

Monte Carlo Simulations of Relativistic Runaway Electrons and Terrestrial Gamma Ray Flashes (TGF)

Nikolai G. Lehtinen February 15, 2005

- ~1 ms duration
- Energies of up to 20 MeV
- Hard spectrum
- First observed by BATSE, ~1/month
- RHESSI detects ~10-20/month, => ~50/day globally

- Electrons are accelerated by E field following a +CG discharge
- Number of electrons is increased due to ionization
- Gamma rays are produces by bremsstrahlung from energetic electrons (~35 MeV energy)
- Emission is forwarddirected
- Direction of electron motion is determined by elastic collision rate and B.

- Exceeds relativistic runaway threshold
- Accelerates electrons upward
- In atmosphere with exponential conductivity profile:

$$\Phi_{\text{disch}} = \frac{Q}{4\pi\varepsilon_0} \frac{\exp[-(r+z)/2H] - 1}{r}$$

Relativistic Runaway Mechanism and Dynamic Friction Force

N₂ rotational/vibrational losses

Relativistic Runaway Electron Avalanche

- Cosmic ray primaries
- Ionization with production of relativistic electrons
- Acceleration

Method:

Relativistic motion

$$\frac{d\mathbf{p}}{dt} = -eE - \frac{e}{m\gamma}\mathbf{p} \times \mathbf{B} + \mathbf{G}(t)$$

- G(t) includes inelastic energy losses and elastic scattering (but excludes energy losses from ionization)
- New electrons from ionization

Results:

- Electron distribution
- Avalanche growth rate
- Drift velocity

Electrons in momentum space $E = 5 E_{f}^{P} B = 0$

Growth rate

- N=N₀e^{Rt}
- R=R₀/τ
- Proportional to atmosphere density N_m

$$\tau = (2\pi N_m Z_m r_0^2 c)^{-1}$$

- r₀ classical electron radius
- Z_m molecule charge
- $R_0 \sim (\delta 1) + 0.04(\delta 1)^2$, $\delta = E/E_t$

Fluid modelling of runaway avalanche above thundercloud

$$\frac{\partial N}{\partial t} + \nabla(vN) = RN + S$$

- Notations:
 - v drift velocity
 - R(E/E_t)~N_m avalanche rate
 - S~N_m source from cosmic rays, =10 m⁻³ s⁻¹ at 10 km
- Cylindrical
 - Vertical magnetic field
- Cartesian
 - Arbitrary direction of magnetic field
 - Horizontally extended thundercloud

Fluid modelling results: Cylindrical

Fluid modelling results: Cartesian

- Q=1200 C, 100 km long cloud (in EW direction)
- 45° N latitude
- 500 km altitude
- 100-300 keV
- Beam width ~ mc²/E_{el}
- Spectrum is E_{ph}-1 on average, harder in the center, softer on the edges

Highly nonlinear dependence on the charge removed and altitude

$$v\frac{dN}{dz} = RN + S$$

- v=0.9c runaway drift velocity
- R(E/E_t)~N_m avalanche rate
- S~N_m source from cosmic rays,
 =10 m⁻³ s⁻¹ at 10 km

Gamma Ray Emissivity

• $\varepsilon = N N_m v d\sigma/dE_{ph}$

 do/dE_{ph} – Heitler's differential bremsstrahlung cross-section

E

The power produced in gamma rays

Integrate over volume, assume ~10km transverse size of the electron beam

Gamma rays from precipitating electrons

- Initial gamma ray direction is downward
- They are backscattered
- Soft spectrum
- Observed spectrum is ~ E_{ph}⁻¹

Runaway Electron Avalanche and TGFs at the Magnetic Equator

- Numerous RHESSI observations
 Contradiction:
- Suppressed by geomagnetic field
- ExB drift in the horizontal direction
 => gamma rays are not emitted
 vertically?

Electrons in momentum space E = 5 E_t, B = cE, B \perp E

NOTE: There is no avalanche for $B \perp E$, B=2cE

The avalanche growth rates with perpendicular magnetic field

- The rate decreases slowly with increasing B at small B
- The avalanche is quenched approximately when B>2E/c

Nonuniform Monte Carlo results at the equator

Number of particles (MC simulation at the equator)

Number of particles with energy > 2 keV

- Higher charge removal needed
- Energetic electrons are lost quickly due to moving out of the high E field region

Altitude above which B becomes important

- For f_{H0}=1 MHz
- Elastic: v_m=ω_H (v_m is the momentum transfer rate) =
- Inelastic: $F_D/p=\omega_H$ (F_D is the dynamic friction)

Energy of avalanche-producing electrons

- Low energy electrons are stopped by friction
- Avalanche continues only if E>E_{min}
- $E_{min} \sim mc^2/R_0$
- For a uniform avalanche, there are more low-energy electrons => E_{min} is the important energy scale

Gamma Ray Emissivity at the Equator

- $\varepsilon = N N_m v d\sigma/dE_{ph}$
- do/dE_{ph} Heitler's bremsstrahlung cross-section
- Avalanche is suppressed at high altitudes (when B>2E/c)

The power produced in gamma rays at the equator

Integrate over volume, assume ~10km transverse size of the electron beam

- The number of relativistic electrons produced in the avalanche depends very nonlinearly on the electric field
- At the equator, the avalanche has to take place below 40 km