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Abstract. Analysis of observations from both space-borne (LASCO/SOHO, Skylab and Solar Max-
imum Mission) and ground-based (Mauna Loa Observatory) instruments show that there are two
types of coronal mass ejections (CMEs), fast CMEs and slow CMEs. Fast CMEs start with a high
initial speed, which remains more or less constant, while slow CMEs start with a low initial speed,
but show a gradual acceleration. To explain the difference between the two types of CMEs, Low
and Zhang (2002) proposed that it resulted from a difference in the initial topology of the magnetic
fields associated with the underlying quiescent prominences, i.e., a normal prominence configuration
will lead to a fast CME, while an inverse quiescent prominence results in a slow CME. In this paper
we explore a different scenario to explain the existence of fast and slow CMEs. Postulating only
an inverse topology for the quiescent prominences, we show that fast and slow CMEs result from
different physical processes responsible for the destabilization of the coronal magnetic field and for
the initiation and launching of the CME. We use a 2.5-D, time-dependent streamer and flux-rope
magnetohydrodynamic (MHD) model (Wu and Guo, 1997) and investigate three initiation processes,
viz. (1) injecting of magnetic flux into the flux-rope, thereby causing an additional Lorentz force that
will destabilize the streamer and launch a CME (Wu et al., 1997, 1999); (2) draining of plasma from
the flux-rope and triggering a magnetic buoyancy force that causes the flux-rope to lift and launch a
CME; and (3) introducing additional heating into the flux-rope, thereby simulating an active-region
flux-rope accompanied by a flare to launch a CME. We present 12 numerical tests using these three
driving mechanisms either alone or in various combinations. The results show that both fast and slow
CMEs can be obtained from an inverse prominence configuration subjected to one or more of these
three different initiation processes.

1. Introduction

Since the discovery of coronal mass ejections (CMEs), some 30 years ago
(Tousey, 1973), a wealth of data from both space borne (Skylab, Solar Maximum
Mission, Solar and Heliospheric Observatory) as well as ground-based (Mauna Loa
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Observatory) coronagraphs have enabled us to discover important kinematic char-
acteristics of CMEs from 1.1 to ∼30 solar radii. These data reveal that all observed
CMEs show one of the two distinct speed–height profiles (Gosling et al., 1976;
MacQueen and Fisher, 1983; Sheeley et al., 1999; St. Cyr et al., 1999; Andrews
and Howard, 2001). CMEs that originate from an active region accompanied by a
flare usually have an initial speed well above the CME median speed, 400 km s−1

and are called fast CMEs, or constant speed CMEs. They show no significant accel-
eration, but may show some deceleration (St. Cyr et al., 2000). On the other hand,
CMEs that originate above a quiescent prominence, away from active regions, have
an initial speed much less than the medium speed and are referred to as slow CMEs.
However, they show a gradual acceleration and may attain high speeds; they are
referred to as accelerated CMEs.

It is well known that CMEs are closely related to the eruption of prominences,
but the physical processes responsible for the two types of CMEs, i.e., for the
two types of CME acceleration processes, have only recently been addressed. Low
and Zhang (2002) proposed a model based on the observed two different types of
magnetic topology found in quiescent prominences, viz. the normal and inverse
configuration (Tandberg-Hanssen, 1995). The prominence material is levitated and
held above the photospheric magnetic field by the prominence’s own magnetic field,
which runs along the neutral line that crosses the prominence, being anchored in the
photosphere on either side of the prominence. A normal prominence configuration
is distinguished by a magnetic field that threads across the prominence in the same
direction as the photospheric magnetic field below. In an inverse prominence the
two fields run in opposite directions.

Low and Zhang suggested that a fast CME will occur above a normal promi-
nence and that a slow CME will occur above an inverse prominence. The physical
reason for the difference is to be found in the different roles played by magnetic
reconnection in the two cases. In the normal prominence case, the field lines in the
leading edge of the prominence flux-rope are opposite to the field lines confined by
the flux-rope; thus, a current sheet is formed, and magnetic reconnection occurs due
to a tearing-mode instability. The magnetic reconnection will cause the field lines
confined by the flux-rope to open, thereby removing flux ahead of the flux-rope,
and cause it to escape outward. This explosive situation is similar to the “breakout”
CME model proposed by Antiochos, DeVore, and Klumchuk (1999).

In the case of an inverse prominence, the expulsion of the flux-rope will cause a
current sheet to form in the anchored bipolar photospheric field below the flux-rope
(Amari et al., 2000). Since the currents of this configuration have the same direc-
tion as those in the flux-rope, they will attract each other and prevent the outward
motion of the flux-rope. However, magnetic reconnection will cause the currents to
dissipate, thereby slowly removing the attracting force. Since the magnetic recon-
nection does not directly affect the expulsion of the flux-rope, its outward motion
is not explosive, and leads to a slow CME. This scenario is supported by recent
observations (Zhang et al., 2002).
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Liu et al. (2003) have performed a numerical simulation, using a two-
dimensional, time-dependent streamer and flux-rope resistive magnetohydrody-
namic (MHD) model (Guo et al., 1996), and their results agree well with Low
and Zhang’s scenario. On the other hand, Chen et al. (1997) and Wu et al. (1997)
had studied the eruptive flux-rope in relation to LASCO CME. Recently, Chen and
Krall (2003) have presented a single three-dimensional flux-rope model also to
investigate the CME acceleration. This model is based on the Lorentz force as the
only driving mechanism.

In the present study, we present a numerical experiment, using only the inverse
prominence magnetic field topology, but specifying three different CME initiation
processes, to investigate whether both fast and slow CMEs may result. Mathemat-
ically, the three different initiation processes are considered to be perturbed condi-
tions at the lower boundary. They are as follows: (1) injection of magnetic flux into
the flux-rope, thereby causing an additional Lorentz force that will destabilize the
streamer and launch a CME (Wu et al., 1997, 1999); (2) draining of plasma from
the flux-rope, and triggering a magnetic buoyancy force that causes the flux-rope
to lift and launch a CME; and (3) introducing additional heating into the flux-rope,
simulating an active-region flux-rope accompanied by a flare to launch a CME.
The results show that the CME acceleration is closely related to one of these three
processes, or to a combination thereof. In Section 2 we describe the model and
the three initiation processes. Section 3 presents numerical results, and concluding
remarks are given in Section 4.

2. Description of the Simulation Model

To perform the numerical experiment, the streamer and flux-rope model given by
Wu and Guo (1997) is used. This model has successfully simulated some important
features of several loop-like CMEs observed by the SOHO spacecraft coronagraph,
LASCO (Wu, Guo, and Dryer, 1997; Wu et al., 1999, 2000; Plunkett et al., 2000).
The mathematical representation of the model was discussed in detail by Wu and
Guo (1997) and Wu et al. (1997). The governing equations are a set of single-fluid
time-dependent, 2.5-D MHD equations which describe the conservation of mass,
momentum, and ideal energy (without dissipation) together with the magnetic in-
duction equation to account for the nonlinear interactions between the plasma flow
and the magnetic field. These equations are identical to those given by Wu et al.
(1997), and will not be repeated here. Physically, the streamer and the flux-rope
model consist of two systems oriented orthogonally to each other as originally
suggested by Low (1990). One system represents a helmet streamer and the other
the flux-rope. The initial equilibrium configuration is constructed in two steps: (1)
Prescribe a dipole magnetic field together with Parker’s radial expanding solar wind
as the input to the set of governing equations via a relaxation technique to obtain
an equilibrium solution. This steady-state solution represents a coronal streamer
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Figure 1. Simulated initial dynamical equilibrium state for a streamer and flux-rope system, (a)
magnetic configuration of the streamer and the emerged flux-rope, (b) the dynamical equilibrium
state of the magnetic field lines and velocity vectors of the streamer, the new-fully-emerged flux-
rope and solar wind, (c) the polarization brightness of streamer and flux-rope structure, and (d) the
schematic description of the system.

(Figure 1a) that is merged with a flux rope (i.e., the prominence) which is approx-
imated by an axisymmetric magnetic toroidal solution (Shafranov, 1960). (2) The
torodial flux-rope is numerically injected into the streamer from the lower bound-
ary, again using the relaxation technique to obtain another equilibrium state (Figure
1b). Figure 1c shows the polarization brightness, and Figure 1d is a schematic rep-
resentation of this streamer and flux-rope system. This configuration forms our
initial state for the present numerical study of the CME acceleration. The physical
parameters and each mode of energy and the total energy of this initial state are
given in Tables I and II.

The computational domain is from 1Rs to 32Rs in the radial direction, where Rs

is the solar radius, and from the north pole to the south pole in the meridional plane.
Because the symmetry condition is chosen at the equator, the actual computation is
from −1◦ ≤ θ ≤ 91◦. We used 202 × 92 grids, uniform in the meridional direction
(�θ = 1◦). In order to better resolve the shock in the radial direction, the code has
been modified to adopt a non-uniform grid in the r-direction (�ri = ri − ri−1 =
0.0175ri−1). This gives a better resolution near the solar surface, and resolves the
shock development due to acceleration. Note that the presentation in the paper is
displayed from the north pole (θ = 0◦) to the south pole (θ = 180◦), by simply
mirroring the computational domain symmetrically above the equator.

The numerical scheme used to solve this set of MHD equations is the combined
difference technique described by Wu, Guo, and Wang (1995), Wu et al. (1997,
1999). The boundary conditions are based on the method of projected characteris-
tics (Wu and Wang, 1987) at the lower boundary. These lower boundary conditions
are updated as time progresses. At the pole and equator, symmetrical conditions
are used. All the properties at the outer boundary employ the linear extrapolation
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TABLE I

Initial plasma properties, magnetic field strengths, and characteristic speeds at the equator
and at the pole for the streamer and the flux-rope system.

Pole Equator

1Rs 32Rs 1Rs 32Rs

N0 (cm−3) 108 3.8 × 102 108 3.78 × 102

T0 (MK) 1.4 0.77 1.4 0.768

B0 (gauss) 2.8 6.4 × 10−4 1.14 5.62 × 10−4

β0 0.12 5 0.74 6.36

VA (km s−1) 609 72 249 63.1

Vsw (km s−1) 3.58 360 0 323

Cf (km s−1) 609 80 270 80

Cs (km s−1) 108 72 28 63

N0: number density (cm−3), T0: temperature (MK), B0: initial magnetic field strength
(gauss), β0: plasma beta (16π N0kT0/B2

0 ), VA: Alfvén speed (km s−1), Vsw: solar wind
speed (km s−1), Cf: fast wave speed (km s−1), and Cs: slow wave speed (km s−1).

TABLE II

Initial mass and energies for the streamer and flux-rope system. The energy is computed based on a
depth of 0.1Rs.

Energy (1030 erg)
Mass Total energy

Magnetic Thermal Kinetic Gravitational (1016 g) (1030 erg)

Streamer 3.66 0.77 0.60 3.42 0.52 8.45

Rope 2.0 0.27 0 1.55 0.17 3.81

Rope + streamer 5.66 1.04 0.60 4.97 0.69 12.26

because the flow is supersonic and super-Alfvénic. As usual, the reiterative
divergence-clearing technique in each time-step (Ramshaw, 1983) is used to guar-
antee that the solenoidal condition of the magnetic field (i.e., ∇ · �B = 0) is satisfied.

To initiate these numerical experiments for the three chosen surface perturba-
tions, the following expressions are used as numerical procedures:

(i) magnetic flux injection into the flux-rope

Bn+1
ϕ = Bn+1

ϕ

[
1 + δB

(
1 − r∗

0.85rf

)]
,

(ii) draining of mass from the flux-rope,

ρn+1 = ρn

[
1 + δρ

(
1 − r∗

0.85rf

)]
,
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Figure 2. Schematic description of the spatial distribution (left) and the temporal distribution (right)
of the perturbed quantities B, T, and ρ; r is the flux-rope radius, and r∗ is the running variable in the
radial direction.

(iii) heating the flux-rope

T n+1 = T n

[
1 + δT

(
1 − r∗

0.85rf

)]
,

where Bϕ is the azimuthal component of the magnetic field, ρ the mass density,
and T the temperature. r∗ is the distance between the center of the flux-rope and the
point where the strength of Bϕ is raised; r∗ ≤ 0.85 r f for this study, where r f is the
radius of the flux-rope, δB,ρ,T is an arbitrary constant related to the magnitude of the
increasing (decreasing) field strength, mass or temperature. Finally, the superscript
“n” indicates the time-step. The schematic descriptions for these three perturbed
quantities as spatial and temporal profiles are given in Figure 2. It is worth noting
that all these perturbations can be related to observations which we will discuss
later. The numerical results corresponding to these perturbations are presented in
the next section.

3. Numerical Results

A total of 12 cases of numerical experiments have been performed using the three
basic types of perturbations; viz. injection of magnetic flux, draining the plasma
from the flux rope and heating of the flux-rope, either employing only one type of
perturbation or two or a combination of all three types. Table III shows the exper-
iments carried out with these various perturbations, as well as the corresponding
energy inputs.

Figure 3 shows the curves that portray the radial speed–time profiles (3a); the
speed–distance profile (3b); and the distance–time profile (3c) for the 12 cases
listed in Table III. To construct those curves, we have identified the CME front by
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Figure 3. Simulation of (a) CME speed vs. time (b) CME speed vs. distance; and (c) CME distance
vs. time, for the 12 cases of the numerical experiments shown in Table III.

choosing the location of maximum density in front of the flux-rope. Note that the
wiggles present in all these curves are due to the numerical variation in locating the
front of the CME within the grid. We have checked the relative errors between the
grids and found them to be less than 1%.

These results clearly indicate that the profiles can be classified as belonging to
two distinct groups; fast (constant speed) CMEs, and slow (gradual acceleration)
CMEs as observed by MacQueen and Fisher (1983) and Andrews and Howard
(2000). To obtain these results, the perturbations (δB , δρ , and δT ) were applied for
a period of 120 min, with spatial and temporal variations as shown schematically
in Figure 2. The amplitudes of these three perturbations are scaled by δB , δρ , and
δT , respectively. Quantitatively, the values δB = 0.004 and δB = 0.008 correspond
to injected magnetic fluxes of 1021 Mx and 1022 Mx, respectively. These values are
of the same order of magnitude as those observed by Wang et al. (2002). Similarly,
δρ = 0.004 (0.008) means that the amount of mass being drained is 2% (5%) of the
initial mass in the flux-rope; and δT = 0.004 (0.008) corresponds to a temperature
rise of a factor of 6 (36) from the initial state. The corresponding total energy
inputs are given in Table III. These energy inputs are in the range between ∼1.5%
and ∼30% of the initial state (Tables II and III). The maximum radial velocity,
asymptotic radial velocity, and average acceleration during the eruptive phase are
given in Table IV for these 12 numerical experiments. In the following, we will
examine these 12 cases in detail.

3.1. CASES WITH SINGLE PERTURBATION

Now, we examine in detail those cases with a single type of perturbation to un-
derstand how the surface perturbation affects the CME acceleration. Cases 8, 9,
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TABLE III

Physical characteristics of the perturbations and their corresponding energy contents for all 12 cases
of the numerical experiments.

Magnetic Gravitational Thermal Total

energy energy energy energy

Case δB δρ δT (erg) (erg) (erg) input (erg)

1 0.008 0 0.008 2.8 × 1030 0 1.2 × 1030 4 × 1030

2 0 0 0.008 0 0 1.2 × 1030 1.2 × 1030

3 0.008 −0.008 0.008 2.8 × 1030 2.2 × 1029 8 × 1029 3.8 × 1030

4 0.008 −0.004 0 2.8 × 1030 1.9 × 1029 0 3 × 1030

5 0.008 0 0 2.8 × 1030 0 0 2.8 × 1030

6 0.004 −0.004 0.004 8 × 1028 1.9 × 1029 1.4 × 1029 4.1 × 1029

7 0.004 −0.004 0 8 × 1028 1.9 × 1029 0 2.7 × 1029

8 0 0 0.004 0 0 2 × 1029 2 × 1029

9 0.004 0 0 8 × 1028 0 0 8 × 1028

10 0 −0.004 0.008 0 1.9 × 1029 8 × 1029 1 × 1030

11 0 −0.004 0.004 0 1.9 × 1029 1.4 × 1029 3.3 × 1029

12 0 −0.004 0 0 1.9 × 1029 0 1.9 × 1029

TABLE IV

Eruption speeds, asymptotic speeds and average accelerations for the 12 cases of the
numerical experiments.

Average acceleration

Max. eruption speed Asymptotic at eruptive phase

Case at 180 min (km s−1) speed (km s−1) (<180 min) (m s−2)

1 770 720 98

2 650 700 90

3 760 680 97

4 620 600 78

5 580 570 73

6 480 520 61

7 460 510 59

8 165 600 22

9 350 510 30

10 200 580 26

11 175 530 23

12 120 460 15
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and 12 show that the amplitude of the perturbations are numerically the same (i.e.,
δT = 0.004, δB = 0.004, and δρ = −0.004). However, the amounts of energy input
to the system corresponding to these perturbations as shown in Table III are quite
different because of the nature of the perturbations. These differences in energy
lead to different average accelerations and to different asymptotic speeds as shown
in Table IV. These three cases exhibit characteristics of slow CMEs with gradual
acceleration, as represented by curves 8, 9, and 12 shown in Figure 3. Note that
case 12 shows a three-stage acceleration and deceleration process which may be
due to the interaction between the magnetic buoyancy force and the ambient solar
wind. We will return to this point later. In Cases 2 and 5, we increase the amplitude
of the perturbations by a factor of 2 (i.e., δB = δT = 0.008). The velocity–time
and velocity–distance profiles for these two cases, shown in Figure 3, indicate that
these two cases definitely exhibit the characteristics of fast CMEs. Both of these
cases show high radial speed and average acceleration during the eruptive phase
(Table III). However, in the case of δρ = −0.008 (not shown), the whole structure
collapsed after a short run of the numerical code. This behavior may have a physi-
cal cause; that is, if we drain too much mass from the flux-rope without providing
additional support, the imbalance between the initial streamer and flux-rope will
cause the collapse. On the other hand, if the additional perturbations of magnetic
flux injection and heating are included, the streamer and flux-rope system will erupt
to launch a CME, see for example Case 3.

In Cases 2 and 8, we compare thermal perturbations with different amplitudes
(i.e., δT = 0.008 and 0.004) and find that the higher the amplitude, the higher is
the energy input, see Table III. As a consequence, different types of CMEs are
produced (i.e., constant speed vs. gradually accelerated CMEs).

Now let us look at Cases 2 and 5. Even though the amount of energy resulting
from the thermal perturbation (1.2 × 1030 erg) is smaller than the energy from the
magnetic flux perturbation (2.8 × 1030 erg), the thermal pulse produces the higher
asymptotic radial speed of the CME. This seeming anomaly may be understood by
examining the dynamics of the evolution. The major force to propel the CME is
the radial component of the Lorentz force. To estimate the magnetic energy input,
the total magnetic field including all three components of the magnetic field is
considered. This implies that only a fraction of the magnetic energy will convert to
the radial component of the Lorentz force. On the other hand, the plasma pressure
is isotropic, and most of the thermal energy can convert to the radial component of
the pressure force. This is an indication that an active-region CME can produce a
fast (constant speed) CME, as suggested by observations (Švestka, 2000).

In order to illustrate the magnetic buoyancy effect and the three stages of accel-
eration and deceleration of the CME shown in Figure 3 (curve 12, with flux-rope
mass drainage only), we have plotted the evolution of the magnetic field at various
times in Figure 4. We will later compare this evolution with the undisturbed radial
velocity profiles of the solar wind and its characteristic fast- and slow-mode MHD
wave speeds, Cf and Cs, shown in Figure 5. The characteristic speeds given here
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Figure 4. Evolution of magnetic field lines and of velocity vectors for Case 12 (plasma draining) at
later time (5–14 hr).

will be used to locate the fast- and slow-mode MHD shocks later (Figure 9). Curve
12 of Figure 3 clearly indicates that the velocity of this CME is small (∼20 km s−1)
at first, then after 1.5 hr it increases to ∼60 km s−1. After 5 hr, when the CME
has reached ∼6Rs, the radial speed is ∼200 km s−1. However, the solar wind
speed at this location is ∼90 km s−1, which is much less than the radial speed
of the CME, and deceleration sets in (see Figure 3). Then, at 15Rs, the ambient
solar wind speed is ∼250 km s−1 (Figure 5), while the CME speed is less than
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Figure 5. Initial radial distribution of the radial solar wind speed (Vr), MHD fast-mode wave speed
(Cf) and MHD slow-mode wave speed (Cs).

Figure 6. Radial distribution of the ratio of the magnetic force and the thermal pressure force to the
gravitational force for Case 12 (plasma draining) at times 2, 7, and 12 hr.

the ambient solar wind speed, the CME gains momentum from the solar wind, and
it begins to accelerate again. We also notice from the evolution of the magnetic
field topology shown in Figure 4, that there is an accelerated expansion between
the 11th and 14th hour due to the renewed magnetic buoyancy force (indicated
at t = 12 hr) shown in Figure 6. Since we have identified the CME front as the
density peak in front of the leading edge of the flux rope, this is another ingredient
to accelerate the CME. When the CME speed again exceeds the solar wind speed,
the CME will again show a deceleration. Through these interactions, the CME will
finally attain its asymptotic speed of ∼460 km s−1 as shown in Table IV for this
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case. A closer inspection of Figure 4 reveals further details of the acceleration pro-
cess. When the flux-rope moves upward, a current sheet is formed at the trailing
edge of the flux-rope, and this current sheet will develop a force to hold down
the flux-rope. However, Figure 4 shows that around 11 hr magnetic reconnection
sets in, freeing the flux-rope from the confining force. As a result additional ac-
celeration occurs, as shown in Figure 3. This phenomenon also explains why the
initial acceleration is so slow, being constrained by the confining force in the mag-
netic configuration of inverse type prominences as suggested by Low and Zhang
(2002).

Let us examine Case 12 for further insight of how the buoyancy force works in
the CME evolution process. We have plotted at different times (i.e., 2, 7, and 12
hr) in Figure 6 the ratio between the upward force (i.e., radial component of the
Lorentz force and the pressure gradient) and the downward gravitational force. The
draining of mass from the flux-rope will decrease the downward gravitational force,
thus creating the upward buoyancy as indicated by the ratio of the forces shown
in Figure 6. The ratio (FB + FP /FG) increases as FG decreases. Further, FP will
also decrease, that is, since the pressure force is calculated from p = ρRT , and the
temperature is changed very little in the present model when the mass is drained,
the FP will decrease. In this case, we have not injected new magnetic flux into the
flux-rope; hence, the Lorentz force variation is based on the initial state, where the
field decreases along the radial direction. We suggest that the combined observed
increase of this ratio (as time increased) shown in Figure 6, is the indication of the
buoyancy action.

Let us look further at the single-pulse Cases 2 and 8, and the Cases 5 and 9.
These are cases of temperature and magnetic flux perturbations with a difference
of a factor of 2 of the perturbed parameters (δT and δB). Cases 2 and 8 result from
a temperature perturbation, respectively of 36 and 6 times the initial temperature
(1.2 × 106 K). These two pulses produce a thermal energy input to the flux rope of
1.2×1030 erg and 2×1029 erg, respectively. The amount of energy input for Case 2
is six times higher than for Case 8. Because of the increase of the energy into the
flux rope, the velocity profiles show dramatic differences, as shown in Figure 3.
The larger energy input (Case 2) produces a fast CME, and Case 8, with a factor
of six less energy input, produces a slow CME. Similar behaviors are also shown
for Case 5 and Case 9. These results show that the amount of energy input has a
significant effect.

3.2. CASES WITH COMBINED PERTURBATIONS

We now turn our attention to those cases in which all three perturbations have been
combined. In Cases 3 and 6 the nature of the pulses is the same (δB , δρ , and δT ), i.e.,
they have similar acceleration processes, but the amplitudes of the accelerations are
different. In both cases fast CMEs are produced, but with different magnitudes of
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the asymptotic radial velocity at 30Rs. As expected, the higher energy input gives
the higher radial velocity as shown in Table IV. However, this is not always true as
discussed in Section 4.

In Cases 4 and 7 we study the effect of two combined pulses, δB and δρ . The
amplitude of δρ is kept the same in both cases, but the amplitude of δB is twice
as big in Case 4 as in Case 7. The resulting velocity profiles shown in Figure
3 classify both ejections as fast CMEs. The profiles exhibit a similar behavior,
but also show that the larger the δB input, the larger the resulting radial velocity.
Case 10 and Case 11 are performed by combining the two pulses, δρ and δT .
We have kept δρ constant but changed δT for these two cases. The results shown in
Figure 3 indicate that both cases lead to slow CMEs with different final propagation
velocities.

As noted, the energy input for Case 3 includes all three types of perturbations
(i.e., δB = δT = 0.008 and δρ = −0.008), and results in a constant-speed, fast CME
as shown in Curve 3 of Figure 3. This particular CME reaches a radial speed of
760 km s−1 during the eruptive phase and then attains an asymptotic speed of
680 km s−1. The deceleration is caused by the slow background solar wind speed
(see Figure 5). The average acceleration reaches 97 km s−2 for this case. In Case 1,
the perturbation includes δB and δT = 0.008 without any mass draining, and this
gives the highest speed and acceleration found in the study. One might expect
that Case 3 would have had the highest velocity and acceleration because all three
driving mechanisms are involved. The reason why Case 3 did not match Case 1,
even though the amount of energy input is about the same, is due to the fact that,
when the mass is drained, the pressure force is accordingly reduced. This interplay
of forces implies that the gain from magnetic buoyancy cannot compensate for the
loss in the pressure force.

The duration of the pulses is 120 min in all cases discussed above. In order to
understand the effect on CME acceleration of the duration of the applied pulses,
we have carried out additional numerical experiments for 30 min pulses, again with
various amplitudes and corresponding total energy inputs, as shown in Table V.
From these results (i.e., radial speed vs. time and heliocentric distance) shown in

TABLE V

The energy contents of the perturbations used to obtain the results shown in Figure 7 for a pulse
duration of 30 min.

Magnetic Gravitational Thermal Total

energy energy energy energy

Case δB δρ δT (erg) (erg) (erg) input (erg)

1 0.04 −0.008 0.04 5.4 × 1030 12.2 × 1029 1.7 × 1030 7.3 × 1030

2 0.025 −0.008 0.025 3 × 1029 2.2 × 1029 4 × 1029 9.2 × 1029

3 0.015 −0.008 0.015 4.2 × 1029 2.2 × 1029 1.5 × 1029 4.1 × 1029
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Figure 7. The CME speed vs. time (left) and CME speed vs. distance (right) for a short-duration
(30 min) pulse with three different amplitudes: (1) δB = 0.04, δρ = −0.008 and δT = 0.04; (2)
δB = 0.025, δρ = −0.008 and δT = 0.025; and (3) δB = 0.015, δρ = −0.008 and δT = 0.015. The
corresponding amounts of energy resulting from these pulses are shown in Table V.

Figure 7, we recognize, once again, that the higher rates of energy inputs produce
explosive, fast CMEs (i.e., higher constant speed CMEs). Otherwise, slow CMEs
result. If we increase the input further, the CME propagation speed may reach
∼1500 km s−1, as shown in Figure 8.

Finally, we plot the location of the MHD fast shock as a function of the average
acceleration as shown in Table IV for the originally discussed 12 cases portrayed in
Figure 9. This plot clearly illustrates that the location of the CME-induced MHD fast
shock (as its initial formation) depends on the magnitude of the CME acceleration.
The development of an MHD fast shock will be inversely proportional (i.e., will
develop closer to the Sun) to the magnitude of the CME’s acceleration. Note that
the location of the MHD fast shock is defined as the place where the ratio of the
local flow speed to the fast-mode MHD wave speed becomes larger than the unity.
No slow shocks were found in this study.

4. Concluding Remarks

We have conducted a series of numerical experiments to investigate the acceleration
processes of CMEs. A streamer and flux-rope model (Wu and Guo, 1997) was used
with consideration of three basic driving mechanisms, viz. (i) injection of magnetic
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Figure 8. The CME speed vs. time (left) and CME speed vs. distance (right) for a pulse of one-hour
duration and with amplitude δB = 0.025, δρ = −0.004 and δT = 0.025. The amplitude of this pulse
is similar to the pulse creating curve 2 in Figure 7, except that a factor of 2 less plasma is drained.
The pulse produces a very fast CME. When plasma is less drained and the pressure also reduces to
the level below that for the case of curve 2 (Figure 7). Thus this pulse produces a very fast CME.

Figure 9. The MHD fast-shock location as a function of the magnitude of the CME acceleration and
distance from the solar surface, where numerical numbers indicate the case number as listed in Tables
III and IV.
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flux into the flux-rope, causing an additional Lorentz force to launch a CME; (ii)
draining of plasma from the flux-rope, triggering a magnetic buoyancy force which
causes the flux-rope to lift up and launch a CME; and (iii) introducing additional
heating by raising the temperature of the flux-rope to mimic an active-region flux-
rope accompanied by a flare to launch a CME. Using these three fundamental
perturbations, we have studied 12 cases of CME acceleration and deceleration,
either using a single perturbation or various combinations thereof. Briefly stated,
the total energy inputs from the perturbations determine the speed of the resulting
CMEs and their acceleration in such a way that the higher the perturbation energy
input, the faster is the created CME, as shown in Tables III and IV. However, there
are a few exceptions, viz. Cases 2 and 3, where the higher energy input did not
produce a faster CME. The reason for this is that the pressure force is decreased
for those cases because of drainage of mass.

Now let us examine Case 9 vs. Case 12; Case 9 vs. Case 10; and Case 2 vs.
Case 5. These cases again show that the higher energy inputs do not, necessarily,
produce the higher CME speeds. To understand the physical reason for this be-
havior, we have plotted in Figure 10 the variation of the ratio of the total forces
applied in three cases, e.g., F9/F12, F9/F10, F2/F5 as a function of heliocentric
distance, and at a time 2 hr after initiation. From these results, we recognize that
these ratio are not always greater than unity. Thus, these results imply that a higher
energy input does not always produce a stronger force to propel the CME. This
situation indicates that it is the conversion from energy to momentum that is crit-
ical in the CME acceleration process. By looking at Table III and Figure 3, we
note that heating is the most efficient process to convert energy into momentum;
next in efficiency is magnetic flux injection, and least efficient is plasma draining
from the flux-rope. This may be understood in terms of the nature of the pertur-
bations. Heating will produce a pressure increase which leads most directly to
conversion of energy to momentum; magnetic flux injection produces an addi-
tional Lorentz force, but only the produced radial Lorentz force is available for
CME acceleration. Finally, plasma draining triggers magnetic buoyancy, which is
a slow dynamic process for overcoming gravitational energy such that the former
can provide a radial force for CME acceleration. The above argument explains
why an active-region CME (often flare-associated) is always a fast CME (Švestka,
2000).

We have also studied the effect of different rates of inputs and find that the
higher rates (Figures 7 and 8) produce more explosive CMEs. For example, the
CME speed reaches ∼1500 km s−1 within an hour, as shown in Figure 8, and the
MHD fast shock appears within 3Rs. Finally, the present simulation shows that the
acceleration occurs in the region from ∼1.5Rs to ∼15Rs while the data given by
MacQueen and Fisher (1983) have an acceleration region between 1.25Rs and 2.4Rs.
This discrepancy is due to the fact that the present simulation configuration has a
global magnetic dipole streamer which covers the whole Sun. If we scale properly
by using a local geometric configuration such as a 30◦ bi-polar configuration with
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Figure 10. The ratio of the total forces at the equator in logarithmic scale applied in Case 9 vs. Case
12; Cases 9 vs. Case 10; and Case 2 vs. Case 5 at 2 hr after initiation. Note the heating (Case 2, lowest
panel) has some of the lower relative forces but achieves some of the highest CME speeds (Figure 3)
despite the fact that the magnetic influx (Case 5) has a higher energy input (Table III). Similarly, Case
9 (magnetic flux, top panel) has higher forces, but lower energies than Case 10 and 12 and higher
CME speeds.

the proper choice for the flux-rope size, which is 1/6 of the present size, then the
simulation would refer to the region 1 to 2.5Rs. The basic simulated characteristics
would be qualitatively similar, and the MHD shock would develop close to the Sun
as shown in Figure 9.
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We briefly summarize some important findings of the present numerical simu-
lation experiments as follows:

1. The inverse-type prominence magnetic field configuration has the ability to
produce kinematic properties of both fast (constant speed) and slow (gradu-
ally accelerated) CMEs, depending on the surface conditions.

2. From the 12 cases of simulation experiments, we notice that if the perturba-
tion energy is larger than ∼24% of the initial energy of the structure (streamer
and flux-rope), a fast CME will result (i.e., a CME with velocity higher than
600 km s−1, the escape velocity) as shown in Figure 3, Tables II, III, and IV.

3. A large energy input is a necessary condition to produce a fast CME, but it
is not sufficient. The nature of the perturbation will play an important role
(Tables III and IV).

4. The present numerical simulation experiments qualitatively reproduce the
observations given by Skylab data (MacQueen and Fisher, 1983) and
SOHO/LASCO data (Andrews and Howard, 2000).

5. The ambient solar wind plays an important role to affect the acceleration and
deceleration of the CMEs.

6. To our knowledge, this is the first numerical simulation to test plasma draining
from a flux-rope to trigger magnetic buoyancy and propel a CME above the
observed erupting filament (flux-rope) (Tandberg-Hanssen, 1995).

There remains the important question of what will happen if we consider a
normal-type prominence magnetic configuration, instead of the inverse-type studied
in this paper. Magnetic reconnection may play a somewhat different role, a question
that will be the focus of a future study.
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