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I. INTRODUCTION

Kinetic linear dispersion in collisionless plasmas for

damped waves naturally involves an analytical continuation

of the dispersion relation from the unstable region.1 On the

nonlinear level, an evolution of kinetic waves may be

described to some extend in a quasi-linear approach. This

approximation assumes a superposition of incoherent linear

modes which at the second order (in wave amplitude) affect

the background averaged particle distribution functions.2,3

For unstable waves, this approximation gives rise to a quasi-

linear diffusion; for particles in the electrostatic case, one

gets (for symbol definition see Appendix A)

@f

@t
¼ @

@v
D @f

@v
; (1)

where the diffusion coefficient D depends on the wave spec-

trum through Landau resonances with the different modes as

/ c

ðxr � kvÞ2 þ c2
; (2)

with a resonance broadening due to the finite growth rate.

The derivation of Eq. (2) is simple but the question of its va-

lidity is difficult; such a diffusion can be an intrinsic property

of systems with sufficient overlapping of one-mode resonan-

ces/trapped region.4

The Landau resonances in the limit jcj � jxrj become

/ pdðxr � kvÞ; (3)

and the resonance broadening disappears. In this limit,

one gets the expression for the damping/growth rate as

c / @f=@vjv¼xr=k and this approach makes a self-consistent

system with energy and linear momentum conservation.5,6

In a general case, for instance, for nonpropagating7 or re-

active8 instabilities, the resonance broadening must be taken

into account. In this case for damped modes relation, Eq. (2)

gives negative diffusion coefficients and in the limit c! 0�,

one gets a negative value of Eq. (3), / �pdðxr � kvÞ, so that

there is a discontinuity of the diffusion coefficients at c ¼ 0.

To overcome these problems, it is sometimes argued that cau-

sality9 requires to take the absolute value of Eq. (2) as

/ jcj
ðxr � kvÞ2 þ c2

: (4)

This form has for jcj � jxrj the same limit (3) for the two

cases c < 0 and c > 0 but does not generally conserve the

energy (see below). In this paper, we show that the quasi-

linear diffusion coefficients need to be analytically continued

to negative growth rates from the unstable region similar to

the procedure for the linear dispersion relation. We start with

the derivation of the quasi-linear diffusion coefficients in the

simple electrostatic case and generalize these results to the

electromagnetic case.10 In both cases, we check the conser-

vation properties of the resulting quasi-linear diffusion.

The paper is organized as follows: Section II describes

the quasi-linear approximation in the electrostatic case. The

electrostatic results are generalized to the general electro-

magnetic case in Sec. III. Obtained results are discussed in

Sec. IV.

II. ELECTROSTATIC CASE

A. Unstable case

Let us start with a simple electrostatic case and unstable

waves. In this case, the dispersion relation for a mode with a

wave vector k and a (complex) frequency x ¼ xrðkÞ þ icðkÞ
where c > 0 is given implicitly as

Dðk;xÞ ¼ 1�
X

s

x2
ps

k

ð1

�1

@fs
@v

kv� x
dv ¼ 0: (5)

For symbol definition, see Appendix A. Assuming the quasi-

linear approximation, a superposition of incoherent linear

waves and slowly varying particle velocity distribution func-

tions fs,

E1 ¼
X

modes

dEðk;xÞeikx�ixt; (6)
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fs1 ¼ i
qs

ms

X
modes

dEðk;xÞ eikx�ixt

kv� x
@fs

@v
; (7)

satisfying the linear dispersion relation (5) for fs. The linear

terms E1 and fs1 are assumed to be real and, consequently,

xð�kÞ ¼ �xðkÞ and dEð�k;��xÞ ¼ dEðk;xÞ; note that

Dð�k;��xÞ ¼ Dðk;xÞ.
Taking the second order contribution to the changes of

the averaged fs ¼ fsðvk;v?Þ as

@fs
@t
¼ � qs

ms

E1

@fs1

@v

� �
; (8)

where hi denotes space and (fast) time averaging leads to the

diffusion equation for the particle distribution functions,

@fs

@t
¼ @

@v
Ds

@

@v
fs; (9)

with

Ds ¼
q2

s

m2
s

X
modes

jdEðk;xÞj2= 1

kv� x
: (10)

Using the dispersion relation (5), it is easy to show that the

total particle momentum is conserved

@

@t

X
s

nsms

ð1

�1

vfsdv ¼ 0: (11)

From Eq. (5) also follows that the total (particle and electric)

energy is conserved with energy exchanges between particles

and waves,

@

@t

X
s

nsms

ð1

�1

v2

2
fsdv ¼ ��0

X
modes

cjdEðk;xÞj2: (12)

Note that in the limit c! 0þ the diffusion coefficient

becomes

lim
c!0þ

Ds ¼
q2

s

m2
s

X
modes

jdEðk;xÞj2pdðx� kvÞ; (13)

and in this limit, the total particle kinetic energy and the

electrostatic wave energy are conserved

lim
c!0

@

@t

X
s

nsms

ð1

�1

v2

2
fsdv ¼ 0; (14)

lim
c!0

@

@t

X
modes

�0jdEðk;xÞj2

2
¼ 0; (15)

and there is no energy exchange between particles and

waves.

B. Stable case

In the stable case c < 0, the electrostatic dispersion rela-

tion may be written in the following form:

D ¼ 1�
X

s

x2
ps

k

ð1

�1

1

kv� x
þ 2pidðkv� xÞ

� �
@fs

@v
dv ¼ 0;

(16)

where d is the complex extension of the Dirac d function

(see Appendix B). Repeating the quasi-linear procedure with

the same form of fs1, Eq. (7) leads to the same quasi-linear

diffusion coefficients (10); in this case, however, the diffu-

sion coefficients are negative and the residue terms in the

dispersion relation (16) lead to a nonconservation of the lin-

ear momentum and energy which makes such a choice

unphysical. Similarly taking the absolute value9

Ds ¼
q2

s

m2
s

X
modes

jdEðk;xÞj2 = 1

kv� x

����
����; (17)

the quasi-linear diffusion does not conserve the linear mo-

mentum and energy. Instead, the linear term fs1 has to be

chosen as an analytical continuation

fs1 ¼ i
qs

ms

X
modes

dEðk;xÞeikx�ixt

� @fs

@v

1

kv� x
þ 2pidðkv� xÞ

� �
: (18)

Here, fs1 is assumed to be real and consequently, xð�kÞ
¼�xðkÞ and dEð�k;��xÞ¼ dEðk;xÞ; note that Dð�k;��xÞ
¼ Dðk;xÞ as in the unstable case.

Taking the second order contribution (8), one gets the

diffusion coefficient,

Ds ¼
q2

s

m2
s

X
modes

jdEðk;xÞj2= 1

kv� x
þ 2pidðkv� xÞ

� �
; (19)

where the new term contains the complex extension of the

Dirac delta function which directly corresponds to the resi-

due in the dispersion relation (16). Using the diffusion coeffi-

cient (19), one recovers the conservation of the linear

momentum (11) and the energy (12).

The diffusion coefficients are positive for c > 0 as well

as in the limit c! 0. The analytically continued coefficients

must therefore be positive at least for weak damping rates.

The analytically continued diffusion coefficients are difficult

to understand from the physical point of view. For weak

damping rates, one can estimate the complex Dirac delta part

of the diffusion coefficients using the Taylor expansion of

the distribution function as

@

@v
<dðkv� xÞ @fs

@v
� @

@v
dðkv� xrÞ

@fs

@v
� 1

2

c2

k2

@3fs
@v3

� �
; (20)

and we have to the second order in c
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@fs

@t
¼ @

@v
~Ds

@fs
@v
þ @

@v
Hs

@3fs

@v3
; (21)

where

~Ds ¼
q2

s

m2
s

X
modes

jdEðk;xÞj2= 1

kv� x
þ 2pidðkv� xrÞ

� �
;

(22)

Hs ¼ �
q2

s

m2
s

X
modes

jdEðk;xÞj2 c2

k2
pdðkv� xrÞ: (23)

This result indicates that the quasi-linear diffusion for modes

with nonnegligible amplitudes and damping rates involves

higher order derivatives of the velocity distribution function,

i.e., hyper-diffusion in the velocity space.

The presented quasi-linear results are continuous when

passing from c > 0 to c < 0. Taking now the limit c! 0�,

one recovers the diffusion coefficient (13). A general formu-

lation for the dispersion relation and the diffusion coefficient

can be written defining an analytic continuation of 1/x in the

distributive sense as

C
1

x
¼

1

x
þ 2pidðxÞ =x > 0

P 1

x
þ pidðxÞ =x ¼ 0

1

x
=x < 0

;

8>>>><
>>>>:

(24)

where P denotes principal value (compare with Sokhotski-

Plemelj formula). In this way, the linear dispersion relation

simply reads

1�
X

s

x2
ps

k

ð1

�1

C
1

kv� x
@fs
@v

dv ¼ 0; (25)

and the diffusion coefficient is given by

Ds ¼
q2

s

m2
s

X
modes

jdEðk;xÞj2= C
1

kv� x

� �
: (26)

III. ELECTROMAGNETIC CASE

The electrostatic results can be generalized to a general

electromagnetic case with the dispersion relation detD ¼ 0

where the dispersion tensor D is

D ¼ðk2c2 � x2 þ x2
pÞ1� kkc2 þ

X
s

x2
ps

X1
n¼�1

�
ð

R3

C
1

kkvk � xþ nxcs

kk
@fs
@vk
þ n

xcs

v?

@fs

@v?

� �
Tns d3v;

(27)

and the tensor Tns may be given as

Tns ¼

n2x2
cs

k2
?

J2
n � inxcs

k?
v?JnJ0n

nxcs

k?
vkJ

2
n

inxcs

k?
v?JnJ0n v2

?ðJ0nÞ
2 ivkv?JnJ0n

nxcs

k?
vkJ

2
n �ivkv?JnJ0n v2

kJ
2
n

0
BBBBB@

1
CCCCCA
; (28)

in the frame where k ¼ ðk?; 0; kkÞ and J0n have ks ¼ k?v?=
xcs as the argument.

The quasi-linear approximation assumes a superposition

of linear modes

E1 ¼
X

modes

dEðk;xÞeik�x�ixt; (29)

B1 ¼
X

modes

dBðk;xÞeik�x�ixt; (30)

where dBðk;xÞ ¼ k� dEðk;xÞ=x and

fs1 ¼
iqs

ms

X
modes

X1
n;l¼�1

C
1

kkvk þ lxcs � x

� dE � akls
@fs
@vk
þ a?ls

@fs
@v?

� �
Jneik�x�ixtþiðl�nÞu; (31)

where the two vectors akls and akls may be given in the frame

where k ¼ ðk?; 0; kkÞ as

akls ¼
lxcskk
xk?

Jl;�iJ0l
kkv?
x

; 1� lxcs

x

� �
Jl

� �

a?ls ¼ 1�
kkvk
x

� �
lxcs

k?v?
Jl;�i 1�

kkvk
x

� �
J0l ;

lxcsvk
xv?

Jl

� �
:

The different modes are assumed to satisfy the linear disper-

sion relation

detDðk;xÞ ¼ 0 and Dðk;xÞ � dEðk;xÞ ¼ 0: (32)

The linear terms E1; B1, and fs1 are assumed to be real and,

consequently, xð�kÞ ¼ �xðkÞ; dEð�k;��xÞ ¼ dEðk;xÞ,
and dBð�k;��xÞ ¼ dBðk;xÞ.

Taking the second order contribution to the changes of

the averaged fs ¼ fsðvk;v?Þ as

@fs

@t
¼ � qs

ms

ðE1 þ v� B1Þ �
@fs1

@v

� �
; (33)

where hi denotes space and (fast) time averaging leads to the

diffusion equation for the particle distribution functions

@fs

@t
¼ @

@vk
Dkks

@fs

@vk
þ Dk?s

@fs

@v?

� �

þ 1

v?

@

@v?
v? D?ks

@fs
@vk
þ D??s

@fs

@v?

� �
: (34)

The diffusion coefficients may be given in the following

explicit form:10,11
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DIJs ¼
q2

s

m2
s

X
modes

=
X1

n¼�1
ðdE � aInsÞðaJns � dEÞ

� C
1

kkvk þ nxcs � x
; (35)

where I; J ¼ k;?. For weak damping rates, one gets hyper-

diffusion terms analogically to the electrostatic case (21).

Using the dispersion relation (27), it is easy to show that

the total parallel momentum and energy are conserved

X
s

@psk
@t
¼ �2�0

X
modes

c<
kkjdEj2 � k � dEdEk

x
¼ �

@pemk
@t

;

(36)

X
s

@Es

@t
¼ �

X
modes

c �0jdEj2 þ
1

l0

jdBj2
� �

¼ � @Eem

@t
: (37)

In the limit c! 0, there is again no exchange of parallel lin-

ear momentum and energy between particles and waves as in

the electrostatic case.

IV. DISCUSSION

In this paper, we investigated quasi-linear properties of

the proper kinetic modes in collisionless nonrelativistic

plasma; the evolution of transient modes12 due to the initial

condition is beyond the scope of the paper. We show that the

general quasi-linear diffusion coefficients (with a resonance

broadening due to the finite growth rate which are easily

derived for unstable modes) need to be analytically continued

to negative growth rates in a manner similar to the Landau

procedure. We derived the general quasi-linear diffusion coef-

ficients starting in the simple electrostatic case and general-

ized these results to nonrelativistic magnetized plasma. The

derived quasi-linear diffusion conserves the energy and the

linear momentum and the exchanges of energy and momen-

tum between fields and particles cease as the growth/damping

rates approach zero. The analytic continuation of the diffusion

coefficients brings the problem of the physical interpretation

similar to the case of the original linear result.1 Our results

indicate that the quasi-linear diffusion of damped waves

includes some hyper-diffusion in the velocity space (i.e.,

terms proportional to higher order derivatives of the particle

velocity distribution function). The limiting forms of the

quasi-linear diffusion coefficients as c! 0 are convenient for

theoretical and numerical purposes. However, in this limit, the

energy and momentum exchanges between waves and par-

ticles approach to zero and, consequently, the particle diffu-

sion is likely reduced. This is consistent with the reduction of

the resonance broadening due to the finite damping/growth

rate. Conservation laws naturally constrain the particle diffu-

sion and must be taken into account when analysing particle

heating and acceleration by electromagnetic fluctuations.
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APPENDIX A: GLOSSARY

Here, t denotes the time and the subscript s denotes differ-

ent species. Here, i denotes the imaginary unit, < and = denote

the real and imaginary part, respectively, and the overline

denotes the complex conjugate, aþ ib ¼ a� ib for real a and

b. Here, x denotes the complex frequency, xr ¼ <x,

c ¼ =x.

In the electrostatic case, x denotes the only spatial vari-

able, fs denotes the ambient (averaged) normalized velocity

distribution function, fs ¼ fsðvÞ where v is the only velocity

component; E1 denotes the first-order, linear electric field

fluctuations, dE denote the linear fluctuations of a given

mode, and fs1 denotes the first-order, linear fluctuations of

the velocity distribution function. Here, k denotes the only

component of the wave vector.

In the electromagnetic case, x denotes the position, E
and B denote the electric and magnetic fields, respectively,

B0 denotes the ambient magnetic field, and B0 ¼ jB0j
denotes its magnitude. Here, fs ¼ fsðvk;v?Þ denotes the ambi-

ent (averaged) normalized velocity distribution function

where vk and v? denote magnitude of the velocity compo-

nents parallel and perpendicular to B0, respectively. Here, E1

and B1 denote the first-order, linear fluctuations of the elec-

tric and magnetic fields, respectively, and dE and dB denote

the linear electric and magnetic fields of a given linear mode.

Here, fs1 ¼ fs1ðvk;v?;uÞ, the first-order, linear fluctuations of

the velocity distribution function where u denotes the gyro-

phase. Here, k denotes the wave vector, and kk and k? denote

their parallel and perpendicular components with respect to

B0, respectively.

Here, xcs ¼ qsB0=ms and xps ¼ ðnsq
2
s=ms�0Þ1=2

denote

the cyclotron and plasma frequencies, respectively. In these

expressions, ms; qs, and ns denote the mass, the charge, and

the number density, respectively, and �0 and l0 denote the vac-

uum electric permittivity and magnetic permeability,

respectively.

In the electromagnetic case, psk stands for the particle

parallel linear momentum psk ¼ msns

Ð
R3 vk fs d3v and Es

denotes the particle kinetic energy Es ¼ msns

Ð
R3ðv2=2Þfs d3v

while pemk stands for the (averaged) linear momentum of the

electromagnetic field pemk ¼ �0hE� Bi � B0=B0, and Eem

denotes the (averaged) electromagnetic energy Eem ¼ h�0jEj2
þjBj2=l0i=2 where hi denote averaging.

APPENDIX B: COMPLEX DIRAC d FUNCTION

Complex extension of the Dirac d function for a suffi-

ciently smooth (analytic) real function f is defined as

ðb

a

dðx� cÞf ðxÞdx ¼ f ðcÞ if a � <c � b
0 else:

;

	
(B1)

for real a; b; x 2 R, and general complex c 2 C. This defini-

tion requires that there exists a (unique) analytic continuation

of f to c.

The complex extension d has the following properties

for analytical real functions:

dð�cÞ ¼ dðcÞ; (B2)
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which follows from the Taylor expansion around cr ¼ <c in

ci ¼ =c

f ð�cÞ ¼
X1
n¼0

f ðnÞðcrÞðiciÞn

n!
¼ f ðcÞ; (B3)

where f ðnÞ ¼ dnf=dxn.
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