.1  1  10
βi

Figure 4. Theoretical predictions of C(δn, δB‖) using synthetic spacecraft data as a function of ion plasma beta βi and fast-to-total compressible wave power F .
By row are analytical predictions based on MHD eigenfunctions (first), synthetic spacecraft data using MHD eigenfunctions (second), synthetic spacecraft data
using Vlasov–Maxwell eigenfunctions with only fast and slow waves (third), and synthetic spacecraft data using Vlasov–Maxwell eigenfunctions with 90% Alfvén
wave power, and the remaining wave power split between fast and slow waves (fourth). By column are presented different angular distributions of wave power: all
isotropic (first), all critically balanced (second), isotropic fast and critically balanced Alfvén and slow (third). Results are presented for varying fractions of fast-to-total
compressible wave power F : 1.0 (black), 0.9 (red), 0.75 (green), 0.5 (blue), 0.25 (magenta), 0.1 (gray), and 0.0 (orange). The error bars are the standard deviation
from each ensemble of runs.

(A color version of this figure is available in the online journal.)

case of the combination of isotropic fast and critically balanced
slow modes (right) appears to confirm this finding because
the β � 1 (slow-wave dominated) region looks like the purely
critically balanced case, while the β � 1 (fast-wave dominated)
region appears very much like the purely isotropic case. These
qualitative characteristics of the analytical estimator Ξ(β) for
C(δn, δB‖) provide a foundation upon which to interpret the
synthetic spacecraft data predictions.

4.2. Synthetic Spacecraft Data Prediction of C(δn, δB‖) Using
MHD Fast, Alfvén, and Slow Eigenmodes

The compressible MHD eigenfunctions presented in
Appendix A are used in the procedure outlined in Section 3
to generate synthetic spacecraft data to theoretically predict the

behavior of C(δn, δB‖) as a function of the synthetic turbulent
plasma properties. The synthetic plasma volume is sampled at
N = 32 uniformly spaced points along a trajectory of length
L = vT = 2π/3 × 103ρi . Although the MHD Alfvén wave
has δn̂ = δB̂‖ = 0, the Alfvén wave contribution to the syn-
thetic turbulent plasma is included for completeness, with 90%
of the turbulent magnetic power given by incompressible Alfvén
waves. The remaining 10% of the magnetic power is split be-
tween the MHD fast and slow waves according to the specified
fraction of fast-to-total compressible wave power F . Tests have
shown that the results for C(δn, δB‖) using MHD eigenfunctions
are unaffected by the presence or the absence of the Alfvén wave
contribution, as expected. The resulting zero-lag cross correla-
tion of the density and parallel magnetic field C(δn, δB‖) from
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the synthetic MHD plasma is presented in the second row of
Figure 4.

We see that C(δn, δB‖) from the MHD synthetic data displays
the same qualitative behavior as the analytical estimate Ξ(β).
The dominance in the low (high) β regions by the slow (fast)
mode behavior is evident. A plasma that has 90% of its
compressive energy in the fast mode has a slightly negative
correlation at β = 0.1, while a 90% slow-mode plasma has
a small but positive correlation for β = 10. Both of these
values are drastically different from C(δn, δB‖) at β = 1.0.
This dominant behavior holds true for all three choices of power
distributions. In comparing the results from these distributions,
we see the marked, and expected, lack of β dependence for the
pure fast and slow modes in the critical balance cases.

4.3. Synthetic Spacecraft Data Prediction of C(δn, δB‖) Using
Only Kinetic Fast and Slow Vlasov–Maxwell Eigenmodes

Unlike the MHD case, the Alfvén wave in the
Vlasov–Maxwell kinetic theory has a small but non-zero fluc-
tuating density and parallel magnetic field component in the
inertial range limit, kρi � 1. To illuminate the contribution of
each of the linear kinetic wave modes to C(δn, δB‖), in this
section we generate a synthetic plasma consisting of a spectrum
of only kinetic fast and slow wave fluctuations; in the next sec-
tion, the (mostly incompressible) Alfvénic contribution will be
included for completeness.

The sampling of the synthetic plasma volume is the same
as for the MHD case, using N = 32 and L = 2π/3 ×
103ρi . Numerical computation of the linear Vlasov–Maxwell
eigenfunctions uses the parameters Ti/Te = 1, vti /c = 10−4,
and mi/me = 1836, with Bessel function sums evaluated to
100 terms to ensure accurate results (Quataert 1998; Howes
et al. 2006). We have assumed isotropic Maxwellian distribution
functions for protons and electrons for all Vlasov–Maxwell
synthetic spacecraft data results presented in this paper; further
exploration of anisotropic temperature distributions may prove
fruitful but is beyond the scope of the present work.

The results for C(δn, δB‖) from the Vlasov–Maxwell syn-
thetic plasma with only kinetic fast and slow waves are presented
in the third row of Figure 4. Comparing to the MHD results
(second row), we note an apparent similarity in the qualitative
behavior but also some noticeable quantitative differences. First,
the slow-mode dominance in the βi � 1 region is still observed
for the kinetic plasma, but the βi � 1 region is not dominated by
the fast mode as in the MHD case. In fact, the mixed modes have
very little dependence on βi for βi � 1.3. Second, for pure fast
and slow modes, the correlation for the isotropic case (left) does
have a βi dependence in the high- and low-βi regions, respec-
tively, as is seen in the MHD case. However, for the pure slow
mode, C(δn, δB‖) is never perfectly anti-correlated, reaching a
minimum value of � −0.9. Third, as with the MHD plasma, the
pure fast modes are perfectly correlated in the low-βi region and
become drastically less correlated for βi values above the mode
conversion (see Appendix B) at βi � 1.3.

4.4. Synthetic Spacecraft Data Prediction of C(δn, δB‖) Using
Kinetic Fast, Alfvén, and Slow Vlasov–Maxwell Eigenmodes

In this section, we incorporate an Alfvén wave contribution
composing 90% of the turbulent magnetic power into the tur-
bulent synthetic plasma, with the remaining 10% split between
the kinetic fast and slow modes. Note that the total compress-
ible wave power used to calculate F includes only the kinetic
fast- and slow-wave contributions and does not include the small

contribution to the compressible energy from the Alfvén wave.
Since the density and parallel magnetic field fluctuations of the
Alfvén wave both have small amplitudes, it is expected that the
addition of the Alfvénic component will not yield significant
quantitative changes in C(δn, δB‖).

Sampling of the synthetic plasma volume and computation
of the linear Vlasov–Maxwell eigenfunctions are the same
as in the previous section. The resulting C(δn, δB‖) for the
Vlasov–Maxwell synthetic plasma with kinetic fast, Alfvén,
and slow waves is presented in the fourth row of Figure 4. In
comparison to the third row of Figure 4, in which the 90% of
Alfvénic fluctuation energy is not included, it is clear that the
inclusion of the dominant Alfvénic component of the turbulence
does not lead to significant quantitative changes in C(δn, δB‖).

4.5. Sensitivity of C(δn, δB‖) to Violation
of the Taylor Hypothesis

To test the effect of violating the Taylor hypothesis (Taylor
1938) on our results for C(δn, δB‖), we construct a new
time series from a temporally evolving plasma where the
Taylor hypothesis is not assumed. By abandoning the Taylor
hypothesis, we are forced to use Equation (4) to compute
the time series for each of the fields computed using our
synthetic data method. In this case, each contributing wave
mode varies with the appropriate linear frequency ωm(k) for
the particular wavevector k and wave type m. For a particular
wave mode with plasma-frame frequency ω and wavevector k
sampled by a moving probe, the normalized, Doppler-shifted
wave frequency, given by ω′ = ω + (v/vA) cos θkv , depends
on three dimensionless quantities: the normalized linear wave
frequency ω = ω/(kvA), the ratio of the probe velocity to the
Alfvén velocity v/vA, and the angle θkv between the wavevector
of a particular mode k and the probe velocity v, such that
k · v = kv cos θkv .

For a synthetic model given by a particular spectrum of lin-
ear wave modes, each with a given distribution of power in
wavevector space, once the direction of the probe trajectory is
specified, the only remaining variable is the ratio of the probe
velocity to the Alfvén velocity v/vA. Therefore, for the same
synthetic plasma model as specified in Section 4.4, we may sim-
ply vary the value of v/vA to observe the effect that violating
the Taylor hypothesis has on C(δn, δB‖). The Taylor hypoth-
esis corresponds to v/vA = ∞, whereas solar wind flows in
the near-Earth environment typically have v/vA � 10 (Tu &
Marsch 1995; Bruno & Carbone 2005). In Figure 5, we
plot C(δn, δB‖) for values v/vA = ∞, 100, 30, 10, 3, 1 for a
probe velocity traveling at 45◦ with respect to the mean-field
direction. For values of v/vA � 10, the quantitative effect on
the correlation is negligible for most of the (βi,F) parameter
space, with the exception of slight quantitative changes for the
fast-wave-dominated cases (F � 0.9) at βi > 1. Even for values
as low as v/vA = 1, the qualitative appearance of the correlation
C(δn, δB‖) versus the ion plasma beta βi and the fast-to-total
compressible wave power F is essentially unchanged. There-
fore, we conclude that the violation of the Taylor hypothesis has
little effect on the results of this investigation.

5. COMPARISON TO OBSERVATIONAL
RESULTS AND DISCUSSION

Observational constraints suggest that turbulent magnetic
power in inertial range turbulence in the solar wind consists of
approximately 90% Alfvén waves, and the remaining 10% of the
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Figure 5. Theoretical prediction of C(δn, δB‖) using synthetic spacecraft data as a function of ion plasma beta βi and fast-to-total compressible wave power F when
the Taylor hypothesis is not assumed. Synthetic spacecraft data are produced using Vlasov–Maxwell eigenfunctions with 90% Alfvén wave power, and the remaining
wave power split between fast and slow waves. Variation of the ratio of the probe to Alfvén velocity tests the sensitivity of the results to the Taylor hypothesis, where
we have tested values v/vA = ∞, 100, 30, 10, 3, 1, where v/vA = ∞ corresponds to the Taylor hypothesis.

(A color version of this figure is available in the online journal.)

power in some mixture of the compressible kinetic fast and slow
waves (Tu & Marsch 1995; Bruno & Carbone 2005). Numerical
simulations of compressible MHD turbulence suggest that the
distribution of turbulent power in wavevector space is isotropic
for the fast waves and critically balanced for the Alfvén and
slow waves (Cho & Lazarian 2003). Therefore, we believe that
the most realistic model of solar wind turbulence using synthetic
spacecraft data is given by the lower right-hand plot in Figure 4.

The analysis of the density–parallel magnetic field correlation
using 10 years of Wind spacecraft data is discussed in detail
in a companion work (Howes et al. 2012), so we give here
only a few brief details. The density–parallel magnetic field
correlation C(δn, δB‖) is computed using measurements from
the magnetic field investigation (MFI; Lepping 1995) and the
three-dimensional plasma (3DP) experiment (Lin 1995) on
the Wind spacecraft in the unperturbed solar wind at 1 AU
during the years 1994–2004. Using 300 s intervals of ambient
solar wind data (corresponding to inertial range scales of
approximately kρi ∈ (5 × 10−3, 5 × 10−2)), the proton density
and magnetic field measurements at 3 s cadence are decimated
by a factor of 10 (to 30 s cadence). Magnetic field measurements
are rotated to a field-aligned coordinate system, defined by
the local mean-field direction computed using 100 s windows,
to compute δB‖, and proton density data δn = n − n0 are
detrended over the same time intervals. The zero-lag cross-
correlation C(δn, δB‖) is computed for 119,512 data intervals.
A joint histogram of C(δn, δB‖) normalized in each βi bin is
generated, and the peak histogram values and FWHM error bars
are plotted on top of the theoretical synthetic spacecraft data
plots of C(δn, δB‖) from MHD (left) and kinetic (right) theory
in Figure 6.

For this direct comparison to the data, the theoretical re-
sults from the synthetic spacecraft data are computed in the
same manner as the spacecraft measurements. In particular,
the synthetic plasma volume is sampled at only N = 10
uniformly spaced points along a trajectory of length L =
vT = 10π/24 × 102ρi , which corresponds to a range of scales
kρi ∈ (4.8 × 10−3, 4.8 × 10−2). The smaller number of time

steps and shorter total sampled length lead to a larger standard
deviation using 256 ensembles than the Vlasov–Maxwell results
in Section 4 and to slight quantitative changes in the C(δn, δB‖)
curves.

The agreement between the C(δn, δB‖) from Wind spacecraft
data and synthetic data curve for F = 0 in Figure 6 is striking,
indicating that the observed correlation is consistent with a
statistically negligible kinetic fast-wave energy contribution
for the large sample used in this study (Howes et al. 2012).
We do note that a very small fraction of the intervals have
C(δn, δB‖) > 0, possibly indicating a minority population of
fast waves. As discussed in our companion paper (Howes et al.
2012), this result has important consequences for the turbulent
cascade of energy from large to small scales: since only the
fast-wave turbulent cascade is expected to nonlinearly transfer
energy to whistler waves at kρi � 1, and the frequency mismatch
between the fast and either the Alfvén or slow waves should
prevent nonlinear coupling, our analysis suggests that there is
little or no transfer of large-scale turbulent energy through the
inertial range down to whistler waves at small scales.

Comparison of the observationally measured C(δn, δB‖) in
Figure 6 with both the MHD and kinetic results leads to
another important conclusion of this study: the nature of the
compressible fluctuations in the solar wind inertial range is not
well modeled by MHD theory. This result is not surprising given
that the solar wind is weakly collisional at inertial range scales,
so a kinetic description is necessary to model accurately the
compressible fluctuations.

Our study also enables us to constrain the wavevector dis-
tribution of slow-wave energy by comparing the observational
results with the three plots in the bottom row of Figure 4. The
leftmost plot has an isotropic distribution of slow-wave power
and shows two features in the F = 0 curve not seen in the
observed data: (1) a bump at βi ∼ 1 and (2) a slight increase
in the correlation value at βi � 0.3. These quantitative changes
in the F = 0 curve appear the same with or without the Alfvén
waves at βi � 1 (compare the left plots in the third and fourth
rows of Figure 4), so this effect is not due to the isotropic
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Figure 6. Comparison of measured values of the C(δn, δB‖) cross-correlation (black dots with FWHM error bars) to the synthetic data predictions for MHD (left)
and kinetic (right) theory given the ratio of fast wave to total compressible energy F . Best agreement is with the kinetic theory for F = 0.00, indicating that the
compressible component of solar wind turbulence is almost entirely in the kinetic slow mode. The compressive behavior is not well described by MHD for any F .

(A color version of this figure is available in the online journal.)

distribution of Alfvén waves. Therefore, the slow waves ap-
pear to be anisotropically distributed and may be well described
by critical balance as suggested by theories of slow-wave pas-
sive advection (Maron & Goldreich 2001; Schekochihin et al.
2009). However, the uncertainty of the Wind measurements can-
not definitively rule out the possibility of an isotropic distribu-
tion for the slow mode.

One of the key points of our companion work (Howes et al.
2012) is the interpretation that the compressible fluctuations in
the solar wind consist of a critically balanced distribution of
kinetic slow-wave fluctuations. Previous analyses have gener-
ally dismissed the possibility of kinetic slow waves because,
in an isotropic Maxwellian plasma with warm ions, the colli-
sionless damping via free-streaming along the magnetic field is
strong (Barnes 1966). However, the damping rate of the slow
waves for the nearly perpendicular wavevectors of a critically
balanced distribution is proportional to the parallel component
of the wavevector, γ ∝ k‖. This feature can be seen in the right
column of Figure 1, where the slow-wave damping rate (blue)
is zero at perpendicular wavevectors θ = 90◦ (open circles) and
increases as the wavevector angle decreases. For exactly per-
pendicular wavevectors, the damping rate drops to zero—this
perpendicular limit of the slow wave corresponds to an un-
damped, non-propagating PBS. It has been derived theoretically
by Schekochihin et al. (2009) and demonstrated numerically by
Maron & Goldreich (2001) that the Alfvén wave dynamics ad-
vects and cascades the slow waves, so the energy cascade rate
of the slow waves is related not to the slow-wave frequency,
but to the Alfvén wave frequency. Therefore, although the slow-
wave fluctuations at the high k‖ boundary of critical balanced
distribution (along k‖ ∼ k

1/3
0 k

2/3
⊥ ) may suffer strong collision-

less damping, the more nearly perpendicular slow waves may
be cascaded to smaller scales on the timescale of the Alfvénic
turbulence, while the collisionless damping of these modes re-
mains weak. This could lead to a slow-wave energy distribu-
tion that is more anisotropic than critical balance, possibly with
k‖ � k

1/3
0 k

2/3
⊥ .

Using synthetic spacecraft data, we can test whether this
picture of a distribution of slow-wave power that is more
anisotropic than critical balance is consistent with the obser-
vational findings in Figure 6. To do this, we repeat the analysis
in the lower right plot of Figure 4 but with a more anisotropic
distribution of slow waves given by k‖ � k

2/3
0 k

1/3
⊥ . The results of
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Figure 7. Comparison of synthetic data predictions for C(δn, δB‖) with isotropic
fast-mode power, critically balanced Alfvén mode power, and either critically
balanced (solid) or more anisotropic than critical balance (dashed) slow-mode
power. For the more anisotropic than critical balance distribution, all modes
with k‖ > k

2/3
0 k

1/3
⊥ are set to zero, where k0 is the minimum wavenumber

of the wavenumber domain. The difference between the lines is attributable
to our choice for specifying the fraction of wave power individually for each
Fourier component: the more anisotropic distribution contains less total slow-
wave power. The lines for the F = 0 are nearly identical for both power
distributions, signifying that C(δn, δB‖) cannot be used to differentiate between
critical balance and more anisotropic distributions.

(A color version of this figure is available in the online journal.)

this test, as shown in Figure 7, demonstrate that the F = 0 curve
does not change significantly for a more anisotropic slow-wave
distribution. Therefore, the picture of the solar wind compress-
ible fluctuations composed of slow-wave fluctuations that are
more anisotropically distributed than critical balance is consis-
tent with the observational data.

One of the limitations of this investigation is that
the Vlasov–Maxwell eigenfunctions are computed assuming
isotropic Maxellian equilibrium distributions. Plasma measure-
ments in the solar wind frequently find anisotropic temperature
distributions and non-Maxwellian tails at high energy (Marsch
1991, 2006). In particular, it is possible that mirror modes may
contribute to the measured anti-correlation between the density
and parallel magnetic field, although an analysis of 10 years of
Wind data shows that only a small fraction of the solar wind
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measurements occupy the region of parameter space near
the mirror instability threshold (Bale et al. 2009). How the
density–parallel magnetic field correlation is altered by these
conditions is an important issue to be addressed in future work.

6. CONCLUSION

In this paper, we have presented the first application of
kinetic plasma theory to analyze and interpret the compressible
fluctuations in the inertial range of solar wind turbulence. This
novel approach is motivated by the fact that the dynamics in the
solar wind plasma is weakly collisional, a limit in which MHD
theory, used in all previous related investigations, is formally
invalid. Investigation of the compressible fast- and slow-wave
modes requires a kinetic description to resolve both the wave
dynamics and the collisionless kinetic damping mechanisms.

We identify quantitatively the linear kinetic wave modes of
Vlasov–Maxwell theory that correspond to the linear MHD fast-
and slow-wave modes and verify that the general qualitative
properties of the density–parallel magnetic field correlation
C(δn, δB‖)—that fast waves are positively correlated, and slow
waves are negatively correlated—remain unchanged for the
weakly collisional conditions of the solar wind plasma.

We then describe the procedure used to generate synthetic
spacecraft data used to interpret actual single-point spacecraft
measurements of turbulence in the solar wind. We define and dis-
cuss the quasi-linear premise—that some properties of magne-
tized plasma turbulence can be understood by modeling the tur-
bulence as a collection of randomly phased, linear waves—upon
which the method of synthetic spacecraft data is based. Theo-
retical arguments for the validity of the quasi-linear premise
are presented; a review of supporting and conflicting evidence
for the quasi-linear premise in the literature is presented in G.
G. Howes et al. (2012, in preparation). We outline how the
synthetic plasma data cubes are used to generate synthetic re-
duced time series of single-point measurements that can be an-
alyzed using the same procedures as the actual spacecraft mea-
surements. Comparison of the results of the analyses of both
the synthetic and actual spacecraft data enables novel physi-
cal interpretations of the solar wind turbulence measurements
(Howes et al. 2012).

Next, we use the synthetic spacecraft data method to predict
the characteristics of the density–parallel magnetic field corre-
lation C(δn, δB‖) as a function of plasma βi in the presence
of a turbulent spectrum of wave modes. Comparison of these
synthetic predictions of C(δn, δB‖), based on both linear MHD
and linear Vlasov–Maxwell eigenfunctions, to the results from
an analysis of a 10 year data set of observations from the Wind
spacecraft leads to the following conclusions:

1. The predicted C(δn, δB‖) and its dependence on plasma
βi using linear MHD eigenfunctions are significantly dif-
ferent from the prediction using linear Vlasov–Maxwell
eigenfunctions. Only the prediction based on kinetic theory
appears to agree with the spacecraft measurements, leading
to the expected conclusion that MHD theory is inadequate
to describe the compressible fluctuations in the weakly col-
lisional solar wind.

2. Strong a posteriori evidence for the validity of the quasi-
linear premise is provided by the striking agreement be-
tween the observationally determined C(δn, δB‖) over a
very large statistical sample and the predicted C(δn, δB‖)
based on synthetic spacecraft data.

3. The observed C(δn, δB‖) computed in a companion work
(Howes et al. 2012) is consistent with a statistically neg-
ligible kinetic fast-wave energy contribution for the large
sample used in this study. Note, however, that our com-
panion work also found that a very small fraction of the
intervals have C(δn, δB‖) > 0, possibly indicating a trace
population of fast waves (Howes et al. 2012).

4. The quantitative dependence of C(δn, δB‖) on the ion
plasma beta βi provides evidence that the slow-wave
fluctuations are not isotropically distributed, but rather have
an anisotropic distribution that is possibly given by the
condition of critical balance (Goldreich & Sridhar 1995) or
that is more anisotropic than critical balance.

In conclusion, our analysis using kinetic theory to interpret
the compressible fluctuations motivates the following physical
model of the turbulent fluctuations in the solar wind inertial
range. In this model, the solar wind inertial range consists of
a mixture of turbulent fluctuations, with 90% of the energy
due to incompressible Alfvénic fluctuations and the remaining
10% of the energy due to compressible slow-wave fluctuations.
The Alfvénic turbulent power is distributed anisotropically in
wave vector space according to critical balance. The turbulent
Alfvén wave dynamics advects and cascades the slow-wave
fluctuations to smaller scales at the Alfvén wave frequency. The
slow-wave turbulent power may be either critically balanced
or more anisotropic than critical balance due to collisionless
damping of the slow-wave fluctuations.

Since only the fast-wave turbulent cascade is expected to
nonlinearly transfer energy to whistler waves at kρi � 1, and
the frequency mismatch between the fast and either the Alfvén or
slow waves should prevent nonlinear coupling, there is little or
no transfer of large-scale turbulent energy through the inertial
range down to whistler waves at small scales. Therefore, any
whistler wave fluctuations at scales kρi � 1 must be generated
by some other process, e.g., kinetic temperature anisotropy
instabilities (Kasper et al. 2002; Hellinger et al. 2006; Bale
et al. 2009) or kinetic drift instabilities driven by differential
flow between protons and alpha particles (McKenzie et al. 1993;
Kasper et al. 2008; Bourouaine et al. 2011).

Finally, the lack of statistically significant fast-wave energy
has important implications for efficient numerical modeling
of solar wind turbulent fluctuations. This work demonstrates
clearly the importance of a kinetic approach to model ade-
quately the turbulent fluctuations, yet a general kinetic nu-
merical treatment—e.g., the particle-in-cell method—in three
spatial dimensions (required for physically relevant modeling
of the dominant nonlinear interactions in solar wind turbulence;
Howes et al. 2011b) is too computationally costly to be currently
feasible. Fortunately, it is possible to perform kinetic numerical
simulations of solar wind turbulence in three spatial dimen-
sions using gyrokinetics, a rigorous, low-frequency, anisotropic
limit of kinetic theory (Rutherford & Frieman 1968; Frieman
& Chen 1982; Howes et al. 2006; Schekochihin et al. 2009). In
the derivation of the gyrokinetic equation, the crucial step is an
averaging over the particle gyrophase, which leads to a theory
with the following properties: the fast/whistler wave and the
cyclotron resonances are discarded; all finite Larmor radius ef-
fects and collisionless dissipation via the Landau resonance are
retained; and one of the dimensions of velocity in phase space is
eliminated, reducing the particle distribution function from six
to five dimensions. It has been previously pointed out that one
cannot rule out the contribution of fast-wave or whistler wave
physics to solar wind turbulence, and that therefore gyrokinetics
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is an incomplete description of the turbulence (Matthaeus et al.
2008). The novel observational analysis presented here suggests
that the fast wave, in fact, does not play a statistically signif-
icant role in the turbulent dynamics of the inertial range, and
that therefore a gyrokinetic approach sufficiently describes all
important physical mechanisms in the solar wind inertial range.

K.G.K. and G.G.H. thank Jack Scudder for inspiring discus-
sions. The work has been supported by NSF CAREER Award
AGS-1054061 and NASA NNX10AC91G.

APPENDIX A

NORMALIZED MHD LINEAR EIGENFUNCTIONS

The ideal, compressible MHD equations are given by the
continuity equation,

∂ρ

∂t
+ U · ∇ρ = −ρ∇ · U, (A1)

the momentum equation,

ρ

(
∂U
∂t

+ U · ∇U
)

= −∇
(

p +
B2

8π

)
+

(B · ∇)B
4π

, (A2)

the induction equation,

∂B
∂t

= ∇ × (U × B), (A3)

and an adiabatic equation of state,

∂p

∂t
+ U · ∇p = −γp∇ · U. (A4)

Here the MHD fluid is completely described by its mass density
ρ = n(mi + me), fluid velocity U, magnetic field B, and scalar
thermal pressure p. The adiabatic index for a proton and electron
plasma is γ = 5/3. This system of equations can be derived
rigorously from plasma kinetic theory in the MHD limit of
strong collisionality ν � ω, large scales compared to the ion
Larmor radius kρi � 1, and non-relativistic conditions (Kulsrud
1983).

Although the weakly collisional conditions of the solar wind
plasma violate the strong collisionality formally required for the
validity of MHD, this system has nevertheless been widely used
to study the turbulent dynamics of the solar wind inertial range.
That this simplified approach has not met with widespread
failure is likely due to the fact that the turbulent dynamics in
the inertial range is dominated by Alfvénic motions (Belcher
& Davis 1971; Tu & Marsch 1995; Bruno & Carbone 2005).
Alfvénic fluctuations at inertial range scales are incompressible,
and it has been shown that for anisotropic fluctuations with
k‖ � k⊥ (the anisotropy generally observed in the magnetized
plasma turbulence; Robinson & Rusbridge 1971; Zweben et al.
1979; Montgomery & Turner 1981; Sahraoui et al. 2010;
Chen et al. 2011), the dynamics of Alfvénic fluctuations are
rigorously described by the equations of reduced MHD, even
under weakly collisional conditions (Schekochihin et al. 2009).
The compressible fast- and slow-wave fluctuations, on the
other hand, are substantially modified in weakly collisional
conditions, so their dynamics must be treated using kinetic
theory (Kulsrud 1983; Schekochihin et al. 2009), as has been
demonstrated in the investigation presented here.

In this appendix, we derive the compressible MHD linear
dispersion relation and eigenfunctions in dimensionless units
constructed specifically for our study of compressible solar
wind fluctuations. Without loss of generality, we specify a
wavevector k = k⊥x̂ + k‖ẑ and an equilibrium magnetic field
B0 = B0ẑ. We separate mean from fluctuating quantities using
ρ = ρ0 + δρ, U = δU, B = B0 + δB, and p = p0 + δp, where we
specify that there is no mean fluid velocity. We then linearize
Equations (A1)–(A4) and Fourier transform the equations in
both space and time. Next, we convert each of the variables to
dimensionless units and define the dimensionless frequency and
other parameters as follows:

δn = δρ = δρ/ρ0 ω = ω/(kvA)
δU = δU/vA β = c2

s /v
2
A

δB = δB/B0 c2
s = γp0/ρ0

δp = δp/p0 v2
A = B2

0/4πρ0.

(A5)

In this normalization, the linear dispersion relation takes the
form

(ω2 − cos2 θ )[ω4 − ω2(1 + β) + β cos2 θ ] = 0, (A6)

where the first factor in parentheses corresponds to the two
Alfvén wave solutions, and the second factor in the brackets
corresponds to the two slow-wave and two fast-wave solutions.8

This demonstrates the important property that the normalized
compressible MHD linear dispersion relation depends on only
two parameters, ω/(kvA) = ωMHD(β, θ ): the plasma beta β and
the angle θ between the local mean magnetic field B0 and the
direction of the wavevector k.

The linear Alfvén wave solutions have frequency

ω2 = cos2 θ (A7)

and eigenfunctions specified in terms of δUy given by

δBy = ±δUy (A8)

δn = δUx = δU‖ = δBx = δB‖ = δp = 0. (A9)

The linear slow- and fast-wave solutions have frequency

ω2 = 1 + β ±
√

(1 + β)2 − 4β cos2 θ

2
, (A10)

where the plus sign corresponds to the fast wave and the minus
sign to the slow wave. The eigenfunctions, specified in terms of
δB‖, are given by

δn = −δB‖ω2

ω2 − β cos2 θ
(A11)

δBx = −δB‖ cot θ (A12)

δUx = ωδB‖ csc θ (A13)

δU‖ = ωβ cos θ

ω2 − β cos2 θ
δB‖ (A14)

δUy = δBy = 0. (A15)

8 Note that entropy mode solution ω = 0 has already been removed from this
dispersion relation since our focus here is on the propagating linear wave
modes.
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Since the synthetic data sets are created by specifying
a spectrum of fluctuations over some range of angles, the
statistical correlations of the fluctuations depend on only three
factors: (1) angular power distribution, (2) wave mode fraction,
and (3) plasma β.

APPENDIX B

DETERMINING KINETIC COUNTERPARTS OF SLOW
VERSUS FAST MHD WAVES

The kinetic fast and slow modes are both part of the double-
valued magnetosonic solution (Krauss-Varban et al. 1994) and
are separated by a branch cut from θ ≈ 30◦ to 0◦ at βi ≈ 1.3.
This branch cut is similar to the magnetic and acoustic transition
for the MHD fast and slow modes at β = 1 for near-parallel
wavevectors. The kinetic fast and slow modes behave in an
analogous fashion: the near-parallel kinetic fast mode has the
same phase velocity as the Alfvén mode for βi < 1.3, and the
near-parallel kinetic slow mode matches the Alfvén mode for
βi > 1.3 (see the center column of Figure 1). In this work, we
label wave modes using a scheme that identifies the modes at
θ = 90◦, where there is no ambiguity in identification, and then
follows the linear dispersion relation as θ is decreased to zero.

The compressible inertial range linear wave modes with
near-parallel wavevectors can be characterized as being either
magnetic or acoustic. The magnetic modes have phase velocities
similar to the Alfvén wave, while the acoustic modes are more
heavily damped than either the Alfvén or the magnetic modes.
From this point of view, the fast mode is the magnetic mode
and the slow mode is the acoustic mode for βi < 1.3, while
the converse is true for βi > 1.3. Interestingly, for βi < 1.3,
the magnetic (fast) mode has C(δn, δB‖) � 1 and the acoustic
(slow) mode has C(δn, δB‖) � −1; but, for βi > 1.3, both
modes have C(δn, δB‖) � 0 (see Figure 2). It is this transition
that is responsible for some of the qualitative features in the
lower two rows of Figure 4. In particular, the abrupt jump on
the F = 1 curve (black) at βi ∼ 1.3 in the left and right
columns (where fast waves are isotropically distributed and so
include this region of wavevector space) and in the F = 0 curve
(orange) at βi ∼ 1.3 in the left column (where the slow waves
are isotropically distributed) are due to this transition.

This identification of modes has important physical ramifica-
tions, especially at scales near the transition to the dissipation
range. As length scales decrease toward the ion inertial length,
it is the magnetic mode, and not strictly the kinetic fast mode,
that transitions to the parallel whistler wave. However, the re-
sults presented in this paper suggest a lack of parallel slow-wave
energy, as well as statistically negligible fast-wave energy, in the
solar wind inertial range, so the difficulties of mode identifica-
tion in this region of parameter space may not be problematic
for studies of solar wind turbulence.
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