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ABSTRACT

In this paper we study the dynamic evolution of emerging magnetic fields in the solar atmosphere by
deriving a model based on a three-dimensional MHD simulation. The simulation shows that magnetic field
lines initially forming a twisted flux tube below the solar surface emerge into the atmosphere by magnetic
buoyancy. Outer field lines of the flux tube are almost free to expand in a wide fan shape without strong
confinement by surrounding field lines. On the other hand, inner field lines are subject to strong con-
finement by adjacent twisted field lines that prevent the lateral expansion of inner field lines. By examining
the result of the simulation, we derive a model of emerging field lines to demonstrate that the height of an
emerging field line increases at the average rate of (g0�)

1/2H/2, where g0, �, and H are the gravitational
acceleration, curvature of the emerging field line, and a scale height of magnetic field strength. Applying
this model to the outer and inner field lines, we show that inner field lines are less dynamical than outer
field lines and inner field lines are likely to form quasi-static structure in the corona such as prominences
and sigmoids. We also discuss that the shape of inner field lines is reflected in the chirality of a modeled
sigmoid.

Subject headings: methods: numerical — MHD — Sun: corona — Sun: magnetic fields — Sun: prominences

1. INTRODUCTION

Since the discovery of a close relation between emerging
magnetic fields and active phenomena observed in the solar
atmosphere, much attention has been given to the dynamical
behavior of emerging magnetic fields that originally come
from below the solar surface by magnetic buoyancy (Parker
1955). This process, called magnetic flux emergence, is a
fundamental process for solar activity in the sense that it
brings magnetic fields into the solar atmosphere where they
provide energy sources for various activities. So far, a con-
siderable number of observational studies have been made
to show that flux emergence is a highly dynamic process
in which the magnetic field rapidly changes its state
when emerging from a dense subsurface region into a rare-
fied atmosphere.

From a theoretical point of view, a feasible way of modeling
flux emergence is to use the numerical simulation that repro-
duces the dynamic behavior of emerging magnetic fields. Over
the last decade, a number of works have been devoted to
performing two- or three-dimensional numerical simulations
of flux emergence. Shibata et al. (1989) used two-dimensional
MHD simulations to investigate how a subphotospheric
magnetic sheet expands into the corona. Their simulations fit
an analytic solution for the nonlinear phase of the Parker (i.e.,
buoyancy) instability found by assuming the self-similarity of
expansion (Shibata, Tajima, & Matsumoto 1990; Tajima
& Shibata 1997, p. 189). Similar two-dimensional studies
have been made to demonstrate the convective-Parker instability
of an expanding magnetic loop (Nozawa et al. 1992), the inter-
action between emerging magnetic fields and coronal mag-
netic fields (Yokoyama & Shibata 1996), and the expansion
of emerging magnetic fields in flux tube geometry (Krall et al.
1998; Magara 2001). Matsumoto et al. (1993) extended
two-dimensional studies by performing three-dimensional

simulations of an emerging magnetic sheet and studied the
coupled effect of the interchange mode and the undular mode
developed in the magnetic sheet. Later, Matsumoto et al.
(1998) and Magara & Longcope (2001) showed that an
emerging flux tube assumes sigmoidal structure in the corona,
while Fan (2001) discussed the photospheric flow driven by
an emerging flux tube. Very recently, Magara & Longcope
(2003, hereafter Paper I) calculated the amount of magnetic
energy and magnetic helicity injected into the atmosphere by
an emerging flux tube, and Fan & Gibson (2003) demon-
strated that a twisted flux tube emerging into a preexisting
coronal arcade becomes kink unstable, forming an S-shaped
current layer. In addition, Abbett & Fisher (2003) studied the
structure of a twisted flux tube before and after it emerges into
the atmosphere and concluded that a less twisted flux tube
forms more potential-like structure in the corona.
Those numerical simulations, especially three-dimensional

simulations, have so far provided many fruitful results that
help us understand the dynamics of emerging magnetic
fields. For example, Paper I showed that outer field lines of
an emerging flux tube evolve differently from inner field
lines. The aim of the present study is to investigate in
further detail the dynamic evolution of the outer and inner
field lines. To this end, we first perform a three-dimensional
MHD simulation and then derive a simulation-based model
for dynamic evolution of emerging field lines, which is
used to study how the shape of emerging field lines affects
their evolution. We also discuss the structure formed by
emerging field lines with emphasis on the chirality of
structure.
The next section describes an MHD numerical simulation,

and x 3 shows the result obtained by the simulation. In x 4 we
explain how we derive a model of emerging field lines and
then discuss the relation between the shape and evolution of
emerging field lines. In x 5 we consider the chirality of
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emerging field lines that have sigmoidal structure. The final
section presents a summary of this study.

2. NUMERICAL SIMULATION

2.1. Basic Equations and a Numerical Method

We use a standard set of ideal MHD equations including a
uniform gravity. These equations are written by

@�

@t
þ:= �vð Þ ¼ 0; ð1Þ

�
@v

@t
þ v = :ð Þv

� �
¼ �:P þ 1

4�
: < Bð Þ < Bþ �ggggg0; ð2Þ
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P ¼ �<T
�
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where �, v, B, P, ggggg0, �, �,<, and T indicate the gas density, fluid
velocity, magnetic field, gas pressure, gravitational accelera-
tion, adiabatic index (� ¼ 5

3
is assumed), mean molecular

weight (� ¼ 0:6 is assumed), gas constant, and temperature,
respectively. The numerical method for solving those equations
is a modified Lax-Wendroff scheme that has second-order ac-
curacy in both time and space (Magara 1998). The simulation
box is (�100; �100; �10) � (x; y; z) � (100; 100; 100),
where x and y are horizontal coordinates and z is a vertical
coordinate. The basic equations (1)–(4) are discretized on a
nonuniform Cartesian grid. The grid spacing increases from
(�x;�y;�z) ¼ (0:2; 0:4; 0:2) toward (4, 4, 4), and the finest
grid occupies the region of (�8; �12; �10) � (x; y; z) �
(8; 12; 10). The total grid number is Nx ; Ny ; Nz ¼
215 ; 167 ; 168.

2.2. Initial Conditions

The initial state is identical to the one presented in Paper I,
a magnetohydrostatic state in which a magnetic flux tube is
placed in a stratified atmosphere extending from the sub-
photosphere to the corona. The unit of length and velocity is
given by 2Hp and csp, where Hp and csp are the pressure scale
height and the adiabatic sound speed at the photosphere. They
are defined as Hp ¼ <Tp=(�gp) ¼ 2:7 ; 107 cm and csp ¼
(�<Tp=�)1=2 ¼ 11 km s�1, where Tp ¼ 5100 K is the tem-
perature at the photosphere (used as the unit of temperature)
and gp ¼ 274 m s�2 is the gravitational acceleration at the
solar surface. Accordingly, the unit of time and acceleration is
given by 2Hp=csp ¼ 49 s and c2sp=(2Hp) ¼ (�=2)gp ¼ 228 m
s�2, so the dimensionless gravitational acceleration at the
solar surface is g0 ¼ 2=�. In addition, �Pp ¼ 3:33 ; 105 dyn
cm�2, �p ¼ 2:7 ; 10�7 g cm�3, and (�Pp)

1=2 ¼ 570 G are the
unit of gas pressure, gas density, and magnetic field, where Pp

and �p are the gas pressure and gas density at the photosphere,
respectively.

Using those units, we then define the initial distribution of
temperature, gas pressure, gas density, and magnetic field in

dimensionless form. The distribution of temperature depends
on the vertical coordinate alone, which is given by
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where Sa ¼ 1:025, dT=dzj jad � (� � 1)g0 ¼ 0:4, T0 ¼ 1, T1 ¼
100, zcv ¼ �8, zph ¼ 0, ztr ¼ 7:5, zcr ¼ 20, and wtr ¼ 0:5. This
temperature profile defines four atmospheric layers: the sub-
photosphere (z < zph), the photosphere and chromosphere
(zph < z < ztr), the transition region (z� ztr), and the corona
(z > ztr). In the subphotosphere the gradient of temperature
takes a slightly superadiabatic value (Sa > 1), so this region is
convectively unstable. Using equation (6), we define the dis-
tribution of gas pressure and gas density as

P zð Þ ¼ P0 exp �
Z z

zph

�g0
T z0ð Þ dz0

" #
ð7Þ

and

� zð Þ ¼ �P zð Þ
T zð Þ ; ð8Þ

where we take P0 ¼ 1=� as the photospheric gas pressure.
The magnetic field initially forms a flux tube with a left-

handed twist below the photosphere. The distribution of
magnetic field inside the flux tube is given by

B ¼ B0

�b z� z0ð Þx̂þ ŷþ b x� x0ð Þẑ
1þ b2 x� x0ð Þ2þ z� z0ð Þ2

h i ð9Þ

[(x� x0)
2 þ (z� z0)

2 < r20], where (x0; z0) ¼ (0; �4), b ¼ 1,
r0 ¼ 2, and B0 ¼ 17:4. This is a force-free straight flux tube
whose axis is parallel to the y-axis. Inside the flux tube, the
gas pressure is given by

Ptube zð Þ ¼ P zð Þ � B2
0

8�

1

b2r20 þ 1
; ð10Þ

where Ptube(z) is the gas pressure inside the flux tube and P(z)
is given by equation (7). Equation (10) indicates that the
gradient of gas pressure in the z-direction has the same value
between inside and outside the flux tube. Hydrostatic equi-
librium requires that the gas density inside the flux tube is also
the same as outside, while the temperature inside the flux tube
is lower than outside. Figure 1 shows the initial configuration
of the simulation.

2.3. Imposed Motion

In order to initiate the emergence of the magnetic flux tube
given by equation (9), we impose an artificial motion that
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forces the flux tube to undulate along the axis. The motion is
driven by applying a time-dependent vertical velocity field
during 0 < t < t0:

vz x; y; z; tð Þ ¼ v0 cos 2�
y

k

� 
sin

�

2

t

t0

� 	
ð11Þ

[(x� x0)
2 þ (z� z0)

2 < r20; �3
4
k � y � 3

4
k], where t0 ¼ 5,

v0 ¼ 0:16, and k ¼ 20, while x0, z0, and r0 are given above in
equation (9). A downflow then arises inside an undulating flux
tube, inducing magnetic buoyancy that pushes the � part of
the flux tube toward the origin at the photospheric plane where
fine grids are distributed.

2.4. Boundary Conditions

The initial condition and the imposed motion described
above are symmetric with respect to 180� rotation about the
z-axis accompanied by a reflection of the magnetic field
vector. Under this operation, Bz, vx, and vy change sign while
all other quantities are unchanged. We take advantage of this
symmetry to advance only one-half of the simulation domain,
(0; �100; �10) � (x; y; z) � (100; 100; 100), and provide
a symmetric boundary condition at the x ¼ 0 plane. We im-
pose periodic boundary conditions at y ¼ �100, a free
boundary condition at x ¼ 100 and z ¼ 100, and a fixed, im-
permeable boundary condition at z ¼ �10 (the initial value of
each physical quantity is held fixed). In addition, we place a
nonstratified isothermal layer (zero-gravity layer) near the top
and bottom boundaries, as well as a wave-damping region
near all the boundaries except for x ¼ 0.

3. SIMULATION RESULT

In Paper I we showed that each field line of an emerging
flux tube evolves differently depending on the position inside
the flux tube. Outer field lines apart from the axis of the flux
tube emerge first into the photosphere and continue to expand
into the corona. On the other hand, inner field lines near the
tube axis emerge later into the photosphere, and they do not
simply continue to expand but stay near the photosphere at
least temporarily. Here we study the subsequent phase during
which inner field lines expand into the corona. In order to

accelerate the evolution of inner field lines, we impose an
undular motion with a relatively short wavelength (k ¼ 20
in the present study compared to k ¼ 30 in Paper I). In this
case the axis of the flux tube undulates so tightly that plasma
inside the flux tube drains efficiently, whereby enhanced mag-
netic buoyancy quickly brings inner field lines to the corona.
Figure 2 shows snapshots taken at t ¼ 36 of an outer field

line (gray line) and an inner field line (black line) that origi-
nally corresponds with the axis of the flux tube (see Fig. 1).
After emerging, the outer field line spreads out in a wide fan,
while the inner field line extends mainly in the vertical di-
rection. The situation is more obvious in Figure 3, where we
display the distribution of gas density (colors) and velocity
field (arrows) on the outer and inner field line. A density-
reduced area lies in the fan-shaped part of the outer field line,
and the velocity field in this area suggests that the outer field
line continues to expand, keeping the fan shape. Similar
density reduction can be observed in the upper part of the
inner field line where vertical motions are dominant.
The way of expansion of the outer and inner field line is

related to how these field lines are surrounded by adjacent
field lines. Figure 4 shows snapshots of the same outer and
inner field line as in Figures 2 and 3, although the snapshots in
Figure 4 are taken at t ¼ 40 together with other field lines
forming the flux tube (light gray lines). An examination of the
spatial relations of those field lines shows that the inner field
line is tightly surrounded by adjacent twisted field lines, es-
pecially along both of its legs. Such confinement by sur-
rounding field lines prevents the lateral expansion of the inner
field line. On the other hand, the outer field line is almost free
to expand without strong confinement by surrounding field
lines. Consequently, the outer and inner field lines have a
different shape while they are expanding into the corona: the
outer field line forms a widely spread fanlike structure in the
corona with a small footpoint distance at the photosphere,
while the inner field line extending from the photosphere to
the corona tends to keep the same footpoint distance.

4. A SIMULATION-BASED MODEL OF EMERGING
FIELD LINES

In this section we introduce a model for dynamic evolution
of emerging field lines. In this model, we discuss the time

Fig. 1.—Left: Initial state of the simulation. Gray and black lines represent an outer and inner field line, respectively, of a magnetic flux tube located below the
photosphere. A horizontal gray-scale map represents the photospheric plane. Right: Initial distribution of physical quantities along the z-axis, such as the gas
pressure (Pg), density (�), temperature (T ), and magnetic pressure provided by a magnetic flux tube (Pm). Temperature is plotted linearly against the right axis, and
the other quantities are plotted logarithmically against the left axis.
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history of a plasma element in the middle of an emerging field
line. Our approach is to solve the momentum equation under a
prescribed distribution of the magnetic field obtained by the
simulation shown in the previous section. Compared to more
general approaches such as solving the induction equation, the
present approach focuses on the plasma motion affected by
the magnetic field in a magnetically strong region such as the
solar corona. We first derive an evolution equation that
describes how the plasma element evolves along the sym-
metric axis of an emerging field line. Then we solve the
equation to investigate the relation between the shape and
evolution of emerging field lines.

4.1. An Evolution Equation

Figure 5a schematically illustrates an emerging field line
(thick black line) and three forces exerted on a plasma element
in the middle of the field line (arrows). We here assume the
same spatial symmetry as in the simulation, so the plasma
element always moves along the z-axis and all the forces
exerted on this element point in the vertical direction. We
furthermore assume that the magnetic pressure force, magnetic
tension force, and gravitational force are the dominant forces
affecting plasma. The gas pressure force is sufficiently weak
compared to those three forces except for near the photosphere
(see Figs. 4 and 6 in Paper I).

The momentum equation in the middle of the field line is
given by

�
d2Z(t)

dt2
¼ FM þ FT þ FG; ð12Þ

where � and Z(t) are the gas density and height of the plasma
element, while FM, FT, and FG represent the magnetic pressure
force, magnetic tension force, and gravitational force. In the
present study we confine our attention to the case that the
emerging field line always has an � shape. Accordingly, FT is
always negative and FG is also negative. FM takes either a
positive or negative value, and we later define the sign of FM

using the simulation.

The gas density in the middle of the field line is determined
by the continuum equation:

d�

dt
¼ ��

@vs
@s

; ð13Þ

where ds is the infinitesimal length of the field line and vs is
the field-aligned velocity. This is an approximate equation
because it assumes that the vertical expansion and contraction
of plasma are less important than the lateral expansion and
contraction. The simulation shows that when a field line enters
on a phase of continuous expansion, lateral expansion is
dominant in the middle of the field line even though there is a
large vertical velocity because oppositely directed vs naturally
gives rise to lateral expansion while large but almost uniform
vz produces small net vertical expansion (see Fig. 5b). We
hence proceed with equation (13) in the present study, which
gives us the time history of gas density expressed in terms of
the curvature in the middle of the field line:

� tð Þ ¼ �i exp �
Z t

0

ffiffiffiffiffiffiffi
g0�

p
dt 0

� 	
; ð14Þ

where � ¼ �i at t ¼ 0, while g0 is the gravitational accelera-
tion and � is the curvature. When we derived equation (14),
we used vs � (g0�)

1=2s, which is obtained from a free-fall
equation along the field line:

dvs
dt

¼ g0 sin � � g0�s for �T1; ð15Þ

where vs � ds=dt, � is an angle from the z-axis, and s is a signed
length taking a positive sign toward the right from the middle of
the field line and a negative sign toward the left (see Fig. 5b).
We again neglect the gas pressure force in equation (15).

The three forces on the right-hand side of equation (12) are
expressed as

FM ¼ � @

@z

B2

8�

� 	
; ð16Þ

Fig. 2.—Snapshots of an outer (gray line) and inner (black line) field line taken at t ¼ 36, showing the perspective view (left) and side view (right). A gray-scale
map shows the vertical magnetic flux at the photosphere.
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FT ¼ � B2

4�
�; ð17Þ

and

FG ¼ ��g0; ð18Þ

where � is given by equation (14). We now refer to the sim-
ulation to see the distribution of magnetic field strength along
the z-axis. In Figure 6 we plot the relation of (z, B) at t ¼ 32,
34, 36, 38, and 40. According to these plots, we approximate
that the magnetic field strength has the same z dependence at
each time, which is expressed by

B(x ¼ 0; y ¼ 0; z; t) ¼ Bi exp � z� zi

H

� 
; ð19Þ

where B ¼ Bi at z ¼ zi, while H is a typical scale height of
magnetic field strength, which is assumed to be constant in
time and space. We use this approximate relation to obtain the
temporal development of plasma motion under the prescribed
magnetic field, which is then compared to the result obtained

by the full MHD simulation. Using equation (19), we rewrite
equations (16) and (17) as

FM ¼ 1

H

B2
i

4�
exp �2

Z(t)� zi

H

� �
ð20Þ

and

FT ¼ ��
B2
i

4�
exp �2

Z(t)� zi

H

� �
: ð21Þ

Equation (20) indicates that the magnetic pressure force al-
ways goes upward. Substituting equations (14), (18), (20), and
(21) into equation (12), we finally obtain an evolution equa-
tion about the height of an emerging field line:

Z̈(t)¼ 1

H
� �

� 	
B2
i

4��i
exp �2

Z(t)� zi

H
þ
Z t

0

ffiffiffiffiffiffiffiffi
g0�

p
dt 0

� �
� g0;

ð22Þ

where Z̈(t) � d2Z=dt2.

Fig. 3.—Four snapshots (top, side, front, perspective views) of an outer and inner field line taken at t ¼ 36. Arrows and colors show the velocity field and gas
density on those field lines. White is the color in excess of red in the color scale, indicating high density.
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4.2. Comparison to Simulation

In this section we compare the result obtained by solving
equation (22) with the result obtained by an MHD simulation.
First, we define the initial condition of equation (22). Taking
Z(0) ¼ zi and Ż(0) ¼ 0 [Ż(t) ¼ dZ=dt], we assume that all the
forces initially balance each other. The force balance equation
is written by

0 ¼ 1

H
� �

� 	
B2
i

4��i
� g0: ð23Þ

According to equation (23), 1=H > � is required for force
balance. Taking zi ¼ 0 for the present study, we then rewrite
equations (22) and (23) as follows:

Z̈(t) ¼ 1

H
� �

� 	
v2Ai exp �2

Z(t)

H
þ
Z t

0

ffiffiffiffiffiffiffiffi
g0�

p
dt 0

� �
� g0 ð24Þ

and

v2Ai ¼ g0
1

H
� �

� 	�1

; ð25Þ

where vAi � Bi=(4��i)
1=2.

Next, we refer to the simulation to determine � and H. The
simulation shows that the outer field line tends to keep almost
the same curvature in the middle of the field line when it enters
on a phase of continuous expansion. We find the curvature of
the outer field line to be � ¼ 0:04, along with H ¼ 12 and
Bi ¼ 0:13, which are obtained by fitting the plots in Figure 6.
These H and � determine vAi ¼ 5:3 according to equation (25).
We substitute those H, �, and vAi into equation (24), which is
then numerically integrated using the fourth-order Runge-
Kutta method. The obtained time history of Z(t), Ż(t), and three
forces FM (t), FT (t), and FG(t) is shown in Figure 7a.

Fig. 4.—Four snapshots (top, side, front, perspective views) of an outer (gray line) and inner (black line) field line taken at t ¼ 40 together with other field lines
forming a flux tube (light gray lines). A gray-scale map shows the vertical magnetic flux at the photosphere.
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A noted feature found in Figure 7a is the oscillatory be-
havior of an emerging field line. From a qualitative view-
point, this oscillatory behavior can be explained by the
coupled effect of the magnetic force and gravitational force.
At the beginning, plasma starts to drain from the middle of
the field line, and this drives magnetic buoyancy, so Ż(t) and
Z(t) increase with time. At this stage the magnetic effect
represented by the first term on the right-hand side of equa-
tion (24) is larger than the gravitational effect represented by
the second term. Then as Z(t) increases, the magnetic effect
becomes weak because the magnetic field strength decreases
with height according to equation (19). The gravitational effect
therefore dominates the magnetic effect, which causes nega-
tive acceleration, and Ż(t) decreases until the drain of plasma
makes the magnetic effect dominant again. In the Appendix
we present a quantitative analysis of equation (24) to calcu-
late an approximate value of the period of the oscillatory

behavior Th i, as well as the average velocity hŻ(t)i. The
result is

Th i ¼ �

ffiffiffiffiffiffiffi
2H

g0

s
ð26Þ

and

Ż(t)
� �

¼ H

2

ffiffiffiffiffiffiffiffi
g0�

p
: ð27Þ

In the present case, Th i ¼ 14 and hŻ(t)i ¼ 1:3 with H ¼ 12,
g0 ¼ 1:2 (g0 ¼ 2=�), and � ¼ 0:04. The time history of the
average height and velocity is also plotted in Figure 7a.
Figure 7b shows the time history of the outer field line

found in the simulation. Here we observe the up-and-down
behavior of rising velocity, which is similar to the behavior of
Ż(t) (compare the phase of 12 < t < 27 in Fig. 7a with the
phase of 30 < t < 45 in Fig. 7b). The period of this up-and-
down behavior is about 15, which is also close to Th i ¼ 14
given by equation (26). On the other hand, we do not find
clear similarity in the time history of force between the model
and simulation. Since the grid resolution in the simulation box
becomes worse as z is larger (�z � 2 at z ¼ 50 compared to
�z � 0:7 at z ¼ 20), physical quantities related to a spatial
derivative such as magnetic pressure force and magnetic ten-
sion force become less accurate at larger z. The better com-
parison between the model and simulation will be possible
when we perform more advanced numerical simulations in
high grid resolution.

4.3. Dynamic Evolution Characterized by the Shape of
Emerging Field Lines

Using the model explained above, we now investigate the
relation between the shape and evolution of emerging field

Fig. 5.—(a) Schematic viewgraph of an �-shaped emerging field line and three forces exerted on a plasma element in the middle of the field line. Here FM , FT,
and FG represent the magnetic pressure force, magnetic tension force, and gravitational force. (b) Close-up of the middle of the field line. The vz and vs represent the
vertical velocity and field-aligned velocity, while Rc and � represent the curvature radius and curvature in the middle of the field line.

Fig. 6.—Distribution of magnetic field strength along the z-axis at t ¼ 32,
34, 36, 38, and 40. A thick dashed line shows the z dependence given by
eq. (19) with Bi ¼ 0:13, zi ¼ 10, and H ¼ 12.
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lines. Here we do not discuss realistic evolution of emerging
field lines; instead, we focus our attention on the geometrical
factor that affects dynamic evolution, especially on the cur-
vature of emerging field lines. Figures 8a–8c illustrate three
types of emerging field lines, each of which has a different
pattern of evolution. In Figure 8a, a field line spreads out
widely, keeping a fan shape during expansion, which reflects
the character of the outer field line in the simulation (called
type A). Figure 8b presents a model of the inner field line in the
simulation, which extends mainly in the vertical direction
(called type B). In Figure 8c a multilobed field line initially
forms above the surface, which later changes to a flatter,
single-lobed field line by magnetic reconnection between
neighboring lobes (called type C). When we focus on the
temporal development of the curvature in the middle of a field
line, the type A field line almost keeps the same curvature,
while the type B field line increases the curvature with time and
the type C field line decreases it with time. In order to study how
the curvature affects the dynamic evolution of an emerging
field line, we express the curvature as a function of time, which
is substituted into equation (24). Then we solve the equation
and derive the time history for each type of field line.

For the type A field line, we substitute � ¼ 0:00571 (con-
stant), H ¼ 70, and vAi ¼ 11:8 (calculated from H and � using
eq. [25]) into equation (24). We also use Bi ¼ 0:13 to calculate
the gas density. Figure 9a shows the time history of height,
velocity, force, and gas density, in which we observe the field

Fig. 7.—(a) Time history of the height (top), velocity (middle), and force (bottom) derived from a simulation-based model. In the top and middle panels, the
average height and velocity calculated using eq. (27) are shown by a dashed line. In the bottom panel, the magnetic pressure force (solid line), magnetic tension force
(dashed line), and gravitational force (dotted line) are displayed. (b) Time history of the height (top), velocity (middle), and force (bottom) of the outer field line
obtained by the simulation. In the bottom panel, the magnetic pressure force (solid line), magnetic tension force (dashed line), and gravitational force (dotted line)
are displayed.

Fig. 8.—Schematic viewgraph of three types of emerging field lines that
evolve from t ¼ t0 to t ¼ t2. (a) Type A field line continues to expand in a fan
shape. (b) Type B field line extends mainly in the vertical direction. (c) Type C
field line forms a multilobed shape above the surface, which is later changed
to a single-lobed shape by magnetic reconnection between neighboring lobes.
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line continuously expanding at an up-and-down rate of climb.
This is basically the same behavior that the outer field line
shows in the simulation.

For the type B field line, we use a time-dependent curvature
given by

�(t) ¼ �1 � �0ð Þ tanh t � 50ð Þ=20½ � þ 1

2


 �
þ �0; ð28Þ

along with the same H, vAi, and Bi that are taken for the type A
field line. Equation (28) indicates that � temporally increases
from �0 ¼ 0:00571 to �1 ¼ 1:005(1=H). The obtained time
history of height, velocity, force, and gas density is shown in
Figure 9b. At the early phase, the type B field line evolves
almost in the same way as the type A field line; however, at
the late phase (60 < t < 100) the upward velocity signifi-
cantly decreases and the height of the field line comes close to
a marginal value. Mathematically speaking, such strong de-
celeration is caused by the fact that � is larger than 1/H,
whereby both terms on the right-hand side of equation (24)
become negative. This causes a strong downflow in the middle
of the field line, which starts to shrink toward the surface (at
this stage the average velocity given by eq. [27] is no longer
valid). However, physically speaking, such a strong downflow
locally compresses the magnetic field and decreases a scale
height, H. When 1/H becomes larger than �, the downflow is
decelerated and eventually the field line may come to a less
dynamical state. Since the time history of force shows that the
magnetic pressure force and magnetic tension force are almost
comparable in size at the late phase, we expect that the type B
field line could reach force-free equilibrium with a certain
height. On the other hand, the gravitational force becomes
much weaker than those two forces because plasma drains
efficiently under the effect of increasing curvature.

For the type C field line, we use a time-dependent curvature
given by

�(t) ¼ �0 1� 0:875
t

100

� 
; ð29Þ

where �0 ¼ 0:00571. We also take the same H, vAi, and Bi

that are taken for the type A and type B field lines. Compared
to the type A field line, the type C field line shows sim-
ilar evolution in Figure 9c, although the upward velocity de-
creases with time as the curvature decreases. This is because
more plasma can remain in such a flatter field line as the type
C field line, thereby reducing magnetic buoyancy (see the time
history of gas density in Fig. 9c). Furthermore, as the field line
becomes flatter, the magnetic tension force becomes less ef-
fective than the other two forces.
Among those three types of emerging field lines, the type A

field line is the most dynamical and a group of these field lines
form an outer layer of an emerging flux tube (see Fig. 4). They
continue to expand widely in the corona while the footpoints
of these field lines are confined to a small area at the photo-
sphere. On the other hand, the type B and type C field lines
represent inner field lines of an emerging flux tube. These field
lines are almost aligned along the neutral line, and they con-
nect opposite polarity regions with intense magnetic flux at the
photosphere (see Fig. 2). Moreover, those two types of field
lines are less dynamical in the corona than the type A field
line. The type B field line has a vertically elongated shape and
could reach force-free equilibrium, while the type C field line
basically continues dynamic evolution; however, its speed is
slow because magnetic buoyancy is ineffective in a horizontally
stretched field line. The difference of dynamic evolution be-
tween the type B and type C field line leads us to expect that

Fig. 9.—(a) Time history of the height (top), velocity (second from the top), force (third from the top), and gas density (bottom) of the type A field line. In the
panel for height and velocity, the average height and velocity calculated using eq. (27) are shown by a dashed line. In the panel for force, the magnetic pressure force
(solid line), magnetic tension force (dashed line), and gravitational force (dotted line) are displayed. (b) Same as (a), but for the type B field line. (c) Same as (a), but
for the type C field line.
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those two types of field lines form different quasi-static mag-
netic structure in the corona. The type B field line could form a
less massive (and therefore high Alfvén velocity), quasi-static
magnetic loop in which the magnetic pressure force is balanced
against the magnetic tension force. If such magnetic loops are
illuminated by some adequate heating process, they might be
observed as coronal loops. On the other hand, the slowly
evolving type C field line could form the magnetic structure for
filaments and prominences, which includes long horizontal
field lines above the neutral line. In this respect, it seems to be
difficult to form long horizontal field lines simply by the
emergence of a straight flux tube. This difficulty has been
suggested by the two-dimensional simulations of an emerging
flux tube presented in Magara (2001), which assumed transla-
tional invariance along the axis of an emerging flux tube and
showed that the field line on the straight axis hardly emerges
into the surface because plasma on this axis does not drain,
thereby making magnetic buoyancy ineffective. In Figure 4 a
sidelobe emerges at both sides of the central lobe and forms
a new bipolar region at the photosphere, which will interact
with emerging field lines in the central lobe. Thus, it is inter-
esting to examine whether such interaction leads to forming
long horizontal magnetic structure above the neutral line
(Martens & Zwaan 2001). Finally, the dynamic character of
the type C field line might play an important role in causing
prominence eruptions and coronal mass ejections (Low 1996,
2001), although those topics are beyond the scope of the present
study.

5. CHIRALITY OF EMERGING FIELD LINES

The chirality of coronal structure has been widely studied
using solar observations. There are two types of filaments,
known as dextral and sinistral (Martin & McAllister 1996,
1997). We also know that sigmoids, soft X-ray coronal loops
observed in some active regions, have a forward S or back-
ward S shape (Rust & Kumar 1996; Canfield, Hudson, &
Pevtsov 2000). Furthermore, the relation between filament
chirality and the chirality of interplanetary magnetic clouds
has been investigated (Bothmer & Rust 1997).

Figure 10 shows three space curves in the Cartesian coor-
dinates, a light gray and dark gray curve lying on the surface
of a torus and a black curve lying on the common axis of these
tori. The light gray and dark gray curves circle the axis in a
left-handed way. The formula of those curves is given by

x ¼ Rþ r cos uð Þ cos v;
y ¼ R� r sin u;

z ¼ Rþ r cos uð Þ sin v� R sin
�

2
� l

R

� 	
; ð30Þ

where (u; v) are parameters while (R, l, r) are constants (R ¼ 3,
l ¼ 5). For the black curve, r ¼ 0. For the light gray curve,
r ¼ 0:8 and u is expressed as a function of v:

f (v) � 0:75� v� �

2

� 
: ð31Þ

Fig. 10.—Four snapshots (top, side, front, perspective views) of three space curves in Cartesian coordinates (only z > 0 is shown). Light gray and dark gray curves
lie on the surface of a torus, while a black curve lies on the common axis of these tori, which is circled by the light gray and dark gray curves in a left-handed way.
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For the dark gray curve, r ¼ 0:5 and u is given by

u ¼ f (v)þ �; ð32Þ

where f (v) is defined in equation (31).
When we focus on the spatial relations of those curves, the

light gray curve overlies the black curve and the dark gray
curve underlies the black curve. Furthermore, the top view of
those curves indicates that the light gray curve has a forward
S shape and the dark gray curve has a backward S shape. When
we use those curves as a model of emerging field lines that
form a flux tube with a left-handed twist, the light and dark
gray curves represent the outer and inner field lines, respec-
tively. As we have discussed in the previous section, inner
field lines are less dynamical than outer field lines, so inner
field lines could form quasi-static magnetic structure in the
corona. We therefore expect that such quasi-static structure
assumes the shape of inner field lines, a backward S shape in
this case. Similarly, an emerging flux tube with a right-handed
twist could form quasi-static structure in a forward S shape.

We here examine the chirality of emerging field lines that
are illuminated by some unknown heating process. Since we

do not have a precise heating mechanism of coronal magnetic
fields, we here refer to the distribution of current density at the
footpoints of emerging field lines (Lee et al. 1998; Magara &
Longcope 2001; Török & Kliem 2003). Nonzero current at
those footpoints could be dissipated to provide a footpoint
energy source for heating plasma distributed along the field
line. Figure 11 displays the same field lines as in Figure 4,
although the color of individual field lines reflects the square
value of current density at their footpoints. The bright field
lines in this figure clearly show backward S-shaped structure,
indicating that the structure is formed by several sets of sig-
moidal field lines (Gibson et al. 2002).

6. SUMMARY

In this paper we study the dynamic evolution of emerging
field lines, focusing on how the shape of field lines affects
their evolution. The following is a summary of the results:

1. Magnetic field lines at the outer and inner portion of an
emerging flux tube expand into the atmosphere in a different
way, which leads them into forming a different shape. Outer
field lines spread out in a wide fan in the corona with a small

Fig. 11.—Snapshots of a modeled sigmoid. Colors of field lines represent the square value of current density at their footpoints on a chromospheric plane located
at z ¼ 5 (if the value at one footpoint is larger than the other, then the larger value is used to define the field line color). A horizontal color map represents the square
value of current density at the chromospheric plane, and contours on this map show the vertical magnetic flux. Top view (top left), top view without field lines (top
right), side view (bottom left), and perspective view (bottom right) are presented.
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footpoint distance at the photosphere, while inner field lines
tend to expand vertically without changing the footpoint dis-
tance dramatically.

2. Inner field lines are strongly confined by adjacent twisted
field lines along the legs, which restricts the lateral expansion
of inner field lines. On the other hand, outer field lines are
almost free to expand without strong confinement by sur-
rounding field lines.

3. We derive a simulation-based model that explains the
dynamic evolution of emerging field lines. This model focuses
on the plasma motion affected by a prescribed magnetic field,
which is based on the fact that plasma motion is dominantly
controlled by the magnetic field in such a magnetically strong
region as the solar corona.

4. Using the simulation-based model, we find out that outer
field lines tend to keep the same dynamical state, that is, they
continue to expand in a widely spread fan shape. On the other
hand, inner field lines are less dynamical than outer field lines
and could form quasi-static magnetic structure in the corona.
One case is that inner field lines reach force-free equilibrium
when the curvature in the middle of a field line temporally
increases. Another case is that inner field lines gradually reduce
the rising speed as the curvature decreases. In the former case,

inner field lines form a less massive magnetic loop in a verti-
cally elongated shape, which might be observed as a coronal
loop under some adequate heating process. In the latter case,
inner field lines form a long, horizontally stretched magnetic
loop filled with massive plasma. This slowly but still surely
rising magnetic loop might provide a model of prominences and
filaments whose dynamic aspect has recently been an important
subject for theoretical modelings (Antiochos, MacNeice, &
Spicer 2000; Karpen et al. 2001).

5. Since inner field lines more likely form quasi-static
structure in the corona than outer field lines, the shape of inner
field lines could appear as an observed property of coronal
structure. We examine this using a model of sigmoid and find
out that the shape of inner field lines rather than outer field lines
is reflected in the chirality of sigmoid.

This work is financially supported by NASA ROSS-2000
NRA-00-01-SSS-057 and the Center for Integrated Space
Weather Modeling (CISM; ATM-0120950). The numerical
simulation has been performed with the assistance of the
National Institute of Fusion Science in Japan.

APPENDIX

ANALYSIS OF THE EVOLUTION EQUATION

We here present a quantitative analysis of equation (24). For simplicity, we assume that � is constant (� ¼ �0). In this case,
equation (24) is written by

Z̈(t) ¼ g0 exp �2
Z(t)

H
þ ffiffiffiffiffiffiffiffiffi

g0�0
p

t

� �
� 1


 �
; ðA1Þ

where we used equation (25) to eliminate vAi. Next, we define q(t) to express the exponent on the right-hand side of equation (A1):

q(t) ¼ �2
Z(t)

H
þ ffiffiffiffiffiffiffiffiffi

g0�0
p

t: ðA2Þ

If we differentiate equation (A2) twice with respect to t, we obtain

q̈(t) ¼ �2
Z̈(t)

H
: ðA3Þ

We then replace Z(t) by q(t) in equation (A1) using equations (A2) and (A3). The result is

q̈(t) ¼ � 2g0
H

eq(t) � 1
� 

: ðA4Þ

The initial condition of equation (A4) is given by

q(0) ¼ �2
Z(0)

H
¼ 0 ðA5Þ

and

q̇(0) ¼ �2
Ż(0)

H
þ ffiffiffiffiffiffiffiffiffi

g0�0
p ¼ ffiffiffiffiffiffiffiffiffi

g0�0
p

: ðA6Þ

Since the right-hand side of equation (A4) works as the conservative force for motion, the solution satisfying the initial condition
given by equations (A5) and (A6) might be given byZ t

0

dt 0 ¼
Z q

0

dq0

g0�0 þ 4g0=Hð Þ 1þ q0 � eq
0ð Þ½ �1=2

: ðA7Þ
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Now we return to equation (A4) and take the Taylor expansion of the exponential term on the right-hand side. When we take the
first order of expansion, equation (A4) is approximately written by

q̈(t)�� 2g0
H

q(t): ðA8Þ

Then we solve equation (A8) under the initial condition given by equations (A5) and (A6). The result is

q(t) ¼
ffiffiffiffiffiffiffiffiffi
g0�0

p

!
sin !t; ðA9Þ

where ! ¼ (2g0=H)1=2. As we have shown in x 4.2, the initial force balance requires �0H < 1, which is equivalent toffiffiffiffiffiffiffiffiffi
g0�0

p

!
<

1ffiffiffi
2

p : ðA10Þ

In this case equation (A9) shows that qj j < 1 is satisfied for the Taylor expansion. Substituting equation (A9) into equation (A2)
and differentiating this once with respect to t, we obtain an expression of Ż(t):

Ż(t) ¼ H

2

ffiffiffiffiffiffiffiffiffi
g0�0

p
1� cos !tð Þ: ðA11Þ

Equation (A11) indicates that Ż(t) oscillates within the positive range and its period and average velocity are given by equa-
tions (26) and (27), respectively. In Figure 12 we compare equation (A9) with the solution obtained by numerically integrating
equation (A4).
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