FM1 Boom Pre Ship Review 2005 March 31

Review History

- IMPACT held a suite-level PER in January 2004 to cover general plans and the detailed plans of the first instruments (SEPT)
- A more detailed Technical Readiness Review was held for each IMPACT subsystem as it became ready to start environmental tests
 - The TRR for the IMPACT Boom (and MAG, STE-U) was held on April 19 2004
 - The TRR for SWEA (and the IDPU) was held on October 5 2004
- This PSR covers just the FM1 Boom Suite (includes Boom, MAG sensor, STE-U, and SWEA/STE-D), which has completed testing and is ready to ship to APL for integration with the spacecraft staring April 4.
 - FM1 IDPU is already on the spacecraft
 - The SEP suite and FM2 boom suite are still in test
- Subsequent PSRs will be held for the remaining hardware when it is through testing and the spacecraft is ready to install it.

Boom Suite FM1 Test Flow (3/22/05)

Boom Suite FM2 Test Flow (3/22/05)

IMPACT FM1 SWEA/STE-D

FM1 SWEA/STE-D Test History

- 10/18 11/1 EMC test with the full IMPACT Suite
 - EMC test exceedances have been accepted by the EMC committee; the official waiver is in process.
- 11/29 12/6 Calibrations
 - One anode failed during test at high temperature (40C) (PFR1029)
 - Replaced after first Thermal Balance run.
- 12/8-12/10 Thermal Balance Test, failed (too cold)
 - See PFR 1030. Fixed by added thermal isolation, improved blankets, increased heater
 - Cold-start problem with SWEA LVPS (PFR1028), fixed
- 1/7-1/14 Repeat Thermal Balance. Passed
 - Good correlation to thermal model.
 - IDPU to SWEA Interface problem (PFR1033), fixed
- 1/27 Vibration, Passed
- 2/3 2/12 Thermal Vac, passed
- 2/13 Integrated with flight boom, accumulate operating hours
 - Problem with intermittent boom harness continuity, PFR1038, fixed (Boom).
- 3/17 SWEA Magnetics Test, passed

SWEA Verification Matrix

						Ve	rifica	ation	Ма	trix f	or S	TEF	REO/	IMP	ACT	7/SW	/EA					Revision Date: 3/22/2008
																			Revision Number:			
	Hardware Description										Tes	st										
Level of Assembly	ltem	Pedestal Interface Tes	Elect. test, rm. Tem	Voltage margins	Bench Calibration	Beam Calibration	Elect. Test, ho	Elect. Test, cold	Vibration, Sinusoidal	Vibration, Random	Self Shock	Acoustics	Thermal Vacuum	Thermal cycle	Thermal balance	Life Test	EMC/EMI	Magnetics	Bakeout	Contamination Inspection		Comments
С	MCP, F		C			С																
С	Preamp, F		С		С																	
С	Optocouplers, F		С		С																	
S	Electronics, EM		С	С	С		С	С														
S	Electronics, F		С	С	С		С	С											С			
I	Instrument, EM1	С	С	С		С												С			UCB test unit	
1	Instrument, EM2		С	С		С						Α									CESR test unit	t
I	Instrument, PF (FM1)	С	С	С		С			С	С	С		С	С	С	С	С	С	С	С		
	Instrument, PF (FM2)	С	С	С		С			Х	Х	С		Х	Х		Х	Х	Х	Х	Х		
Legen	d:																					
	Level of Assembly		Uni	t Typ	pe								X =	Tes	st re	quire	d					
													A =	Ana	alysi	s						
	C = Component		BB	=	Bre	adb	oarc						H =	Tes	st at	high	er le	vel	of as	sem	bly (at UCB)	
	S = subsystem		EM	=	Eng	gine	ering	ј Мо	del				C =	Tes	st C	omp	lete	d				
	I = Instrument		PF	=	Pro	toflig	ght															
			F =		Flig	ht																

Full IMPACT Verification Matrix at:

 $http://sprg.ssl.berkeley.edu/impact/dwc/Verification/IMPACTVerificationMatrix_2005-3-25.pdf$

SWEA FM1 Problem/Failures, pre-PER

- FM2 SWEA HV Multiplier part failure (PFR6001)
 - Problem showed up during thermal cycling at low temperature, well below expected onorbit temperatures (all flight units subjected to this test)
 - GSFC Part failure analysis indicates bonding problem
 - Part replaced and board retested, including thermal test
- All power converters had a problem with the LTC1877 regulator used to generate 2.5V (PFR1007)
 - Part was over-stressed in screening
 - Some parts failed in circuit
 - The burn-in fixture used by the screening house was reworked and a new lot of parts was screened
 - All flight parts have been replaced with parts from this new lot and retested
- All IMPACT TiNi P5 Actuators (including SWEA door actuator) were returned to manufacturer for inspection after failure of SEPT door actuator die to assembly tolerance issue (PFR7003)
 - Passed, returned, re-integrated
- SWEA LVPS Transformer failure (PFR1023)
 - Discovered after board-level bakeout, probable short in transformer induced by thermal stress. Replaced
- These PFRs have been signed-off and closed.
 - 1023 is considered a "Red Flag" PFR since the root cause of the transformer problem is not clear.

SWEA/STE-D FM1 Problem/Failures since PER

- PFR1028:
 - The SWEA LVPS failed to start up properly below –16C
 - Discovered during thermal balance, before qualification tests (except EMC)
 - Caused by Actel turn-on transient current exceeding supply capability
 - Trips over-current detect, Actel will not start up
 - Slowed down over-current detect time so the supply can provide the Actel turn-on transient without hitting current limit.
 - Worked fine in subsequent Thermal Balance and Thermal Vac tests
- PFR1029:
 - One of the 16 SWEA Anode signals failed when warm (>40C)
 - Discovered in Calibrations, prior to start of qualification tests (except EMC)
 - Caused by bad Amptek A111F module
 - Failure analysis indicated bad bonding
 - Possible implications for remaining parts in flight units
 - Part replaced with a spare from the same lot, no further problems with the channel through qualification tests.

SWEA/STE-D FM1 Problem/Failures since PER continued

- **PFR1030**:
 - SWEA was found to run too cold during Thermal Balance tests
 - Prior to Qualification tests, except EMC.
 - Problem identified as worse than expected conduction down the boom and worse than expected thermal blanket characteristics
 - Solved problem with improved isolation between SWEA and Boom (added G10 isolator), improved blanket design, and increased heater power
 - Solution should not impact EMC results.
 - Repeat Thermal Balance test passed and we have good correlation with the model
- PFR1033:
 - SWEA was found to have occasional interface errors with the IDPU (outside the chamber) during thermal balance tests
 - Prior to qualification tests except EMC
 - Partly due to harness extensions required for thermal chamber
 - Fixed by adding a small capacitor to the receiving circuit to reduce the susceptibility of the interface to noise
 - Solution should not impact EMC results
- These PFRs have been signed-off and closed (not "Red-Flag" PFRs)
 - except 1029; concerns about reliability of flight lot of A111Fs

FM1 SWEA/STE-D Waivers

- Pre-environmental waivers related to the IDPU involve waivers to the EMC requirements, including:
 - CCR460-26 and CCR460-41 regarding single-ended interfaces to instruments
 - EMC committee approved IMPACT design
 - CCR460-42, use of combined signal and power harness
 - EMC committee approved IMPACT design
 - CCR463-131, SWEA door activation transient exceeds primary current transient spec (1 time)
 - EMC committee approved
- Also:
 - CCR463-130, vibrate SWEA off the IMPACT Boom
 - CCR463-135, no acoustics test for SWEA
 - CCR460-9, 19, 66, 134 regarding IMPACT Suite power consumption
- Waivers can be found at:
 - <u>http://sprg.ssl.berkeley.edu/impact/dwc/Waivers/</u>
- All Waivers approved by CCB
- Post-EMC waiver for IMPACT Suite exceedances in process
 - Data has been reviewed by EMC committee, no significant issues

FM1 SWEA/STE-D Environmental Tests

- Test Plans/Procedures can be found at:
 - <u>http://sprg.ssl.berkeley.edu/impact/dwc/TestProcs/</u>
 - EMC: <u>http://sprg.ssl.berkeley.edu/impact/dwc/TestProcs/IMPACT-EMC_C.pdf</u>
 - CPT: <u>http://sprg.ssl.berkeley.edu/impact/dwc/TestProcs/IMPACT-SWEA-CPT_B.pdf</u>
 - Vibration: <u>http://sprg.ssl.berkeley.edu/impact/dwc/TestProcs/IMP-583-DOC--</u> %20SWEA%20Vibration%20Test%20Procedure.pdf
 - Tvac: <u>http://sprg.ssl.berkeley.edu/impact/dwc/TestProcs/SWEA%20and%20STE-</u> <u>D%20Test%20Plan.pdf</u>
- Test Reports can be found at:
 - <u>http://sprg.ssl.berkeley.edu/impact/dwc/TestReports/</u>
 - EMC: <u>http://sprg.ssl.berkeley.edu/impact/dwc/TestReports/02-15-</u>05%20UCBerkeley%20Stereo%20Impact%20Prep%20TR.pdf
 - Tvac: <u>http://sprg.ssl.berkeley.edu/impact/dwc/TestReports/IMPACT-SWEA-FM1-TVac-Report.pdf</u>
 - Tbal: http://sprg.ssl.berkeley.edu/impact/dwc/TestReports/BOOM SWEA Test Report.pdf
 - Magnetics: <u>http://sprg.ssl.berkeley.edu/impact/dwc/TestReports/IMPACT-SWEA-FM1-</u> <u>Magnetics-Report.pdf</u>
 - Vibration: <u>http://sprg.ssl.berkeley.edu/impact/dwc/TestReports/IMP-611-</u> DOC%20STEREO%20SWEA%20FM1%20Vibration%20Report%20R-.pdf

IMPACT FM1 Suite EMC Tests

- The IMPACT Suite was integrated and completed EMC tests per the Project EMC Requirements document (7381-9030C) and the IMPACT EMC Test Plan (Rev C)
 - Bonding & Isolation
 - CE01, CE03, CE07 (4 power services)
 - CS01, CS02, CS06 (4 power services)
 - **RE01, RE02**
 - **RS03**
- One pre-test waiver involving some hardware that was not quite in flight configuration was approved by Project (CCR 463-179A)
- Testing completed at EMC Tempest in Anaheim
 - Detailed Facility Test Report provided

FM1 Suite EMC Test Results

- A number of exceedances and sensitivities were found and worked with the EMC committee in real time
 - RE01
 - MAG drive frequency & harmonics
 - SEP serial interface clock
 - RE02
 - IDPU, SEP Clock harmonics, 24MHz-1.4GHz, all crystal controlled
 - RS some detector noise 100MHz-4GHz, eliminated when amplitude was lowered -6dB
 - No damage
 - STE was sensitive near the spacecraft transponder frequency (8.5GHz)
 - only to severe AM modulation, not FM
 - **CE**
 - MAG and SEP Converter Harmonics
 - Fixed after the test (harness routing); passed retest
 - A few other exceedances seen (clocks)
 - CS Some detector noise, eliminated when amplitude drops –6dB
 - Some 1553 errors (CS06), handled correctly
 - No damage
- EMC Committee agrees no serious issues. Official waiver in progress.

FM1 SWEA/STE-D Thermal Balance Test

- Thermal Balance at UCB
 - SWEA/STE-D mounted to a spare flight tube section in flight configuration to provide flight-like thermal isolation

16

- Shrouds run cold
- ETU Thermal Blankets provided by APL
- First Test Failed (PFR1030)
 - SWEA too cold (operator prevented over-test)
 - Blankets not as good as modeled
 - Boom isolation not as good as modeled
- Unit modified
 - Blankets improved
 - Boom isolation improved
 - Heater increased
- Second test passed
 - Good correlation to thermal model
 - Electrical problems fixed PFR1028, 1033

SWEA/STE-D Sine Strength Test (per 7381-9003)

Sine Survey Level

Frequency (Hz)	Acceleration
5-2000	0.1 g

Lateral Axes

SWEA/STE-D Random Vibration Test (extracted from Boom test)

Table 1: Random Vibration Levels X-axis

	DCD Laval
Frequency (Hz)	PSD Level
20	0.01 g^2/Hz
20 to 70	+4.7 dB/oct
70 to 90	0.07 g^2/Hz
90 to 110	+21.8 dB/oct
110 to 140	0.3 g^2/Hz
140 to 500	-5.5 dB/oct
500	0.03 g^2/Hz
500 to 2000	-2.4 dB/oct
2000	0.01 g^2/Hz
Overall Amplitu	de = 854 a rms

Duration = 60 seconds

Table 2: Random Vibration Levels Y-axis

Frequency (Hz)	PSD Level
20	0.01 g^2/Hz
20 to 70	+9.4 dB/oct
70 to 90	0.5 g^2/Hz
90 to 150	-9.5 dB/oct
150 to 300	0.1 g^2/Hz
300 to 2000	-3.7 dB/oct
2000	0.01 g^2/Hz
Overall Amplitu	de = 9.70 a rms

Overall Amplitude = 9.70 g rms Duration = 60 seconds

Table 3: Random Vibration Levels Z-axis

Frequency (Hz)	PSD Level
20	0.01 g^2/Hz
20 to 50	+5.3 dB/oct
50	0.05 g^2/Hz
50 to 80	+23.6 dB/oct
80 to 90	2.0 g^2/Hz
90 to 150	-24.8 dB/oct
150 to 500	0.03 g^2/Hz
500 to 2000	-2.4 dB/oct
2000	0.01 g^2/Hz

Overall Amplitude = 9.88 g rms Duration = 60 seconds

SWEA/STE-D Vibration Testing – Results

- All axes performed
- No notching performed
- No structural degradation or loss of functionality
- Passed post-vib CPT

SWEA/STE-D Thermal Vacuum Test

- Test Plan:
 - Preliminary bakeout, up to 48 hours at +40C
 - Thermal vac
 - 6 op cycles: +35C to -35C for SWEA, -35 to -95C for STE-D
 - One non-op cycle: +40 to -40 for SWEA, +40 to -100C for STE-D
 - Temperatures from verified thermal model, with at least 10C margins.
 - SWEA mounted to baseplate, STE-D connected to cold plate by heat strap to provide for separate control of SWEA and STE-D
 - CPT on each operational cycle, cold-start in first and last cycles
 - Qualification bakeout

SWEA/STE-D CPT / Calibration Setup

SWEA/STE-D Thermal Cycling

See Table 2.3-1 for component dependant test temperatures.

Stabilization Criteria: Within 3°C Of Plateau And Changing < 1°C/Hr

See Fig 2.3.3.2-2 and -3 for detailed hot and cold transition definitions, resp.

I = Stabilize, Print T/C's, Soak 1Hour and Test Concurrently, Print T/C's Six Operational Cycles Required

Stabilize, Turn On, Soak 1Hour and Test Concurrently, Print T/C's at End of Soak

FM1 SWEA/STE-D Thermal Vacuum Test Results

- There were no problems encountered
- Temperatures were controlled with Thermocouples attached to the outside of the instrument
 - Internal temperature sensors ran ~10C warmer than the outside when SWEA/STE-D was operational
 - STE-D temperature set using internal temperature sensor
- No significant trends or adverse temperature dependencies were seen

FM1 SWEA/STE-D Thermal Vac

STEREO IMPACT FM1 SWEA/STE-D Thermal Vac

SWEA/STE-D Bakeout Results

- After the last cycle of thermal vac the unit was baked out at +40C while monitoring outgassing with a TQCM at -20C.
- Rates seen were <45Hz/hour (close to chamber background), corresponding to an outgassing rate of TBD, compared to a requirement of < 2.5e-11.

SWEA/STE-D Bakeout TQCM data

FM1 SWEA/STE-D Magnetics Test

- The SWEA/STE-D was rotated while monitoring the magnetic field 60cm away.
 - Repeated for each of 3 axes
 - Measured field was ~10nT peak to peak, corresponding to a magnetic moment of 2-5nT-m^3, and a worst case field at the Magnetometer sensor of ~1nT (full spacecraft objective is 1nT DC).
 - MAG Col finds the level acceptable.
- SWEA/STE-D was power cycled while monitoring the field 30cm away
 - No signature was detectable, meaning less than 2nT, corresponding to an upper limit on the AC field at the sensor (1m away) of <.08nT, compared to a spacecraft-level objective of <0.05nT.
 - Mag Col finds the level acceptable

Performance Data

- SWEA instrument calibrations at CESR prior to delivery to UCB
 - Geometric factor, FOV, energy resolution, background
- SWEA/STE-D system-level calibrations at UCB
 - SWEA Energy sweep calibration
 - STE-D Geometric factor, FOV, energy resolution, threshold, background
- SWEA, STE-D and Power Supply measurements were trended throughout testing
 - No significant trends were found see following charts
- All performance measurements met or exceeded the requirements

.....

SWEA Trend Data

SWEA FM1 Performance Trend (Incl SWEA/STE-D LVPS)

			SWEA	ISWEAM	ISWEAD	Bus	Primary					ISWEAST	ISWEAVU	ISWEAN	R ISWEAAn	ISWEADe	ISWEADe	Open	
Date	File	Test	Temp	CPTemp	ACTemp	Voltage	Current	2.5V	5VD	5VA	12VA	EDCur	DAC=128	5V	al	fl1	112	Door?	MCP O
Oct 8 2004	0410080933 Hm	FM1 Boom I&T, with SWEA												1				1. 1	
04 8 2004	0410000800.dm	(shield added)	30.7	31.9	32.8	28	142	2.50	4.99	5.36	12.14	17	-12.49	6.60	66.26	158.60	94.30	Yes	No
Oct 16 2004	0410160000a.tm	FM1 Suite I&T @ Calfech	30.9	31.9	32.9	28	140	2.50	4.99	5.37	12.16	17.3	-12.49	6.6	66.3	158	93	No	No
		FM1 boom suite post-EMC			1000														
Nov 3 2004	0411031353.tlm	at UCB	30.4	31.6	32.7	28	139.5	2.50	4.99	5.36	12.14	14.8	-12.49	6.62	66	157.8	93.5	No	No
		FM1 SWEA pre-Thermal				28	138	2.50	4.99	5.34	12.10	_							
Dec 8 2004	0412081459.tlm	Balance	32275	10000	2004	- 24	145	2.50	4.99	6.35	12.16	0.00020200						100000	2007
			23.1	23	25.2	35	139	2.50	4.99	5.33	12.04	15.8						No	No
		FM1 SWEA pre-Thermal				28	138	2.50	4.99	5.34	12.10	- C							
Dec 10 2004	0412101830.tlm	Balance				- 24	145	2.50	4.99	6.35	12.16		1000				1000	222.0	
			23.1	23	25.2	35	139	2.50	4.99	6.33	12.04	15.8	-12.52	6.6	67.1	160.3	96	Yes	Yes
1020203019933	2010 2010 201	2010/01/01/01/01/01/01/01/01/01				28	140	1104644	362555	0.000.00000	563015	_							
Jan 26 2005	0501270000.tlm	FM1 SWEA Pre-vib				24	155	2.50	4.99	5.37	12.22								
		The second second second second second		29.4	31.8	35	140	2.50	4.99	5.36	12.10	16.1	-12.48	6.6	65.8	157.8	93.5	Yes	NO
Jan 28 2005	0501290105.tlm	FM1 SWEA Post-VID	21.8	20.7	22.9	28	138	0.50	4.00	5.05	44.40	14.6	-12.49	6.55	66.26	157.8	93.5	NO	NO
Ech 4 2005	0500040000 Hm	FM1 RMFA Tupe Het #3				20	150.6	2.50	4.99	0.00	11.40								
Fe0 4 2005	0502040000.001	HMT SWEA TYAC HOL#2		22.2		24	290	2.50	4.99	5.56	12.70	40.7	40.40	0.70	01.0	450.0	00.0		
			37.4	33.6	39.4	30	150.b	2.50	4.99	5.38	12.1/	16.7	-12.48	6.73	65.8	156.9	92.6	Yes	Yes
						28	134	2.50	4.99	5.05	11.36								
Feb 4 2005	0502040000.tim	FM1 SWEA IVac Cold #2				24	132	2.50	4.98	5.04	11.35							2	
		and a state of the state of the state	-38.4	-38.6	-36.9	35	133	2.60	4.98	5.03	11.30	14.5	-12.67	6.3/	68.8	162.8	98.6	NO	Yes
Feb 5 2005	0502050000.nm	HM1 SWEA TVac Hot #3	36.9	34.9	39.1	28	156	2.50	4.99	5.40	12.20	15.6	-12.49	6.13	65.8	156.9	93.5	NO	Yes
Feb 7 2005	0502080000.tlm	FM1 SWEA TVac Cold #3	-38,5	-41.8	-37.5	28	125.2	2.50	4.99	5.06	11.40	14.8	-12.55	6.36	68.8	163.7	99.4	No	Yes
Feb 8 2005	0502080000.tlm	FM1 SWEA Tyac Hot #4	40.5	44.1	43.1	28	161	2.50	4.99	5.38	12.20	14.9	-12.48	6.14	65.8	156.9	92.6	No	Yes
Feb 8 2005	0502080000.tlm	FM1 SWEA Tvac Cold #4	41.6	-24.8	-36.4	28	129.5	2.50	4.98	5.08	11.40	16.6	-12.55	6.13	68.8	163.7	99.4	No	Yes
Feb 9 2005	0502090000.tlm	FM1 SWEA Tvac Hot #5	37.4	37.9	40.1	28	158	2.50	4.98	5.37	12.15	15.3	-12.48	6.14	65.8	157.8	93.5	No	Yes
Feb 9 2005	0502090000.tlm	FM1 SWEA Tvac Cold #5	-40.1	-33.4	-36.4	28	136	2.50	4.98	5.08	11.42	13.9	-12.57	6.11	68.8	163.7	99.4	No	Yes
Feb 10 2005	0502100000.tlm	FM1 SWEA Tyac Hot #6	35	35.7	37.4	28	149	2.50	4.98	5.36	12.10	16.7	-12.49	6.13	65.8	157.8	93.5	No	Yes
Feb 10 2005	0502100000.tlm	FM1 SWEA Tyac Cold #6	-39.3	-24.3	-33.4	28	138	2.50	4.99	5.10	11.45	14.8	-12.55	6.17	68.8	162.9	98.6	No	Yes
						28	148	2.50	4.99	5.38	12.17								
Feb 10 2005	0502100000.tlm	FM1 SWEA Tvac Hot #7			2522	24	289	2.50	4.99	5.53	12.67	Same and							
			36.9	38.8	39	35	148	2.50	4.99	5.36	12.10	14.7	-12.48	6.71	65.8	156.9	92.6	No	Yes
						28	125	2.50	4.99	5.05	11.36								
Feb 11 2005	0502110000.tlm	FM1 SWEA Tvac Cold #7				24	125.2	2.50	4.98	5.04	11.39								
			-36.3	-38.8	-35.6	35	141.8	2.50	4.98	5.04	11.34	14.7	-12.55	6.36	68.8	163.7	99.4	No	Yes

the second s

.

STE-D Trend Data

IC-D F BIT Performance / 1970			SHE ARTS IN				Deepe	Door			3	<u> </u>	Tost Pulser			1		Door Source					Long Integration Door Source (DoorLUT)					
			Prinary	STE-D	STE-D	ISTEDCO	Open	Close				Official	Gain	Curv.	Text	FWHM	Offset	Gain Curv.				AccTime	Offset	Gain Curv.				
Date	File	Text	Current (nA)	Temp	DAC Temp	(nA)	peoc	(3880)	5 km	FitRey	Dot Through.	(koV)	(keV/Ein)	(1/koV) TADE-05	Gain	(koV)	(keV)	(keWiBin) (1/keW)	Buy d's 2	2 to V cite	PWHN 1,404	(880)	(ks/i) ((1/ke/) (1/ke/)	Glovich 2	2007 ch 85ks	Wicis RF-02	WHE
Oct 8 2004	0410080933.Htm	PM1 Boors (&T, self) SWEA (shield added)	142	24	32.7	17.3	0.35/0.35	0.25/0.38	20	10/15/2004	1 12	-0.15	0.3672	7.538-05	12.5100	1,120	-0.05	0.3555 Ge-5 (F) 0.3550 Ge-5 (F)	54.12	28.25	1.140	1720	-0.05	0.3891 5.008-01	5 38.30 30.63	12.84 1.1	82-02	1.15
	anggan para p	- one of the second sec	5 5739V	- 196	1500043	51255	2002293	28.222.238	2.0225	2010/2014	3 13	-0.14	0.2565	7.468-05	13.6342	1.338	-0.05	0.3802 de-5 (*)	42.30	24.53	1.355		-0.06	0.3863 6.308-03	30.34	16.96 1.2	28-02	1.35
048 3004	DATION LESS No.	PM1 Boors IST, with RIMER (shadd action)		95	100				- 21	10102004	1											400	-0.06	0.3867 6.255-03	5 57.00	25.49 1.00	88-02 58-02	0.90
00.0 2004	141000 1422 081	Ground fixed		44		10			20	10132304	2											.490	-0.05	0.3895 1.025-03	44.75	24.62 1.1	12-02	0.84
Commences		2023-0462-07/0-07		-		10000	0000000	Dette Artes	1	and the second	D 10	-0.13	0.3868	7.30E-05	13.2872	0.835	-0.07	0.3909 Ge-5 (*)	55.37	27.62	0.9 90	Ö	-0.06	0.3916 4.072-03	5 55.31	27.54 1.4	72-02	D.91
Dct 18 2004	041030000atlm	Callech		25.2	32.0	16.9	0.38/0.38	0.25 / 0.38	20	10/15/2004	1 0	-0.05	0.3562	0.57E-05 8.40E-05	12,4294	0.765	-0.04	0.3682 Ge-5 (*) 0.3679 Ge-5 (*)	53.70	27.59	0.847	590	-0.05	0.3685 5.946-03	54.17	27.40 1.9	12-02	0.85
	5026010 SCH01026			1.							3 9	-0.00	0.2669	7.708-05	13.5095	0.834	-0.07	0.3857 de-5 (*)	42.62	25.03	0.894		-0.07	0.3859 6.288-0	43.13	22.40 1.5	/12-02	0.90
March 1994	044103135310-	PWI bootnaute post-	110.5		22.2	47.1	0.35 / 0.35	0.25 / 0.35	0.00	10/15/2004	1 10	-0.14	0.3563	7.20E-05 9.30E-05	12.4325	0.840	-0.05	0.3589 4.208-05	54.69	27.70	0.855	0.07	-0.06	0.3886 3.505-03	54.33	27.37 1.2	2E-02	0.92
1007 0.4000	10011001000100	ENIC # UCB	- Ganar	24.2		38.00	0.301.0.30	0.2010.00	- 40	101052004	2 11	-0.12	0.3672	8.06E-05	13,1351	0.067	-0.05	0.3591 3.146-05	45.30	25.42	0.890		-0.03	0.3878 5.508-03	43.57	23.64 1.3	/IE-02	0.80
0		102117-002-026-021									D 10	-0.11	0.2666	7.422-05	13.2967	0.112	-0.04	0.3911 de-5 (F)	55.18	27.00	0.850		-0.03	0.3904 7.868-03	55.21	26.17 1.0	RE-02	0.80
Dec 8 2004	0412081459.ttm	FIMI SWEA pre- Thermal Enlance	138	17	23	14.3			20	2/18/2005	1 9	-0.04	0.3563	0.582-05	12,4170	0.719	-0.01	0.3888 Ge-5 (*) 0.3883 Ge-5 (*)	54.01	20.53	0.830	850	0.01	0.3876 8.822-03	53.91	26.57 1.38	88-02	0.83
											3 10	-0.09	0.2869	7.552-05	13.5100	0.768	-0.03	0.3863 de-5 (*)	4150	21.16	0.858		-0.03	0.3860 6.962-03	42.07	21.72 7.9	46-03	0.88
beeneer		FWI SWEA Thermal	5-3222	321	2028	0.001	20140102	20070225	10228	and the second	0 14	-0.17	0.2677	7.17E-05 9.62E-05	12.4901	1.151	-0.09	0.3914 Ge-5 (P) 0.3904 Ge-5 (P)	55.12	25.62	1.171	i agente	-0.08	0.3920 5.775-0	5 55.01	26.71 1.0	0E-02	1.01
Dec 10 2004	0412101830.Hm	Enlarge.	129	15	-10	13	0.3810.50	0.50 / 0.50	20	2182005	2 12	-0.13	0.2666	8.558-05	13.2140	0.994	-0.05	0.3893 Ge-5 (*)	44.95	25.17	0.961	1350	-0.05	0.3902 5.588-03	45.71	23.53 1.0	8E-02	D.95
										1	0 11	-0.12	0.3674	7.622-05	12.6312	0.969	-0.05	0.3070 0e-5(P) Ge-5(P)	49.47	22.10	0.997	-	-0.05	0.3868 6.535-01	43.09	22.16 1.0	40-02	0.95
Jan 26 2005	0501270000.ten	PMI SWEA Pre-vib	140	24.3	30.5	13.0	0.35/0.35	0.38 (0.35	20	2/18/2005	1 11							Ge-5 (*)										
											3 11	§						Ge-5 (*)										
Name:		100000000000000000000000000000000000000			63356	1987	1015165		12.233	1992.23	0 11	ŝ.						Ge-5 (P) Ge-5 (P)				10 C						
Jan 27 2005	05/01/200 105 Her	FIVIT SWEA Post-vib	138	10.1	20.2	14.5	0.50/0.50	0.3870.38	50	2/18/2005	2 11	8						Ge-5 (P)										
-		2360525011 - 12								8	D 0	-0.08	0.3874	7.96E-05	12.1311	0.646	-0.03	0.3933 Ge-5 (P)	43.26	18.92	0.763	1	-0.02	0.3927 G≥ 5 (*)	54.50	24.71 1.1	08-02	0.77
Feb 4 2005	05/02040000 Hm	FIMI SWEA Thermal	150.6	-33	37.3	15	0.35/0.38	0.38/0.35	150	2/18/2005	1 8	-0.02	0.2681	9.50E-05	12.2730	0.586	-0.01	0.3903 Ge-5 (*)	43.47	10.78	0.721	690	0.01	0.3900 da-5 (*)	55.79	25.11 8.7	38-03	0.75
		alls, Field Pa.									3 5	-0.04	0.2668	8.212-05	12.3135	0.635	0.01	0.3875 Ge-5 (*)	42.62	20.61	0.770		0.01	0.3877 4.505-03	42.50	20.33 1.2	SE-02	0.77
haanse	111111111111	Fiat SMPA Thermal	1 (88)	1282	1. 25%	3233	25243	S763203	7.98F	- 320016	0.4	-0.23	0.3574	7.458-05	13.1835	0.650	-0.11	0.3950 de-5 (*) 0.3958 de-5 (*)	52.50	24.10	0.672	2003	-0.11	0.3951 G≥ 5 (F) 0.3953 G≥ 5 (F)	53.50	24.28 1.20	98-02 98-02	0.67
Feb 4 2005	050/2040000 Her	Vac Coll #2	134	-90.2	-40.4	11.8	0.75/0.75	1.25/1.25	150	2/18/2005	2 0	-0.18	0.2670	5.75E-05	12.9030	0.473	-0.01	0.3944 Ge-5 (*)	44.19	21.22	0.611	930	-0.10	0.3943 Gp 5 (F)	43.68	21.46 5.7	56-03	D.61
N											3 8 0 8	-0.18	0.2670	7.468-05	13.3564	0.529	-0.07	0.3898 de-5 (P) 0.3931 de-5 (P)	41.37	20.65	0.052	576 1 1	-0.08	0.3201 de 5 (F) 0.3230 de 5 (F)	42.49	20.16 8.4	22-03	D.60
Feb 5 2005	050/2050/000 Altra	FWI SWEAThernal	156	-36 2	37.6	10.3	0.50/0.50	0.50 / 0.50	150	2/18/2005	1 8	-0.03	0.2682	9.77E-05	12.2735	0.581	-0.01	0.3907 Ge-5 (*)	54.61	25.11	0.738	600	0.01	0.3697 8.948-03	54.66	24.64 1.2	0E-02	0.7
		Viac Piot #3									2 8	-0.06	0.3865	5.50E-05 5.10E-05	12.8771 13.3104	0.568	0.01	0.3903 Ge-5 (P) 0.3879 Ge-5 (P)	43.67	21.93	0.722		0.02	0.3897 Ge 5 (*) 0.3876 Ge 5 (*)	43.93	21.14 1.22 20.28 1.4	36-02	0.70
·		FRAME PROPERTY AND									0 8	-0.23	0.3676	7.248-05	13.2725	0.535	-0.13	0.3966 de-5 (*)	38,44	17.85	0.063	1	-0.10	0.3950 Ge 5 (F)	52,19	23.84 1.0	48-02	D.60
Feb 7 2005	0502080000.Htm	Vac Coll #3	125.2	-90.5	-40.4	12.3	1.00/1.12	1.12/1.12	20	2/18/2005	2 0	-0.20	0.3672	8.51E-05	13.0092	0.473	-0.11	0.3350 Ge-5 (*)	43.62	10.08	0.605	2050	-0.10	0.3945 G+5(F)	42.58	20.76 1.2	/1E-02	D.61
											3 0	-0.18	0.3672	7.618-05	13,4585	0.533	-0.08	0.39 14 Ge-5 (P)	22.06	10.58	0.675	2	-0.06	0.3897 7.418-01	41.54	19.95 1.5	22-02	0.00
Fab 5 2005	0502080000 Her	FWI SWEA Thermal	101	37.1	42.8	14.0	050/050	0.50 (0.50	20	2/18/2005	1 7	-0.02	0.2663	9.722-05	12.3245	0.573						900	0.01	0.3905 Ge 5 (F)	54.58	24.90 1.0	AE-02	0.71
		Viac Hot #4	1000		1.40	1997			803	253502	2 7	-0.06	0.3872	8.79E-05 8.05E-05	12,9905	0.550						1993	0.02	0.3903 6.315-01	43.34	21.26 1.7	12-02	0.71 0.75
		1992/05/2019	5							1	0 13	-0.21	0.3675	7.51E-05	13.1795	0.914	<					· · · ·	-0.11	0.3953 Ge 5 (*)	53.50	24.45 0.8	0E-03	0.80
Feb 5 2005	05/0/2080/0000 Here	Visc Cott #4	129.5	-01.5	-32.5	14.6	1.25/1.25	1.50 / 1.50	150	2/18/2005	1 9	-0.21	0.3865	8.55E-05	12,8641	0.403	2					230	-0.09	0.3947 Ge 5 (*) 0.3948 Ge 5 (*)	43.68	24.38 1.0	3E-02 3E-02	0.64
		22252344									3 12	-0.15	0.3670	7.008-05	13.3534	0.527	<u> </u>						-0.07	0.3904 5.108-03	42.68	20.18 2.2	08-02	0.74
Fab 5 2005	0502080000 Her	FWI SWEA Thermal	15.8		30 B	14.4	050/050	050/050	150	2/18/2015	1 8	-0.07	0.2665	9.046-05	12,2562	0.647						780	-0.02	0.3907 6.022-03	55.54	24.75 2.0	0E-02	0.75
140 9 2 000	000203030003181	Visc Hot #5	120		38.0		0.501010	0.3010.30	150		2 7	-0.06	0.2566	5.80E-05	12,8751	0.506	<u>.</u>					100	0.01	0.3902 6.158-01	43.81	21.25 1.20	88-02 ME-02	0.71
		199663497	2								0 8	-0.21	0.2673	7.505-05	13.2515	0.550	-0.11	0.3251 de-5 (P)	53.68	23.51	0.665		-0.11	0.3952 Gp 5 (*)	53.21	23.94 5.6	82-03	D.61
Feb 9 2005	05.0/20200000 Her	FINE SWEAThernal	136	-94.9	-36.5	12.4	1.12/1.12	1.25 / 1.25	20	2/18/2005	1 9	-0.14	0.3676	0.515-05	12,2761	0.403	-0.09	0.3966 Ge-5 (F) 0.3946 Ge-5 (F)	52.06	23.84	0.005	2050	-0.09	0.3967 Ge-5 (*)	53.11	23.92 1.5	JE-02	0.62
		5112 CO 1 FO									3 0	-0.17	0.3674	7.70E-05	13.4540	0.527	-0.07	0.3904 Ge-5 (*)	34.29	15.14	0.717	1	-0.07	0.3899 6.768-0	41.65	20.08 1.3	AE-02	D.65
		FWI SWEA Thermal									1 0	-0.05	0.2674	7.612-05	13.1285	0.637	-0.03	0.3931 Ge-5 (P) 0.3909 Ge-5 (P)	53.54	24.47	0.760	0	-0.03	0.3931 Ge 5 (*) 0.3935 6.602-03	54.45	24.47 1.51 24.99 2.3	02-02	0.70
Peb 10 2005	0502100000.Hm	Visc Hot #6	149	-36	- 50	14.4	0.50/0.50	0.50 / 0.50	150	2/15/2005	2 6	-0.06	0.2664	8.75E-05	12.8742	0.564	0.02	0.3903 de-5 (*)	44.79	21.23	D.708	700	0.02	0.3895 9.052-01	43.97	21.45 1.8	0E-02	0.70
2											0 8	-0.23	0.2682	7.288-05	13.1752	0.562	0.00	0.3010 06-5 (P)	43.12	21.05	0.166	20 20	-0.01	0.3051 5.148-01	50.00	22.70 1.0	82-02	0.75
Pub 10 2005	050/21 00000 .tim	FWI SWEA Thermal	136	-90.7	-30.2	14.0	1.12/1.25	138/150	150	2/18/2005	1 10	-0.14	0.2689	9.90E-05	12.2417	0.178						1210	-0.09	0.3064 Ge-5 (*)	50.21	22.99 1.7	12-02	0.71
S		ARCOURT OF									3 0	-0.15	0.3670	7.788-05	13.3627	0.495		0.002.0000722	0014240	2000	-05/024	28	-0.10	0.3941 F.13E-01 0.3900 (8E-5 (F)	39.37	18.94 1.0	52-02	0.60
		FMI SWEAThernal									0 8	-0.09	0.3668	7.052-05	13.2004	0.036	-0.02	0.3929 Ge-5 (P) 0.3903 Ge-5 (P)	53.66	24.23	0.768		-0.02	0.3926 7.148-03	54.34	24.42 1.75	9E-02 0E-02	0.70
Peb 10 2005	050/21 00000 Jim	Visc Hot #7	148	-31.9	37.8	10.4	0.38/0.38	0.38 (0.35	20	2/18/2005	2 8	-0.06	0.3669	8.51E-05	13.0281	0.571	0.02	0.3900 de-5 (*)	43.58	21.74	0.099	930	0.02	0.3895 6.608-0	43.49	21.39 1.2	.0E-02	0.71
8										3	3 0	-0.07	0.2689	7.788-05	13,4231	0.629	-0.03	0.3870 de-5 (F) 0.3950 de-5 (F)	41.07	20.72	0.732 0.672	12	-0.10	0.3871 7.15E-03 0.3952 de-5.71	52.88	20.30 1.5	JE-02 4E-03	D.70
Peb 11 2005	0502110000.thm	FWI SWEA Thermal	125	-89.3	-38.6	12.2	1.00/1.00	1.00 / 1.00	20	2/18/2005	1 7	-0.15	0.2674	9.538-05	12.2765	0.481	-0.10	0.3965 Ge-5 (P)	52.82	25.77	0.624	700	-0.08	0.3965 0+5 (*)	53.55	23.98 1.1	08-02	D.63
		Vac Gold #7								1228/12	2 8	-0.21	0.2675	6.25E-05 7.49E-05	13.0030	0.479	-0.11	0.3947 Ge-5 (P) 0.3901 Ge-5 (P)	42.70	20.19	D.610 D.652	1.000	-0.09	0.3943 Ga 5 (F) 0.3902 5.735-01	45.01	20.68 5.0	88-03 625-02	0.60
												10			10.1010												_	_

FM1 SWEA/STE-D Operating Hours

- Most of the FM1 SWEA/STE-D has operated for over 500 hours trouble free
- Since the last change (PFR1033, IDPU interface errors)

– Pre, Post Vib CPT:	2.5 Hours
– Thermal Vac:	88.1 Hours

- Boom Suite I&T: 177.4 Hours
 - Total: 268.0 Hours

Quality Assurance

- IMPACT Suite QA Issues worked through Ron Jackson at UCB
 - UCB Independent Inspections by Jeremiah Tolbert,
 - Supported by GSFC QA
 - Signs off on work orders, inspections, parts & materials lists, etc.
- Parts Lists
 - All SWEA/STE-D Parts Lists approved
 - Parts qualification, screening (including radiation) completed
- SWEA (CESR) and UCB Materials Lists Approved
- SWEA/STE-D FM1 PFRs Closed except 1029
 - PFRs can be found at: <u>http://sprg.ssl.berkeley.edu/impact/dwc/Problems/</u>
- SWEA/STE-D-related Waivers Closed
 - Except FM1 Suite EMC Test Results waiver
 - Waivers can be found at: <u>http://sprg.ssl.berkeley.edu/impact/dwc/Waivers/</u>
- Acceptance Data Package Prepared and reviewed

SWEA/STE-D Outstanding Issues

- IMPACT FM1 EMC Waiver not signed off
 - Official waiver should be into approval cycle shortly
- SWEA Preamp failure still open (PFR1029).
 - Potential impact on reliability part lot

IMPACT FM1 STE-U

FM1 STE-U Test History

- 4/12 First assembly, test
 - PFR1002, broken detector board bond wire in assembly; board replaced with spare
- 5/1 5/4 Thermal Balance Test
 - Good correlation with Model
- 5/6 6/15 Thermal Vac
 - PFR1006, Mis-wired connector stresses parts at start of test, repaired
 - PFR1008, STE-U door failure cold, repaired, restart tvac
 - PFR1009, preamp oscillation when warm. Fixed between cycles 5 & 6.
- 6/16 Mated with FM1 boom, tests OK
- 6/28 FM1 boom vibration (with STE-U and MAG instruments)
 - PFR1011, STE door failure, fixed
 - STE-U removed after vib for boom thermal vac to avoid contaminating STE
- 9/13 9/23 STE-U re-qualified; workmanship vib, 1-cycle thermal vac
- 9/27-10/1 STE-U re-integrated with FM1 boom (final)
- 10/6 10/17 Suite I&T
- 10/18 11/1 EMC test with the full IMPACT Suite
 - EMC test exceedances have been accepted by the EMC committee; the official waiver is in process.
- 11/19 3/8 Support FM1 IDPU Environmental Tests, Boom Suite I&T
- 3/24 STE-U Magnetics Test, passed

STE-U Verification Matrix

Level of Assembly	ltem	Elect. test, rm. Temp	Bench Calibration	Elect. Test, ho	Elect. Test, cold	Vibration, Sinusoidal	Vibration, Random	Self Shock	Acoustics	Thermal Vacuum	Voltage margins	Thermal cycle	Thermal balance	Life Test	EMC/EMI	Magnetics	Beam Calibration	Bakeout	Contamination Inspection	Comments
C	Detector, EM	С					_		,								-			
С	Detector, F	С																	С	
С	Preamp, BB	С	С																	
I	Instrument, ETU	С	С	С	С				Α		С			С			С			
I	Instrument, PF (FM1)	С	С			С	С	С		С	С		С		С	С	С	С	С	
I	Instrument, PF (FM2)	С	С			С	С	С		С	С				Н	Х	С	С	Х	
Legen	d:																			
	Level of Assembly	Uni	t Typ	ре						X =	Tes	st rea	quire	d						
										A =	Ana	alysi	s							
	C = Component	BB	Bre	adb	oard	ł				H =	Tes	st at	high	er le	vel c	of as	sem	bly		
	I = Instrument	EM	Eng	gine	ering	ј Мо	del			C =	Tes	st Co	omp	lete	d					
		PF	Pro	tofli	ght															
		F =	Flig	ht																

Full IMPACT Verification Matrix at:

http://sprg.ssl.berkeley.edu/impact/dwc/Verification/IMPACTVerificationMatrix_2005-3-25.pdf
STE-U FM1 Problem/Failures, pre-PER

- PFR1002, detector bond wire broken in assembly
 - Replaced detector board with spare
 - Added fixturing to avoid damage in future
- This PFR has been signed-off and closed (not "Red-Flag" PFR)

STE-U FM1 Problem/Failures since PER

- **PFR1006**:
 - STE-U thermal vac feed-through mis-wired
 - Discovered during thermal balance setup
 - Item worked fine after fixing chamber wiring, but analysis indicates some parts stressed
 - Replace stressed parts, re-test, return to thermal balance
- **PFR1008**:
 - STE-U door failed to actuate properly when cold (-100C)
 - Discovered in Thermal Vac, cycle #1
 - Caused by mechanical part out of tolerance (few thousandths)
 - Build special tooling to ensure tolerance, rework all STE door parts
 - Test all doors at ambient in an LN2 bath, plus 100 motion burn-in
 - Also did life test on ETU door; 18,000 cycles at ambient
 - 500 cycles vacuum, cold
 - Expected on-orbit (cold) cycles are ~60 in 2 years
 - Door worked fine in subsequent thermal vac test (but see PFR1011)

STE-U FM1 Problem/Failures since PER continued

- PFR1009:
 - Busts of noise in STE detectors when warm
 - Found in thermal vac cycling.
 - Problem identified as oscillations in the preamp
 - Possibly exacerbated by thermal vac harness, noise
 - Broke chamber, adjusted preamp compensation, continued thermal vac
 - Final thermal vac cycles confirmed no oscillations
- **PFR1011**:
 - STE-U door failure after boom suite vibration
 - Caused by a pulley in the door mechanism hung up on a screw
 - Screw was missing its washer, and so extended into the pulley
 - Washer installed, fixed problem
 - Verified on all other STE units
 - After fix, workmanship vibration and 1-cycle thermal vac to verify fix
 - 20 cycles at cold temperature.
- These PFRs have been signed-off and closed (not "Red-Flag" PFRs)

PFR1011

FM1 STE-U Related Waivers

- Pre-environmental waivers related to STE-U involve waivers to the EMC requirements, including:
 - CCR460-40 and CCR460-41 regarding single-ended interfaces to IDPU and secondary power distribution
 - EMC committee approved IMPACT design
 - CCR463-37, STE door actuator wire exposed voltage
 - EMC committee approved IMPACT design
- Also:
 - CCR463-133, STE-U thermal balance off boom
 - CCR463-135, no acoustics test for STE-U
 - CCR460-9, 19, 66, 134 regarding IMPACT Suite power consumption
- Waivers can be found at:
 - <u>http://sprg.ssl.berkeley.edu/impact/dwc/Waivers/</u>
- All Waivers approved by CCB
- Post-EMC waiver for IMPACT Suite exceedances in process
 - Data has been reviewed by EMC committee, no significant issues

FM1 STE-U Environmental Tests

- Test Plans/Procedures can be found at:
 - <u>http://sprg.ssl.berkeley.edu/impact/dwc/TestProcs/</u>
 - EMC: <u>http://sprg.ssl.berkeley.edu/impact/dwc/TestProcs/IMPACT-EMC_C.pdf</u>
 - CPT: <u>http://sprg.ssl.berkeley.edu/impact/dwc/TestProcs/IMPACT-IDPU-CPT_H.pdf</u>
 - Vibration: <u>http://sprg.ssl.berkeley.edu/impact/dwc/TestProcs/IMP-562-DOC-</u> A%20Vibration%20Test%20Procedure.pdf
 - Tvac/Tbal: <u>http://sprg.ssl.berkeley.edu/impact/dwc/TestProcs/IMPACT%20STE-U%20TVac%20Test%20Plan.pdf</u>
- Test Reports can be found at:
 - <u>http://sprg.ssl.berkeley.edu/impact/dwc/TestReports/</u>
 - EMC: <u>http://sprg.ssl.berkeley.edu/impact/dwc/TestReports/02-15-</u> 05%20UCBerkeley%20Stereo%20Impact%20Prep%20TR.pdf
 - Tvac: <u>http://sprg.ssl.berkeley.edu/impact/dwc/TestReports/IMPACT-STEU-FM1-TVac-ReportB.pdf</u>
 - Tbal: <u>http://sprg.ssl.berkeley.edu/impact/dwc/TestReports/BOOM_STE-U_TB_Test_Report.pdf</u>
 - Magnetics: <u>http://sprg.ssl.berkeley.edu/impact/dwc/TestReports/IMPACT-FM1-STEU-</u> <u>Magnetics-Report.pdf</u>
 - Vibration: <u>http://sprg.ssl.berkeley.edu/impact/dwc/TestReports/IMP-578-DOC%20STEREO%20Boom%20FM1%20Vibration%20Report%20RA.pdf</u>

FM1 STE-U Thermal Balance Test

- Thermal Balance at UCB
 - STE-U mounted to baseplate to simulate boom mounting, Shrouds run cold
 - ETU Thermal Blankets provided by APL
- Test passed
 - Good correlation to thermal model
 - No problems

STE-U Thermal Vacuum Test

- Test Plan:
 - Preliminary bakeout, up to 48 hours at +40C
 - Thermal vac
 - 6 op cycles: +40C to -35C for Preamp, -35 to -95C for STE-U
 - One non-op cycle: +40 to -30C for Preamp, +40 to -100C for STE-U
 - Temperatures from verified thermal model, with at least 10C margins.
 - Preamp mounted to baseplate, STE-U connected to cold plate by heat strap to provide for separate control of Preamp and STE-U
 - CPT on each operational cycle, cold-start in first and last cycles
 - Qualification bakeout
 - Temperatures were controlled with Thermocouples attached to the outside of the instrument
 - STE-U temperature set using internal temperature sensor

STE-U CPT / Calibration Setup

STE-U Thermal Cycling

Stabilization Criteria: Within 3°C Of Plateau And Changing < 1°C/Hr

See Fig 2.3.3.2-2 and -3 for detailed hot and cold transition definitions, resp.

Stabilize, Print T/C's, Soak 1Hour and Test Concurrently, Print T/C's Six Operational Cycles Required

Stabilize, Turn On, Soak 1Hour and Test Concurrently, Print T/C's at End of Soak

STE-U Thermal Vacuum Test Results

- During pre-test checkout it was found that the chamber feed-through was mis-wired (PFR1006)
 - Potentially stresses parts replaced
- During first cold soak, STE-U door failed (PFR1008)
 - Part out of tolerance; repaired, restart tvac
- Occasional noise observed on STE-U detectors when warm
 - Correlated with chamber operations
 - Caused by preamp oscillation, exacerbated by chamber noise, long thermal vac harness
 - Break chamber and fix preamp compensation between cycles 5 & 6
 - No problem in final cycles
- No significant trends or adverse temperature dependencies were seen

Time

48

STE-U Bakeout Results

- After the last cycle of thermal vac the unit was baked out at +40C while monitoring outgassing with a TQCM at -20C.
- Rates seen were 52Hz/hour, close to chamber background, corresponding to an outgassing rate of TBD, compared to a requirement of < 5e-11.

STE-U Vibration Testing

- Vibrated on FM1 Boom
 - Described in Boom section.
- STE-U door failed in post-vibration test (PFR1011)
 - Tracked to screw interfering with pulley operation due to lack of washer
- Retest after PFR1011 fix
 - Workmanship vibration per GEVS
 - One cycle thermal vac

IMPACT Suite EMC Tests

• Described in SWEA section.

FM1 STE-U Magnetics Test

- STE-U magnetics were not performed prior to installation of the unit on the boom.
- A "swing test" was performed on the integrated FM1 boom suite to measure the field from the STE_U end of the boom.
 - Note that the STE-U end of the boom is close to the deployment assembly, which has some know magnetic materials – see boom section
 - STE-U end of the boom is >4m from the mag sensor when the boom is deployed, which mitigates magnetics concerns
 - Test was performed by swinging STE-U end of the boom periodically past a magnetometer sensor, with closest approach being 50cm.
 - Measured field of ~20nT corresponds to a field at the MAG sensor location of <.04nT compared to a spacecraft goal of 1nT (this includes both boom and STE-U contributions)
 - MAG PI finds this level acceptable.

Performance Data

- STE-U calibrations at UCB
 - Geometric factor, FOV, energy resolution, threshold, background
- Key measurements were trended throughout testing (IDPU and Sensor)
 - No significant trends were found see following charts
- All performance measurements met or exceeded the requirements

STE-U Trend Data

STE-U PM1	Performance There	4 ->					20000	10.2010.000							out Pabor	-	- 1			Door 5	lource		-			ong integrati	on Door	Source (De	ior LUTj	
Date	Dile	Text	STE-U Temp	Premap Temp	DPU Temp	ISTELCur (mA)	Door Open (xec)	Door Close (sec)	Diss	FERM	Det.	Threeh	Olfset (koV)	Gain (keV/Bin)	Carv. (1keV)	Tset Gain	rweisi (keV)	Offest (NoV)	Gais (ko//Bis)	Curv. (1/k//)	George cate 2	ZkoV cis i	WHE	Acc Time (sec)	Offeet (keV) (Gata C Ie-WBiaj (1	lurv. Ioniv) t	SkolVicia 22	keV c's BilkeV c	o's PWHM
4-Nby-04	0405030000 tim	Thermal Balarce	-62	25	30	20			20	6/10/2004	D 1 2		-0.05 0.04 0.04	0.3636 0.3636 0.3629	1.57E-04 1.57E-04 1.61E-04	13.4625 12.7275 12.5861	0.927 0.582 0.621	0.00 0.01 -0.02	0.386	7.55E-05 9.54E-05 6e-5 (*)	35.68 41.18 36.49	22.70 24.40 21.72	0.974 0.667 0.772							
2-Jan-04	0408022045.htm	Pte-Tvac #2 ambient (100/Fitz noise as ppression caps instalted on 14*)	28.5	Ambient	36	17	0.3870.02	0.25/0.38	20	8/10/20104	0 1 2 3	10	-0.03 -0.03 -0.03 -0.03	0.3845 0.3834 0.3834 0.3841 0.3845	1.295-04 1.525-04 1.525-04 1.352-04	13.8257 13.0095 12.6275 13.5005	0.845 0.845 0.833 0.822 0.821	-0.08 -0.08 -0.08 -0.08	0.3838 0.3838 0.3790 0.3894 0.3894	1.296-4(F) 1.526-4(F) 1.526-4(F) 1.526-4(F)	43.82 42.49 37.91 36.35	28.18 27.80 24.80 24.38	0.925 0.871 0.917 0.901	260	-0.05 -0.08 -0.10 -0.05	0.3855 7.1 0.3821 0.5 0.3017 4.5 0.3044 8.0	NDE-05 XDE-05 XDE-05	41.00 35.81 35.51 34.74	25.47 2.778- 25.78 1.548- 22.99 1.408- 23.07 9.908-	02 0.928 02 0.929 02 0.908 0.908 0.901
5-Jan-04	0-4080500.00.Hm	Tvac #2 Ho8#2	-22	35	19	17.6	0.28 / 0.38	0.35/0.35	20	8/10/20104	0 1 2 2		-0.01 0.03 0.01	0.3845 0.3837 0.3842 0.3842	1.34E-04 1.58E-04 1.58E-04 1.49E-04	13,4473 12,3517 12,4575 13,1913	0.810 0.877 0.741 0.774	-0.08 -0.01 -0.08 -0.02	0.3890 0.3665 0.3014 0.3044	4.50E-05 1.49E-05 6E-5(F) 4.97E-05	46.12 46.50 40.74 41.42	30.14 28.88 27.75 27.45	0.501 0.753 0.839 0.855	570	-0.02 -0.02 -0.03	0.3556 5.0 0.3558 5.1 0.3016 5.5 0.3045 Ged	52E-05 15E-05 52E-05	40.30 44.03 30.40 35.35	25.67 1.485-1 27.65 1.045-1 24.35 1.195- 24.90 2.445	02 0.907 -02 0.787 -02 0.851 -02 0.851
5-Jan-04	04080500 00.1m	Trac #2 Cold#2	-91	-47	27	19.25	0.50/0.50	0.35/0.50	20	6/10/2014	0 1 0 1		-0.01 0.05 0.03	0.3844 0.3835 0.3845	1.34E-04 1.62E-04 1.64E-04	13,4022 12,6837 12,3859	0.695	-0.02 -0.02 -0.04	0.3022	7.70E-05	48.31 47.24 30.05	30.00 30.31 26.13	0.505	2270	-0.03 -0.02 -0.04	0.3022 5.1 0.3500 7.3 0.3655 6.4	112-05 902-05	45.28 44.1 1 35.87	27.87 1.90E- 27.08 1.55E- 25.04 1.30E-	02 0.794 02 0.658 -02 0.754
5-Jan-04	0-408050000.Hm	Tvisc #2 Hot #3	-21	41	35	17.7	0.3870.38	0.38/0.26	20	6/10/2004	0122	1 2	0.04 0.05 0.03	0.3828 0.3827 0.3824 0.3824	1.422-04 1.642-04 1.622-04 1.622-04	13 4153 12 7505 12 4268	0.818 0.677 0.730	20.0- 20.0 20.0-	0.3850 0.3652 0.3912	4.33E-05 5e-5 (F) 5e-5 (F)	40.36 36.39 40.08 30.99	29.65 25.54 26.11 25.65	0.911 0.767 0.676	220	-0.01 0.00 -0.03	0.3556 5.6 0.3546 7.1 0.3013 6E-	5 (F)	45.70 43.57 35.92 30.54	26.35 2.852- 26.85 2.142- 24.85 3.652- 24.90 3.652-	02 0.910 -02 0.762 -03 0.567
6-Jan-04	0409060000.tim 0408090220.tim	Tvac #2 Cold#3	-87	-41.0	25.3	98.7	0.50 (0.50	0.38/0.50	20	6/10/20104	0 1 2		-0.03 0.02 -0.01	0.3843 0.3835 0.3850	1.55E-04 1.55E-04 1.25E-4(7)	13.4045 12.6822 12.3402	0.558	-0.08 -0.02 -0.05	0.3657	00-5 (F) 00-5 (F) 00-5 (F)	45.71 47.95 41.31	28,23, 28,70 26,40	0.506	62:20	-0.03 -0.01 -0.03	0.3011 4.1 0.3676 7£ 0.3040 7.0	77E-05 33E-05 33E-05	45.43 44.13 30.09	27.88 1.532- 27.02 2.038- 24.97 1.538-	02 0.82 -02 0.686 -02 0.785
6-Jan-04	D406060220 Hart	Tvac #2 Hot #4	-21	39.9	29.1	15.4	0.38 (0.38	0.35/0.35	20	6/10/20.04	0 1 2	1	0.02 0.05 0.03	0.3838 0.3830 0.3830	1.35E-04 1.60E-04 1.61E-04	13 4756 12 5044 12 4702	0.811 0.890 0.733	-0.05 -0.01 -0.05	0.3670	68-5 (F) 7.60E-05 6E-5 (F)	47.40 48.10 41.49	29.57 27.54 27.54	0.889 0.748 0.541	200	-0.02 -0.03 -0.04	0.3860 5.1 0.3862 3.4 0.3913 7.5	152-05 172-05 172-05	45.78 45.10 30.11	25.01 1.242-1 25.05 3.502-1 27.37 6.022- 25.20 1.302-	03 0.902 -03 0.775 -02 0.857
7-Jan-04	0406070138.htm	Trac #2 Cold#4	-87.2	-46.5	27	10.2	0.50 / 0.50	0.35/0.50	20	8/10/20104	0 1 2 3	1 1 1 1	0.01 0.04 0.02 0.01	0.3840 0.3835 0.3845 0.3845	1.352-04 1.002-04 1.002-04 1.446-04	13 4076 12 6856 12 3869 13 0685	0.599 0.557 0.615 0.754	-0.05 -0.02 -0.04 -0.02	0.3021 0.3890 0.3954 0.4000	00-5 P) 00-5 P) 00-5 P)	48.30 46.99 41.99 41.76	29.50 28.61 26.16 27.10	0.794 0.661 0.741 0.810	590	-0.02 -0.02 -0.04 -0.02	0.3003 3.5 0.3503 6.3 0.3549 98- 0.4003 6e-1	02-05 572-05 5 (*) 5 (*)	45.19 45.83 30.54 35.23	27.02 1.31E- 27.05 1.67E- 24.05 1.05E- 25.00 9.44E-	02 0.794 02 0.655 -02 0.734 -02 0.734
7-Jan-04	0406070 135 Her	Tvac #2Hot #5 (505	-21.1	37.7	22	10.6	0.38 / 0.35	0.25/0.38	20	6/10/20104	0 1 2 3	0.00	-0.02 0.05 0.04 0.01	0.3840 0.3857 0.3850 0.3857	1.522-04 1.602-04 1.652-04 1.452-04	13 4123 12 7493 12 4658 13 1473	0.956 0.766 0.840 0.957	-0.02 -0.05 -0.01 -0.02	0.3654	7.92E-05 (00-5.) ^(*) (00-5.) ^(*)	48.95 47.57 40.94 41.33	30.12 29.05 27.05 26.45	1.025 0.821 0.927 0.990	970	-0.04 -0.01 -0.04 -0.03	0.3503 43 0.3549 8.4 0.3017 6.3 0.3057 6.7	922-05 922-05 932-05 N22-05	45.55 44.17 30.05 35.40	25.55 2.03E-1 27.35 1.17E- 25.45 1.47E- 25.08 2.10E-	02 1.024 -02 0.802 -02 0.927 -02 1.02
7-Jan-04	0406070135 tim	Trac #2 Cold#5	-90.8	-47.3	24	19	0.50 / 0.50	0.38/0.50	20	6/10/20104	0 1 2 3		-0.03 0.02 0.00 -0.12	0.3845 0.3837 0.3847 0.3858	1.29E-04 1.57E-04 1.56E-04 1.05E-04	13 2093 12 6786 12 2780 13 0659	0.659 0.548 0.611 0.757	-0.01 -0.05 0.05 -0.02	0.3911 0.3904 0.3953 0.4000	9:50E-05 1:58E-05 6e-5 (F) 50E-5 (F)	46.87 46.35 41.43 41.35	31.14 27.22 26.88 26.72	0.517 0.661 0.745 0.795	3630	-0.02 -0.01 -0.03 -0.02	0.3016 6.0 0.3557 7.2 0.3049 7.3 0.3065 6E-	00E-05 20E-05 78E-05 5.(F)	45.17 44.18 30.25 35.40	27.87 1.885-1 27.08 2.225- 25.21 1.805- 24.70 1.205-	02 0.798 -02 0.665 -02 0.742 -02 0.51
11-Jun-04	0406110000.tim	Arabierd text, after compensation caps increased	21	ы	27	8.5			20	6/10/20104	0 1 2 3													950	-0.08 -0.05 -0.08 -0.00	0.3533 8.5 0.3553 8.5 0.3004 6.5 0.3053 5.4	942-05 522-05 502-05 452-05	41.75 40.80 35.24 35.30	26.95 1.148-4 25.95 6.898-4 24.10 7.908- 23.00 1.598-	02 0.968 -03 0.901 -04 0.968 -02 0.968
14-Jun-04	04061-40539.tim	Tvac #2 Hot #6	-26	41	33.6	18	0.38 / 0.38	0.38/0.38	20	6/10/20104	0 1 2 2	1	0.03 0.06 0.03	0.3543 0.3524 0.3542 0.3542	1.37E-04 1.62E-04 1.61E-04 1.60E-04	13.5076 12.5147 12.5141 13.2296	0.812 0.683 0.738 0.735	-0.01 0.02 -0.02	0.3890 0.3843 0.3910 0.3940	4.80E-05 1.02E-04 4.76E-05	48.06 46.61 30.76 40.55	29.65 26.51 29.95 26.37	0.587 0.762 0.548	1370	-0.01 0.00 -0.02	0.3888 4.8 0.3888 7.9 0.3914 6.2 0.3914 5.5	90E-05 51E-05 21E-05	44.29 43.41 37.70 37.61	27.25 9.518-1 26.53 1.548-1 23.95 2.958- 24.21 1.738-	03 0.585 -02 0.771 -02 0.547
14-Jun-04	04061-40839.ttm	i Tvac #2 Gold #6	-09.3	-35.8	32.7	17.5	0.50 (0.50	0.50/0.50	20	6/10/20104	0 1 2 3		0.02 0.07 0.04 0.03	0.3545 0.3550 0.3545 0.3545	1.37E-04 1.64E-04 1.67E-04 1.49E-04	13 2041 12 6424 12 3625 13 0719	0.554 0.554 0.618 0.962	0.00 0.00 -0.05 -0.02	0.3912 0.3900 0.3964 0.3999	9.705-05 6e-5 (F) 6e-5 (F) 6e-5 (F)	49.16 46.45 40.55 41.75	29.25 25.42 26.37 27.05	0.508 0.654 0.754 0.768	1080	-0.01 0.00 -0.02 0.00	0.3020 7.4 0.3001 7.3 0.3055 9E- 0.3054 9E-	41E-05 23E-05 5 (F) 5 (F)	45.00 43,49 35.04 35,74	27.55 2.228-4 26.87 2.018- 24.54 1.048- 24.58 9.548	02 0.792 -02 0.664 -02 0.748 -03 0.77
15-Jun-04	D4061-90539.tbn	Tvac #2 Hot #7	-27.6	40.2	33.4	18	0.38 (0.38	0.38/0.38	20	6/10/20.04	0 1 2 7		0.03 0.07 0.04	0.3848 0.3834 0.3840 0.3840	1.37E-04 1.62E-04 1.63E-04 1.63E-04	13.5087 12.6177 12.5178 13.2345	0.802 0.678 0.736 0.731	0.00 0.00 -0.02	0.3857	5.245-05 5e-5 (F) 5e-5 (F) 5e-5 (F)	46.41 46.15 40.29 40.34	29.51 28.22 25.70 36.52	0.895 0.375 0.851 0.853	760	0.00 0.00 -0.02 0.00	0.3881 7.3 0.3882 7.8 0.3910 6.1	322-05 902-05 122-05	44.23 45.32 37.55 37.55	27.35 2.41E- 26.12 2.09E- 24.23 1.53E- 24.25 9.30E-	02 0.894 -02 0.700 -02 0.834 -03 0.834
15-Jun-04	0405150000.tim 0405150252.tim	Twic #2 Cold#7	-91	-34.5	29.6	18.5	a sa rosa	0.35/0.50	20	6/10/20104	0 1 2 7	1	0.02 0.05 0.02	0.3530 0.3532 0.3541	1.37E-04 1.61E-04 1.62E-04	13 4193 12 8940 12 4014 13 0929	0.709 0.596 0.629	0.00 0.02 -0.04	0.3670	1.11E-04 9.27E-05 6e-5 (F)	46.58 47.20 40.75 40.40	29.10 25.54 26.47 25.05	0.807 0.673 0.753	1180	0.00 0.00 -0.02	0.3013 6.2 0.3559 6.8 0.3050 6e-1	27E-05 5E-05 5F)	45.21 44.15 38.97	27.55 1.59E- 26.85 2.68E- 24.43 1.52E- 24.40 1.09E-	02 0.510 -02 0.684 -02 0.760
28-Jun-04	0406261204.tim	Pre-vikration (on boom)	21.8	22.4	29.5	19	0.38 / 0.85	0.25/0.38	20	6/10/20104	0123	10 13 [1	-0.08 -0.06 -0.03 -0.05	0.3844 0.3841 0.3846 0.3841	1.222-04 1.452-04 1.442-04 1.302-04	13.8478 13.2355 12.8296 13.6249	0.849 0.889 1.009 0.795	-0.05 -0.07 -0.05 -0.05	0.3880	5.30E-05 6e-5 (F) 6e-5 (F) 6e-5 (F)	43.42 42.16 37.30 35.91	26.70 26.32 23.74 23.02	0.887 0.889 0.936 0.936	1470	-0.05 -0.05 -0.05 -0.05	0.3550 3.9 0.3531 7.1 0.3006 5.8 0.3006 5.8	852-05 102-05 852-05	\$0.73 \$6.25 \$3.14 \$3.72	24.80 1.71E- 24.40 1.30E- 21.40 1.70E- 21.00 5.68E-	02 0.584 -02 0.588 -02 0.908 -03 0.585
29-Jun-04	0406291004.tlm	Post-vibration jon boomj	22.2	22.B	28.2	12.4	0.35/TO	D / D.38	20	6/10/20104	0 1 2 3	10 10 10	-0.05 -0.08 0.07 -0.07	0.3848 0.3856 0.3938 0.3847	1.31E-04 1.48E-04 1.48E-04 1.31E-04	13 5035 13 2509 12 5035 13 6665	0.896 1.010 1.225 0.805	-0.05 -0.05 -0.05 -0.04	0.3655 0.3620 0.3606 0.3606	6e-5 (F) 6e-5 (F) 6e-5 (F)	38.30 36.75 31.80 31.12	23.10 22.05 19.50 17.00	0.875 0.876 0.927 0.927	2090	-0.08 -0.07 -0.05 -0.05	0.3535 5.5 0.3535 5.5 0.3006 7.6 0.3055 Ge-1	82-05 82-05 912-05 5(F)	35.45 34.98 29.52 25.91	21.40 8.685-4 21.35 1.105- 18.30 1.125- 17.50 6.565-	05 0.588 -02 0.516 -02 0.905 -03 0.56
14-Sep-04	0409 14 18 57 Jim	Bechlant after actuator tepair	23.5	Ambient	27.5	12.8	0.36 / 0.35	0.25/0.38	20	85/2004	0 1 2 3	11 5 6 10	-0.05 -0.04 -0.04 -0.05	0.3847 0.3837 0.3838 0.3848	1.31E-04 1.52E-04 1.52E-04 1.33E-04	13.5966 13.1918 12.5059 13.6664	1.005 0.892 0.797 0.830	-0.05 -0.00 -0.00 -0.04	0.3890 0.3853 0.3917 0.3953	1.04E-04 6e-5 (F) 6e-5 (F) 6e-5 (F)	40.72 30.61 35.24 34.78	24.68 23.48 21.91 21.34	0.979 0.947 0.916 0.870	1790	-0.00 -0.00 -0.00 -0.09	0.3002 6.1 0.3556 5.6 0.3016 6.0 0.3052 6e-3	77E-05 54E-05 57E-05 5 (F)	37.43 30.33 32.64 31.95	22.50 1.735-1 21.47 1.246-1 19.64 9.185- 19.67 1.165-	02 0.948 -02 0.948 -03 0.908 -02 0.88
20-5ap-04	0-40920 1225.the	Post-worknamship-vib OPT, in Tvac chamber, Ambient	20.8	21.7	32.7	¥8.7	0.38 / 0.50	0.55/0.50	20	85/2004	0 1 2 3	12 10 2 13	-0.02 0.02 0.03 0.01	0.3541 0.3537 0.3534 0.3538	1.30E-04 1.53E-04 1.63E-04 1.44E-04	13.6841 13.0251 12.5800 13.4606	1.354 0.981 0.820 1.212	-0.01 -0.05 -0.05 -0.02	0.3880 0.3852 0.3912 0.3944	4.15E-05 5e-5 (F) 5e-5 (F) 5e-5 (F)	38.93 40.28 35.95 33.90	24.85 24.00 22.25 22.44	1.314 1.034 0.957 1.241	600	-0.01 -0.04 -0.00 -0.01	0.3506 5.2 0.3540 6.1 0.3004 9.3 0.3052 5.4	77E-05 77E-05 33E-05 43E-05	35.70 37.42 32.92 32.37	23.37 1.448-4 22.22 2.058-4 19.95 1.478- 20.77 1.878-	02 1291 02 1030 02 0.911 02 127
21-Sep-04	0409211057.htm	Tharmal Viac #5 cold	-91.3	-29.1	36.6	17.7	0.50 / 0.50	0.35/0.50	20	85/2004	0 1 2 3	57.0	0.01 0.05 0.03 -0.02	0.3837 0.3837 0.3837 0.3837	1.39E-04 1.64E-04 1.66E-04 1.42E-04	13,4826 12,7514 12,4017 13,2415	0.931 0.675 0.806 0.927	0.10 0.05 -0.02 0.01	0.3692	6e-5 (F) 6e-5 (F) 6e-5 (F)	40.54 40.65 38.23 38.60	25.05 24.31 22.84 22.57	1.054 0.754 0.736 1.094	540	0.10 0.08 -0.03 -0.01	0.3016 8.1 0.3554 8.4 0.3003 6e-1 0.4003 6e-1	NBE-DS NBE-DS S(F) S(F)	38.20 37.90 35.09 35.60	23.04 1.30E-1 22.77 3.04E- 20.07 1.04E- 21.06 8.75E-	02 1.064 -02 0.514 -02 0.73K -03 1.04
21-Sep-04	0-409211057.km	Thermal Visc #3 cold, bine DAC=100	-91.3	-29.3	36.6	17.7			20	85/2004	0 1 2 3	2												660	-0.03 -0.01 -0.00 -0.04	0.3043 6.0 0.3005 6e-3 0.3007 6e-3 0.4006 6e-3	22E-05 5 (F) 5 (F) 5 (F)	42.48 42.12 36.18 35.48	24.41 1.548-1 23.35 4.558- 21.30 6.588- 21.54 2.058-	02 0.915 -03 0.664 -03 0.738 -02 0.58
21-5ap-04	0409211057.8m	Thermini Vac. 45.HOT, bine DAC=100	-22.2	40.0	36.5	17.8	0.28 / 0.38	0.35/0.35	20	8/5/2004	0 1 2	1	0.02 0.07 0.05	0.3858 0.3858 0.3866	1.482-04 1.702-04 1.692-04	12.3508 12.3629 12.3258	0.963 0.877 0.723	-0.04 -0.05 -0.07	0.3817 0.3872 0.3836	Be-5 (F) Be-5 (F) Be-5 (F)	45.45 46.31 38.60	26.80 24.95 23.05	1.036 0.764 0.868	540	-0.02 -0.01 -0.05	0.3003 1.0 0.3655 7.6 0.3013 6e-1	982-04 982-05 5 (*)	43.25 42.20 35.64	24.83 1.33E- 23.42 1.40E- 21.43 1.33E-	02 1.030 02 0.752 -02 0.827

FM1 STE-U Trend Data, Continued

										3 0	0.03	0.3835 1/	58E-04	12.6350	0.908	-0.05	0.3070 6e-5 (F)	39.12	24.40	0.960		-0.04	0.3073 Ge-5 (F)	37.00	21.67 1.028-02	1.00
21.5m.04	DATESTIN	Thermal Vac #5HOT,	.77.7	41.0	36.5	17.6		20	A5/2004	1					-						840	0.03	0.3663 0.598-05	40.23	23.25 6.80E-03	0.90
an-support	CHARLET MILE LITE	bins DAC=20 (default)			20.0	11.34		<u> </u>	0002004	2											940	-0.03	0.3023 7.098-05	35.85	21.30 1.468-02	0.83
-		9538603.0568.470.0								0 11	-0.05	0.3542 1.	376-04	13.0044	1.1.21	-0.14	0.3005 5e-5 (*)	41.88	23.02	1.096		-0.17	D. 3028 8.50E-06	35.74	22.32 8.932-03	1.08
1-0d-04	D-410011640.tim	PM1 Boots IAT, less	21.9		29.9	18.9	0.38/0.38 0.38/0.38	20	10/15/2004	1 12	-0.04	0.3835 1.	58E-04	12.5208	1.039	-0.14	0.3862 6e-5 (F)	40.51	24.15	1.030	0.00	-0.15	D.3854 5.00E-DS	37.55	22.15 1.502-02	1.02
		amen								3 9	-0.01	D.3843 1/	ATE-04	12.5014	0.889	-0.05	0.3054 6e-5 (F)	35.62	21.65	0.936		-0.09	0.3057 de-5 (*)	33.32	19.68 1.295-02	0.94
11.43204-0	anna anna an		30.05		V2-22	10.880.54		224	100000-0000	a	35					+0.11	0.3007 6e-5 (*)	41.34	23.58	1.033	SAGETS	-D.11	0.3003 5.852-05	38.92	22.67 1.365-02	1.03
8-0::-04	D-410080935.tim	SWEA (shald added)	22.6		35	17.4		20	10/15/2004	2						-0.11	0.3852 Ge-5 (F) 0.3805 Ge-5 (F)	41.11	23.15	0.861	17:20	-0.01	0.3855 5.512-05	32.62	21 70 1.85E-02 19.85 7.42E-03	0.90
9		- some frames and			0.000	0.000.00		1.1.2.1		3	30				6	-0.07	0.3052 64-5 (1)	35.54	20.65	0.948		-0.07	0.3051 Ge-5 (F)	33.55	19.78 1.225-02	0.97
		PMI Sate IAT (D)								0 10	-0.03	0.3510 11	475-04	13,2510	1.200	-0.02	0.3656 Ge-5 (F) 0.3651 Ge-5 (F)	40.22	23.55	1,335		-0.04	0.3506 3.44E-05 0.3547 (e-5 F)	37.61	22.05 9.71E-03 22.05 8.87E-03	1.25
16-Oct-04	0410160000b.9m	Callech	22.8		30.7	18.1	0.28/0.38 0.38/0.38	70	10/15/2004	2 9	-0.02	0.3535 1/	512-04	12.5967	0.985	-0.05	0.3003 Se-5 (F)	34.24	21.20	1.041	590	-0.07	0.3000 5.812-05	32.47	19.98 1.138-02	1.04
		Strategy.								3 9	-0.02	D.3834 12	372-04	13.6938	1.1.17	-0.08	0.3944 6e-5 (F)	34.44	22.05	1,206		-0.04	0.3041 8.652-05	32.92	19.92 1.94E-03	1.19
		PNI boost safe post-								1 9	-0.07	D.3845 1/	452-04	13.1725	0.634	-0.05	0.3846 6e-5 (F)	39.50	22.91	0.947		-0.05	0.3850 5.575-05	37.24	20.00 7.588-03	0.92
2-100-04	0411031352.0H	EVIC at UCB	22.5		20.5	19	0.3810.36 0.3810.38	20	10/15/2004	2 8	-0.02	0.3845 1/	50E-04	12.8343	0.785	-D. D7	0.3006 6e-5 (F)	35.63	20.71	0.923	010	-0.08	0.3007 6.195-05	32.42	19.48 1.568-02	0.58
<u> </u>										3 8	-0.04	D.3842 1.	302-04	13.8233	0,777	-0.05	0.3045 6e-5 (f)	34.33	20.95	0,004		-0.05	0.3046 De-5 (F) 0.3003 4.002-05	32.53	19.24 7.10E-03 21.72 1.35E-02	0.55
3.8-1.04	Dat1031353.0ex	PNII boom suite post-	22.8		20.5	10		50	10/15/2004	1										1	22050	-0.10	0.5853 5.902-05	37.81	21.15 1.286-02	0.89
		EWC at UCB								2												-0.09	0.3007 0.252-05	32.25	19.05 1.175-02	0.50
		In the second second second	8							0 9	-0.01	0.3540 1.	48-04	13.9620	0.865	-D.D4	0.3888 04-5 (*)	3.9.82	22.95	0.95-4		-0.05	D.3000 4.052-05	37.08	21.00 1.11E-02	0.94
17-Nov-04	0411 17 10 40 Jim	justh PMI boors, STE-	22		27.8	19.2	0.38/0.50 0.38/0.50		10/15/2004	1 9	-0.09	0.3541 1/	-41E-04	13,2381	0.943	-0.05	0.3848 8e-5 (F)	39.00	21.51	0.89-4	870	-0.05	D.3844 8.02E-D5	35.24	20.35 1.162-02	0.91
		U; no SWEA)								3 8	-0.05	0.3845 12	312-04	13,7259	0.850	-0.07	0.3053 6e-5 (F)	33.49	20.12	0.556		-0.05	0.3050 0e-5 F1	31.48	18.05 1.202-02	0.55
	Contractory and the second	FM3 IDPU postvib	0.0000		10 x 24		The second second second second		1	a a	-0.02	0.3847 12	322-04	13.9591	0.820	-D. D4	0.3691 Ge-5 (F)	41.24	21.95	0.063	11.000	-0.03	0.3879 1.1 22-04	37,17	21.20 3.912-03	0.92
15-Nov-04	D-411 10 10 D4.ths	CPT (with PM1 boom,	22		27.4	19	0.38/0.38 0.38/0.50		12/6/20 04	2 8	-0.03	D.3841 1/	405-04	13 2394	0.844	-0.08	0.3849 Be-5 (F) 0.3905 Be-5 (F)	40.15	21.74 19.87	0.930	660	-0.07	0.3855 3.822-05	35.01	20.17 3.832-03	0.91
and the second second	esc-sector contra	STE-U; no SWEA)	0.2966		20030	253	States and the second second		C-32672/01	3 6	-0.04	D.3842 1	318-04	13.6208	0.794	-0.04	0.3946 69-5 (1)	33.15	20.40	0.902		-0.04	0.3047 Ge-5 (P)	31.83	18.36 7.9882-03	0.89
										0 9	-0.04	0.3850 1.	372-04	13,5613	0.986	+0.11	0.3696 64-5 (F)	56,21	20.51	1.077		-0.11	D. NOCE 3.85E-05	33.13	19.17 1.192-02	1.06
22-Nov-04	0411221340.the	FIVIT EPU Twas Hot #2	25.2		54.9	16	0.38/0.38 0.25/0.38		12/6/20 04	2 10	-0.01	0.3534 1/	63E-04	12.5043	0.870	-0.10	0.3552 6e-5 (F)	32.13	18.34	0.953	630	-0.17	0.3502 5.99E-05	22.40	17.05 4.61E-03	0.94
										3 8	-0.01	0.3537 1/	452-04	13.3839	0.875	-D. DS	0.3044 6e-5 (F)	31.27	18.40	0.961		-0.05	0.3044 Ge-5 (F)	20.22	17.10 7.932-03	0.96
		PM11DPU Type Cold				122265	14112433312333		0203836	1 11	-0.20	0.3854 1.	276-04	13.0400	0.985	-0.15	0.3845 6e-5 (F)	34.34	20.55	1.040		-0.14	0.3873 7.392-05	32.45	19.52 9.41E-03 16.55 1.61E-02	1.05
22-Nov-04	0411221340.0m	12	31.4		-33.3	24.5	0.38/0.35 0.25/0.38		12/6/2004	2 9	-0.18	0.3854 1.	276-04	12.6973	0.850	-0.10	0.3013 60-5 (*)	31.00	18.05	0.924	610	-0.18	0.3019 Se-5 (F)	28.82	17.04 2.265-03	0.92
										3 9	-0.17	0.3352 1/	/00E-04	13.6374	0.852	-0.15	0.3005 Se-5 (F)	34.07	17.95	0.950		-0.15	0.3050 6.792-05	25.56	16.35 1.18E-02 20.40 6.41E-03	0.95
20.5 June 14	0.411200000000	FUEL FIDEL Trans Hot all	10		64.2	4.2	0.35 (0.50, 0.35 (0.35		12022004	1 9	0.01	D.3835 14	5-E-04	12.9117	0.911	-0.05	0.3633 69-5 (F)	39.05	22.31	0.05-4	0.65	-0.08	0.3833 0.002-05	35.29	19.65 1.245-02	0.93
		THE STREET STREET							12002004	2 8	0.04	0.3535 1.	70E-04	12,5880	0.820	-0.05	0.3800 Se-5 (F)	33.44	20.22	0.890	10.000	-0.07	0.3803 4.455-05	31.03	15,18 7,002-03	0.89
		5.555.0000.0000.0000.0000								a 31	-0.19	0.3550 91	86E-05	13.5398	1.155	-0.13	0.3879 6e-5 (F)	38.16	21.48	0.977		-0.12	D.3573 Ge-5 (F)	35.70	20.33 3.002-03	0.90
29-Nov-04	04112900 D0.thv	PM11DPU Type Gold	25.9		-27.9	20	0.38/0.38 0.25/0.38		12/6/2004	1 12	-0.17	D.3846 1.	302-04	13.1012	1.3 19	+0.15	0.3846 69-5 (*)	38.03	21.65	0.957	750	-0.18	0.3842 Ge-5 (*)	35.63	19.33 4.438-03	0.937
		80							19932 008000	2 13	-0.16	0.3852 1.	075-04	12.6980	1.003	-0.18	0.3022 Se-5 (F) 0.3022 Se-5 (F)	32.47	19.12	0.897		-0.15	0.3014 0.72E-05 0.3034 Re-5 F1	30.56	17.80 1.632-02	0.90
1										a 9	-0.02	0.3538 1.	37E-04	13.5270	0.892	-0.05	0.3893 6+-5 (*)	37.89	21.64	0.962		-0.05	0.3500 0.532-05	35.34	20.55 1.055-02	0.07
30-Nov-04	0-411.3000.00.1ht	FIVE DPU Type Hot #4	23		64.7	14.3	0.38/0.38 0.25/0.38		12/6/20104	1 9	-0.01	0.3557 11	150E-04	12,9167	0.825	-0.07	0.3834 6e-5 (F) 0.3850 6e-5 (F)	38.43	21.35	0.963	1750	-0.08	0.3833 0.942-05	35.37	19.88 8.632-03	0.54
-										3 8	0.03	0.3835 1.	53E-04	13.3323	0.822	+D. D1	0.3936 6e-5 (P)	33.98	18.90	0.928		-0.02	0.3043 5.422-05	30.98	17.95 8.638-03	0.91
		PM3 (DR1) Type: Cold								0 10	-0.17	0.3555 1)	022-04	13.8072	0.997	-0.13	0.3879 6e-5 (F)	36.82	21.25	0.960		-0.12	0.3878 5.625-05	34.84	19.98 1.462-02	0.99
30-Nov-04	0411.3000.00.the	#4	26.6		-20.7	25.1	0.38/0.38 0.25/0.38		12/6/2004	2 12	-0.14	0.3555 1.	31E-04	12.6060	0.875	-0.13	0.3010 Be-5 (F)	33.01	19.10	0.917	1400	-0,14	D.3013 6.44E-D5	30.29	17.38 1.512-02	0.90
		- 22								3 9	-0.15	0.3855 1.	122-04	13.5794	0.850	-0.12	0.3935 69-5 (*)	32.80	19.47	0.932		-0.12	0.3053 6e-5 (*)	30.40	17.45 1.118-02	0.947
**************************************	1998/10/02/02/02	2012/02/07 1995	12022			10.252.00	72228272772278228		10.222.223	1 9	-0.00	0.3834 1/	59E-04	12.9229	1.123	-0.00	0.3834 6e-5 (F)	40.53	20.95	0.960	0.5550	-0.00	0.3835 0.622-05	34.95	19.72 1.222-02	0.00
1-1.00-04	0412010000H	FIND DPU IVIC FIND VS	24.5		803	14.0	0.3810.38 0.2510.38		1210/2004	2 9	D.01	0.3037 11	848-04	12.5902	0.913	-0.07	0.3888 Ge-5 (P)	33.73	18.61	0.910	010	-0.08	0.3806 3.652-05	30.50	17.41 6.148-03	0.90
_		2014/02/22/22/22/22/22								3 9 0 11	-0.02	D.3856 1/	ACE-04	13.5490	1.024	-0.02	0.3664 Ge-5 (F)	32.05	21.24	0.921		-0.02	0.3650 4.7 E-05	35.04	19.78 1.025-02	1.00
1-Dec-04	0412010000.the	PM1 IDPU Type Cold	28.5		-13	24	0.36(0.38 0.25/0.38		12/6/2004	1 11	+0.14	0.3543 1.	342-04	13.0594	1.074	+0.14	0.3848 6+5 (*)	36.93	21.10	0.968	1670	-0.13	0.3844 6.146-05	34.68	19.45 1.128-02	0.97
		æ								2 10	-0.13	0.3855 1.	125-04	12.6923	0.895	-0.12	0.3013 Se-5 (F) 0.3037 Se-5 (F)	33.52	18.70	0.921		-0.14	0.3015 5.50E-05 0.3053 Ge-5 F)	30.44	17.63 1.538-02	0.91
Sector and the sector of the	the state of the state of the	and the second second second second	482315		242115	10.00 C	NUMBER OF THE OWNER			a 8	+0.04	0.3844 13	38E-04	12,7705	0.823	+0.12	0.3902 6+5 (F)	42.57	22.55	0.929		-0.11	0.3005 4.952-05	38, 14	20.04 1.155-02	0.91
17-Dec-04	0412171350.Hm	PMI EPU Post-	19.1		24.4	20.5	0.38/0.50 0.38/0.38	150	12/6/20104	1 11	-0.01	0.3854 1/	80E-04	12.3409	1.054	+0.12	0.3859 6e-5 (F)	40.41	21.88	1.056	15-40	-0.11	0.3556 6.412-05	35.85	20.28 7.355-03	1.05
		southaning the CP I								3 8	No ft	Colores 1		14.46.19	0.014	-D. DT	0.3046 Ge-5 (F)	25.37	20.17	0.566		-0.00	0.3053 Re-5 (F)	32.42	18.27 9.098-03	0.85
										0 10	0.02	0.3540 13	522-04	12.68-43	0.845	-0.07	0.3002 6e-5 (F)	42.11	21.33	0.942		-0.08	0.3000 4.09E-05	35.64	20.62 1.11E-02	0.94
20-Dec-04	0412201425.tht	FIVE DPU Type Hot #6	10		58.2	16	0.50/0.50 0.38/0.38	150	12/6/2004	2 9	0.05	0.3968 1.	752-04	12.3155	0.970	-0.04	0.3891 6e-5 (F)	34.37	18.95	1.031	820	-0.05	D.3804 6.42E-06	31.90	18.35 1.162-02	1.02
										3 8	0.05	0.3543 1.	01E-04	12.5775	0.780	-0.04	0.3651 6e-5 (*)	35.17	19.74	0.567		-0.04	0.3053 (e-5 (*)	33.16	15.17 8.872-03	0.57
		PM11DPU Type Gold								1 10	-0.11	0.3857 1.	432-04	12.8987	0.799	-0.14	0.3856 Be-5 (F)	41.90	21.61	0.875		-0.14	0.3804 5.29E-05 0.3852 7.69E-05	35.59	20.01 9.395-03	0.55
20-Dec-04	0412201425.tht		17		-15.9	24.7	0.38/0.50 0.38/0.38	150	12/6/2004	2 10	+0.02	D.3868 1.	392-04	12.3242	0.904	+0.15	0.3025 69-5 (*)	35.30	19.70	0.964	1710	-0.15	0.3022 de-5 (*)	31.90	18.02 9.505-03	0.92
-										3 8	-0.11	0.3855 1.	242-04	12.7574	0.751	-0.12	0.3048 Se-5 (F) 0.3001 Se-5 (F)	42.85	20.30	0.843		-0.13	0.3051 5.192-05	33.00	16.43 1.15E-02 21.02 1.09E-02	0.84
21.0- D	0417130000.00	FILM POPUL Trans blad att			00.0		0.50 (0.50 0.35 (0.50	400	13220004	1 9	D.07	0.3850 1.	79E-04	12.3234	0.830	-0.05	0.3840 6e-5 (F)	41.00	21.94	0.912	1010	-0.07	0.3841 0.042-05	37.85	20.33 1.185-02	0.90
11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	Stras Resoluting	1111 BOR 1 1100 1101 80	14.2				5 25 1 1 1 2 1 1 2 1 1 2 1 2 1 2 1 2 1 2	1984	141004-054	2 8	0.02	0.3912 1/	822-04	12,4604	0.783	-0.08	0.3800 6e-5 (F)	35.07	19.20	0.878	Turu	-0.04	0.3804 5.248-05	31.88	18.25 1.425-02	0.867
-		72122012402120124								0 8	-0.12	0.3851 1.	202-04	12.5650	0.793	-0.02	0.3850 5e-5 (*)	41.45	22.17	0.877		-0.02	0.3606 4.225-05	38.24	20.51 1.202-02	0.85
21-Dec-04	0412210000.the	PM1 IDPU Type Gold	18.7		-7.5	23.1	0.38/0.50 0.38/0.38	150	12/62004	1 9	-0.07	0.3847 1.	402-04	12.3737	D.785	-0.13	0.3656 69-5 (*)	30.83	21.35	0.883	1550	-0.13	0.3859 5.222-05	37.52	20.04 1.01E-02	0.567
										3 8	-0.08	0.3863 1/ 0.3857 1/	202-04	12.7581	0.755	-0.15	0.3052 6e-5 (F)	35.62	20.41	0.850		-0,12	0.3046 66-5 (7)	32.48	18.16 1.225-02	0.85
Constant of	Second States and		2000		¥8347	0.000	CONTRACTOR CONTRACTOR	2.5		0 9	D.02	D.3840 1.	538-04	12.6792	0.853	-0.05	0.3806 6e-5 (*)	41.17	21.35	0.950	Sector March	-0.06	0.3500 5.802-05	38.28	19.92 1.41E-02	0.95
24-Jan-05	0501240258.the	FIVE DPU Type #2 Hot	15.7		61.1	12.6	0.50/0.50 0.35/0.38	20	12/6/20104	1 8	0.00	0.3858 1.	795-04	12 3359	0.828	-0.05	0.3843 Se-5 (F) 0.3896 Se-5 (F)	40.02	20.25	0.887 0.875	1230	-0.07	0.3836 7.10E-05	27.11	19.06 1.60E-02 17.02 7.23*-03	0.887
	security water of the		100		200404	201511	and the second	122	100000000	3 8	0.07	0.3830 14	87E-04	12.54-42	0.792	-0.04	0.3050 6e-5 (*)	34.02	18.68	0.861		-0.04	0.3050 6e-5 (*)	32.31	17.33 8.452-03	0.88
		FMI IDEUTING 42								0 9	-0.11	0.3555 1.	475-04	12.5598	0.836	-0.15	0.5850 Be-5 (F) 0.3855 Be-5 (F)	39.65	21,75	0.905		-0.15	0.3500 5.776-05	37.53	19.52 7.796-03	0.90
24-Jan-05	0501240956.fm	Cold #1	12.6		-14.2	24	0.50/0.50 0.38/0.38	150	12/6/20 04	2 6	-0.08	0.3951 1/	438-04	12.2268	D.776	-0.12	0.3017 60-5 (*)	33.21	17.70	0.861	1390	-0.13	0.3018 6.242-05	30.95	16.50 8.725-03	0.85

FM1 STE-U Trending Data, Continued

0									. 3	8 -0.1	10 0	3855 1.252-04	12.7604	0.709	-0.14	0.3947 Ge-5 (F)	33.85	18.50	0.845		-0.13	0.3044 Se-5 (F)	32.08	17.17 1.158-02	0.565
	12	option were street						2	a	9 D.	02 0	0.3535 1.502-04	12.6439	0.852	-0.05	0.3807 6e-5 (P)	39.63	20.41	0.965	8	-0.07	0.3001 4.902-05	37.59	19.87 1.138-02	0.955
The last off	DEGI DEGI DE MAN	FIVE DPU Type #2 Hot		50.0	1.00.2	0.38 (0.02, 0.38 (0.38	1000	40000000	1	9 D/	0.3 0	3804 1.742-04	12.3267	0.850	-0.07	0.3837 Ge-5 (F)	39.61	21.37	0.803	1000	-0.68	0.3839 5.802-05	35.72	19.05 1.408-02	0.899
20-381-05	05012500000191	#2	101	60.0	10.1	0.2010/02 0.2010/20	1.90	1202004	2	8 0.	05 0	3945 1.70E-04	12.5445	0.818	-0.05	0.3888 Se-5 (F)	33.47	18.85	0.850	1.500	-0.04	0.5883 7.022-05	30.98	17.11 9.242-03	0.867
									3	8 D.	05 0	3538 1.682-04	12 5408	D.799	-0.08	0.3051 Se-5 (F)	34.78	19.02	0.913	2	-0.03	0.3050 6e-5 (*)	32.39	17.38 1.238-02	0.900
Q									a	10 -0.1	11 0	0.3853 1.09E-04	13,7576	1.004	-D.D4	0.3878 Se-5 (P)	38.61	21.33	1.115	6	-0.00	0.3878 6.212-05	30.13	10.41 1.346-02	1.083
		FIVE IDPUTING #2		12220	1000		- 12	Sec. 1	.1	10 -0.0	07 0	3546 1376-04	13.0487	D.956	-0.05	0.3851 6e-5 (F)	37.99	20.53	1.035	1.1.1.	-0.05	0.3846 0.79E-05	35.59	19.07 1.38E-02	1.025
52-JB1-05	0501250000.HH	Cold #2	10.0	-0.0	2.5	0.2810.50 0.2810.28	20	12/0/20104	2	9 -0.	08 0	3848 1.385-04	12.65.05	0.795	-0.10	0.3013 Ge-5 (F)	32.54	18.14	0.899	+080	-D.1D	0.3015 0.578-05	30.74	18.95 1.248-02	0.882
2. 10 A. 10 A. 10		S 1936 V.05	10.02	25.54	24242			- CONTRACTOR	3	9 -0.0	08 0	3551 1.202-04	13.50-46	0.828	-0.00	0.3942 Be-5 (F)	33.44	18.52	0.957	or and a second	-0.68	0.3059 6.562-05	31.22	17.25 1.225-02	0.932
	5								a	10 D/	aa a	3838 1.446-04	13.5307	D.998	D. 05	0.3887 Se-5 (P)	30.07	21.45	1.075	5	0.04	0.3554 -0.946-05	35.05	19.01 7.17E-03	1.073
25. Jan (15.	05013000000	FIVE EPU Tyse #2Hot	10.02	70.8	11.6	0.38 (0.02, 0.38 (0.38	20	120220104	1	10 0.	64 6	3828 1.658-04	12.8897	0.955	-D, D8-	0.3836 6e-5 (P)	30.06	21.15	1.025	2030	0.01	D.3824 7.82E-05	35.47	19.00 1.138-02	1.021
and a state	0.001200000000	#3	10.2	1000	10.0	0.001002 0.0010.00		1202004	2	8 D.	05 0	3520 1.70E-04	12.5465	0.816	-0.02	0.3687 Ge-5 (F)	33.80	18.15	0.595		-0.01	0.3882 7.642-05	30.87	17.00 8.21E-03	0.589
									3	8 0.	04 0	3841 1.53E-04	13.3129	0.835	D. D4	0.3036 Se-5 (F)	33.35	19.12	0.933		0.03	0.3056 8.402-05	31.20	17.40 1.08E-02	0.039
ś.		FMI IDPUTIVIC #2						22	0	10 -0.1	11 1	3851 1.11E-04	13.7675	0.985	-0.07	0.3896 6e-5 (?)	30.10	21.25	1.054		-0.05	0.3875 7.395-05	35.92	19.42 1.302-02	1.057
				40.4				A REPORT OF	4	10 -0.	07 0	3346 1385-04	13,0538	0.950	-0.13	0.3884 Ge-5 (P)	38.33	19.45	0.907		-0.07	0.2544 de-5 (*)	35.58	15.01 4.435-03	1,008
co-mit-os	0501200000014	Cold #3	10	-10.4	41.0	0.5070.50 0.3870.38	20	1202004	2	a -0.	05 0	3547 1385-04	12.65-42	D.800	-0.00	0.3006 Ge-5 (F)	32.88	18.71	0.563	070	-D.1D	0.3015 0.842-05	30.58	17.00 1.338-02	0.580
								· · · · · · · · · · · · · · · · · · ·	3	9 -0.1	10 0	3357 1.165-04	13.5374	0.829	-0.07	0.3020 Ge-5 (P)	33.68	18.91	0.925		-0.00	0.3042 Ge-5 F)	31.27	17.36 1.35E-02	0.920
	2	20.0000000 - 20226							a	9 D.	04 0	3532 1.002-04	12.6459	0.661	-0.04	0.3806 Ge-5 (F)	40.66	21.34	0.941		-0.05	0.3505 5.532-05	37.99	19.80 1.342-02	0.042
The law off	NAME AND ADDRESS OF TAXABLE	FWI DPU Type #2Hot	1000		1000		100	100000000	1	8 D.	07 0	3358 1.825-04	12.3318	0.817	-0.05	0.3836 6e-5 (F)	40.05	21.35	0.875		-0.05	0.3836 0.392-05	37.11	19.15 1.15E-02	0.582
10-181-05	05012000000H	64	13.0	11.4	13.0	0.5070.50 0.5570.50	199	1202004	2	8 D.	08 0	3805 1822-04	12.3084	D.785	-D. DB	0.3880 Ge-5 (P)	33.43	17.74	0.549	31160	-0:04	D.3886 0.09E-05	31.52	17.20 1.08E-02	0.565
									3	8 D.	07 0	3532 1.70E-04	12.5327	D.783	-0.02	0.3951 6e-5 (F)	34.79	18.57	0.585		-0.02	0.3047 0.785-05	32.35	17.30 1.168-02	0.882
									0	9 -D.1	14 1	3858 1.152-04	12.90-90	0.831	-0.95	0.3666 6e-5 (F)	39.87	20.20	0.806	5	-0.95	0.3502 4.735-05	37.24	19.22 9.442-03	0.893
		FIVE ICIPUTIVE #2		1000				1.	1	10 -0.	0.0	3847 1.425-04	12,3799	0.828	-0.14	0.3855 Se-5 (F)	39.28	20.07	0.877	200	-0.15	0.3801 4.10E-05	35.40	18.67 8.31E-03	0.586
31-381-05	0501310000.tht	Cold #4	19.6	-22.5	25.2	0.5070.50 0.3870.38	150	12/6/2004	2	9 -0.	11 0	3862 1395-04	12.3245	0.776	-0.10	0.3000 Se-5 (F)	32.05	16.25	0.851	1720	-0.14	0.3020 0.295-05	30.79	16.83 9.435-03	0.859
									3	-0.	12 0	3850 1.222-04	12,7651	0.757	-0.14	0.3945 Be-5 (F)	34.48	18.95	0.85.5		-0.14	0.3046 Ge-5 (F1)	31.67	10.64 1.146-02	0.855
									a	10 -0.1	13 0	3848 1.07E-04	13.9535	1.075	-0.04	0.3995 Ge-5 (F)	36.12	19.85	1.079	C	-0.04	0.3500 7.352-05	34.70	15.50 1.248-02	1.075
108-20-292-0					124036			Americano	1	11 -0/	07 0	3841 1.435-04	13 2908	1.122	-0.07	0.3849 Se-5 (F)	36.14	19.32	1.041		-0.05	0.3843 7.482-05	34.00	15.25 1.276-02	1,034
14-Peb-05	0502150000.ths	PMI IDPU past-vib	22.2	31.5	18.5	0.38/0.50 0.38/0.38	20	12/6/20 04	2	-0.0	0.9 0	.3830 1.50E-04	12.9068	0.905	-0.08	0.3913 Ge-5 (F)	32.48	17.45	0.900	15:20	-0.05	0.3809 7.276-05	30.00	16.20 5.57E-03	0.894
										0 .0	05 1	3845 1 325-04	13 74 77	0.012	-0.05	0.3044 /04.5 (P)	32 59	1707	0.917		-0.03	0.8945 0112-05	30.18	10.00 1.045-02	0.947
									-		-	Contraction - Lobble '07	100100	and the		20010			2.211			100 million - 401 Bar 100	100.15	1000	

Sample Trend Plot

FM1 STE-U Trouble-Free Operating Hours

- Since the last change (PFR1011, STE-U door failure)
 - Pre, Post-Vib CPT 5.3 Hours • • Thermal Vac #3 22.0 Hours 109.5 Hours Boom, Suite I&T • EMC 273.0 Hours • • IDPU Thermal Vac #1 215.0 Hours • IDPU Thermal Vac #2 135.6 Hours IDPU Post-vib CPT 2.4 Hours Boom Suite I&T 177.4 Hours •
 - Total: 940.2 Hours

Quality Assurance

- IMPACT Suite QA Issues worked through Ron Jackson at UCB
 - UCB Independent Inspections by Jeremiah Tolbert,
 - Supported by GSFC QA
 - Signs off on work orders, inspections, parts & materials lists, etc.
- Parts Lists
 - All STE-U Parts Lists approved
 - Parts qualification, screening (including radiation) completed
- UCB Materials Lists Approved
- STE-U FM1 PFRs Closed
 - PFRs can be found at: <u>http://sprg.ssl.berkeley.edu/impact/dwc/Problems/</u>
- STE-U-related Waivers Closed
 - Except FM1 Suite EMC Test Results waiver
 - Waivers can be found at: http://sprg.ssl.berkeley.edu/impact/dwc/Waivers/
- Acceptance Data Package Prepared and reviewed

FM1 STE-U Outstanding Issues

- IMPACT FM1 EMC Waiver not signed off
 - Official waiver should be into approval cycle shortly

IMPACT FM1 MAG Sensor

FM1 MAG Test History

- 4/28/04 FM1 MAG Sensor and electronics delivered to UCB
 - Calibrated at GSFC using IDPU simulator GSE
 - FM1 MAG Electronics integrated into FM1 IDPU, goes through qualification testing with IDPU (see FM1 IDPU PSR)
 - FM1 MAG Sensor integrated with FM1 Boom, goes through qualification testing with Boom (see Boom part of this PSR)

MAG Test Matrix

				Ve	erific	atior	n Ma	ıtrix	for S	STEF	REO)/IMF	PAC	T/M/	٩G				Revision Date: 2005-3-27
																			Revision Number: 3
	Hardware Description									Tes	t								
Level of Assembly	Item	Elect. test, rm. Temp	Bench Calibration	Elect. Test, ho	Elect. Test, colo	Vibration, Sinusoidal	Vibration, Random	Shock	Acoustics	Thermal Vacuum	Voltage margins	Thermal cycle	Thermal balance	>100 hours Operation	EMC/EMI	Magnetics	Bakeout	Contamination	Comments
С	Sensor, EM	С	С																
С	Sensor, F	С	С	С	С	С	С	С		С		С	С	С	С		С	С	Sensor thermal balance by heritage
С	Electronics, EM	С	С	С	С									С					
С	Electronics,F	С	С	С	С	С	С			С	С	С		С	С		С	С	
Legen	d:																		
	Level of Assembly	Uni	it Ty	be						X =	Tes	st re	quire	d					
										A =	Ana	alysi	s						
	C = Component BB Breadboard H = Test at higher level of assemb											bly							
	I = Instrument EM Engineering Model (Boom for sensor, IDPU for												elec	tronics)					
		PT	Pro	toty	ре					C =	: Te	st C	omp	olete	d				
		PF	Pro	toflig	ght														
		F =	Flig	ht															

Full IMPACT Verification Matrix at:

http://sprg.ssl.berkeley.edu/impact/dwc/Verification/IMPACTVerificationMatrix_2005-3-25.pdf

MAG Problem / Failures / Waivers

- No MAG specific PFRs or Waivers
 - Pending FM1 Suite EMC waiver includes some MAG issues.

Qualification Tests

- FM1 MAG Electronics tested with FM1 IDPU
 - See FM1 IDPU PSR package
- FM1 MAG Sensor tested with FM1 Boom
 - See Boom section of this PSR
- Trouble-Free Operating Hours (prior to delivery to APL)
 - Same as FM1 IDPU, 350 Hours
 - longer if you add hours accumulated prior to latest IDPU fix, which did not effect MAG sensor or electronics; ~1000 hours.

FM1 MAG Performance

- FM1 MAG meets Performance Requirements as certified by MAG team prior to delivery
- FM1 MAG performance parameters tended through IDPU and Boom Qualification Tests – see next chart
 - No significant trends

FM1 MAG Trending

											IFC X			IFC Y			IFC Z	
			MAG	IDPU	Heater				IFC Fit	Sample			Sample			Sample		
Date	File	Test	Temp	Temp	On HKP	RMSx	RMSy	RMSz	Rev	Time	Amplitude	Rate	Time	Amplitude	Rate	Time	Amplitude	Rate
June 26 2004	0406261204.tlm	Pre-boom-vibration	26.4	29.5	7.2	6.0	3.0	10.0	7/9/2004	-23.9	8910	9.8	-23.5	8792	9.6	-21.2	9283	8.8
June 29 2004	0406291004.tlm	Post-boom-vibration	26.4	27	7.1	5.0	4.0	10.0	7/9/2004	-22.4	8940	9.1	-22.3	8796	9.2	-22.6	9279	9.4
July 6 2004	0407060000.tlm	Boom Tvac Hot #1	38.9	Ambient	6.97	1.5	1.0	1.0	7/9/2004	-22.0	8788	9.2	-21.9	8910	9.4	-21.1	9326	9.3
July 6 2004	0407061406.tlm	Boom Tyac Cold #1	-25.3	Ambient	44.6	1.9	1.2	1.0	7/9/2004	-22.0	8806	9.0	-22.0	8897	9.3	-21.8	9320	9.4
July 7 2004	0407070000.tlm	Boom Tvac Hot #2	38.1	Ambient	7	2.9	1.3	1.2	7/9/2004	-22.4	8787	9.2	-21.9	8911	9.3	-21.2	9325	9.2
July 7 2004	0407070000.tlm	Boom Tyac Cold #2	-27.7	Ambient	44.6	1.3	1.1	0.9	7/9/2004	-22.5	8804	9.1	-22.2	8899	9.3	-21.8	9321	9.3
July 8 2004	0407080000.tlm	Boom Tvac Hot #3	38.2	Ambient	7	2.2	1.1	1.0	7/9/2004	-21.1	8787	8.6	-21.9	8910	9.3	-22.0	9325	9.6
July 8 2004	0407080000.tlm	Boom Tvac Cold #3	-27.8	Ambient	44.3	1.1	0.7	0.9	7/9/2004	-22.5	8807	9.3	-22.0	8897	9.4	-21.8	9321	9.5
July 9 2004	0407090000.tlm	Boom Tyac Hot #4	38	Ambient	7	1.4	1.0	1.1	7/14/2004	-22.1	8789	9.1	-22.3	8911	9.5	-21.5	9326	9.3
July 9 2004	0407091512.tlm	Boom Tvac Cold #4	-20.4	Ambient	44.6	1.5	1.0	1.4	7/14/2004	-22.4	8807	9.1	-22.2	8896	9.2	-21.1	9323	8.9
July 12 2004	0407120000.tlm	Boom Tvac Hot #5	38.9	Ambient	7	1.8	1.0	1.1	7/14/2004	-22.0	8788	9.1	-21.7	8910	9.2	-21.7	9327	9.4
July 12 2004	0407121236.tlm	Boom Tyac Cold #5	-28	Ambient	44.6	1.7	1.0	1.0	7/14/2004	-22.3	8805	9.0	-22.4	8902	9.4	-21.9	9322	9.4
July 13 2004	0407130000.tlm	Boom Tvac Hot #6	38	Ambient	7	2.0	1.2	1.0	7/14/2004	-22.4	8788	9.3	-22.3	8911	9.5	-21.5	9328	9.4
July 13 2004	0407130000.tlm	Boom Tvac Cold #6	-29.6	Ambient	44.6	1.6	1.0	1.2	7/14/2004	-22.7	8804	9.2	-22.1	8896	9.2	-21.8	9319	9.3
July 14 2004	0407140000.tlm	Boom Tvac Hot #7	37.8	Ambient	7	4.0	2.0	1.2	7/14/2004	-22.3	8787	9.2	-22.1	8911	9.4	-20.4	9322	8.8
July 15 2004	0407150000.tlm	Boom Tyac Cold #7	-29	Ambient	44.6	1.3	1.2	1.1	7/14/2004	-22.5	8811	9.2	-22.1	8898	9.3	-21.9	9321	9.5
Oct 1 2004	0410011640.tlm	Boom I&T, less SWEA	22.6	Ambient	10.4	1.7	2.2	1.5	10/15/2004	-22.3	8903	9.1	-22.1	8799	9.1	-23.2	9271	9.9
Oct 16 2004	0410160000.tlm	Suite I&T, pre EMC	23.7	Ambient	10.3	5.6	1.6	37.5	10/15/2004	-22.4	8842	9.1	-22.0	8813	9.0	-21.8	9244	8.7
Nov 3 2004	0411031353 flm	Post EMC @ UCB	24	Ambient	10.3	6.0	4.0	9.0	10/15/2004	-22.3	8905	9.0	-21.5	8799	8.8	-224	9283	94
Nov 17 2004	0411171046 flm	Pre IDPU Vib	22.8	Ambient	10.4	84	34	12.8	10/15/2004	-22.2	8905	8.3	-22.0	8799	9.0	-22.0	9283	9.3
Nov 18 2004	0411181804 tim	Post IDPU Vib	22.6	Ambient	10.4	8.0	30	7.0	12/6/2004	-22.4	8908	9.0	-21.9	8801	9.0	-22.2	9281	9.4
Nov 22 2004	0411221349.tlm	IDPU Tyac Hot 2	22.5	54.9	12.2	11.0	9.0	9.0	12/6/2004	-12.1	8892	4.9	-21.8	8778	9.3	-21.5	9372	9.5
Nov 22 2004	0411221349 tim	IDPU Tyac Cold 2	20.8	-33.3	7.7	16.0	10.0	9.0	12/6/2004	-24.6	8922	11.2	-14.2	8778	6.1	-20.7	9361	9.6
Nov 29 2004	0411290000.tlm	IDPU Tyac Hot 3	18.7	64.2	19.5	15.0	9.0	9.0	12/6/2004	-21.9	8892	9.3	-26.6	8789	11.3	-25.2	9370	10.9
Nov 29 2004	0411290000.tlm	IDPU Tyac Cold 3	20.5	-27.9	8.3	11.0	11.0	8.0	12/6/2004	-20.9	8875	10.1	-22.8	8776	10.1	-22.8	9355	10.1
Nov 30 2004	0411300000 flm	IDPU Tyac Hot 4	18.5	64.7	14	16.0	11.0	8.0	12/6/2004	-21.9	8883	9.5	-20.8	8801	8.5	-21.2	9387	9.0
Nov 30 2004	0411300000 flm	IDPU Tyac Cold 4	19.8	-20.7	8.1	13.0	10.0	8.0	12/6/2004	-20.4	8894	9.2	-23.5	8783	10.8	-26.2	9365	12.5
Dec 1 2004	0412010000 tim	IDPU Tyac Hot 5	19	65	13.6	12.0	80	10.0	12/6/2004	-22.4	8884	9.7	-22.0	8783	9.1	-23.1	9374	9.9
Dec 1 2004	0412010000 tlm	IDPU Tyac Cold 5	19.7	-13	8.6	16.0	10.0	8.0	12/6/2004	-20.2	8883	9.1	-21.8	8784	10.0	-23.8	9360	11.0
Dec 17 2004	0412171330.tlm	IDPU post-vib	20.2	24	10.9	1.3	1.3	1.3	12/6/2004	-20.4	8884	8.7	-22.1	8769	9.7	-22.1	9353	9.9
Dec 20 2004	0412201426 flm	IDPU Tyac Hot 6	17.2	58.2	13.6	23	22	1.9	12/6/2004	-22.0	8891	93	-21.6	8772	9.2	-21.6	9357	9.5
Dec 20 2004	0412201426.tlm	IDPU Tyac Cold 6	17.4	-15.9	8.6	1.4	1.0	1.0	12/6/2004	-21.4	8878	9.6	-22.6	8769	10.3	-22.9	9347	10.7
Dec 21 2004	0412210000 tim	IDPU Tyac Hot 7	17.2	69.6	11.5	14	1.5	1.0	12/6/2004	-21.7	8892	9.1	-21.7	8774	9.1	-21.7	9359	9.4
Dec 21 2004	0412210000 flm	IDPU Tyac Cold 7	194	-7.5	9.1	1.3	22	14	12/6/2004	-22.9	8881	10.4	-21.7	8768	9.8	-21.5	9349	9.9
Jan 24 2005	0501240956 tim	IDPU Tyac2 Hot 1	173	61.1	11.1	15	1.4	1.0	12/6/2004	-21.1	8884	8.8	-21.7	8770	9.2	-22.0	9360	9.5
Jan 24 2005	0501240956 flm	IDPU Type2 Cold 1	19.5	-14.2	8.6	1.6	4.0	21	12/6/2004	-23 1	8874	10.5	-21.4	8762	9.6	-22.1	9348	10.3
Jan 25 2005	0501250000 flm	IDPU Tyac2 Hot 2	20.7	69.9	14.2	14	16	1.0	12/6/2004	-21.8	8883	9.2	-21.7	8769	9.1	-21.7	9360	9.4
Jan 25 2005	0501250000 tim	IDPU Type2 Cold 2	20.2	-6.6	9.5	1.8	3.4	13	12/6/2004	-21.9	8875	9.9	-21.3	8765	9.6	-22.0	9349	10.2
Jan 26 2005	0501260000 flm	IDPU Tyac2 Hot 3	20	70.8	14.3	1.5	3.1	1.2	12/6/2004	-22.1	8885	9.3	-21.9	8766	9.1	-22.1	9359	9.6
Jan 26 2005	0501260000 tim	IDPU Tyac2 Cold 3	19.5	-10.4	93	15	30	12	12/6/2004	-22.8	8876	10.3	-21.9	8747	9.9	-22.2	9348	10.3
Jan 29 2005	0501290000 tim	IDPU Tyac2 Hot 4	17.6	716	15	15	17	20	12/6/2004	-22.0	8885	9.3	-19.6	8767	8.1	-21.7	9360	9.3
Jan 31 2005	0501310000 tim	IDPU Tyac2 Cold 4	19.5	-22.5	8.4	2.1	1.6	1.4	12/6/2004	-21.6	8869	9.7	-22 4	8760	10.2	-23.1	9348	10.8
Eeb 14 2005	0502150000 tim	IDPU Post-vib	22.9	31.5	10.6	6.8	25	64	12/6/2004	-22 5	8970	9.3	-22.0	8780	9.5	-22.2	9286	9.3
1 60 14 2000	000210000.000	IDT OT OBCID	22.0	01.0	10.0	0.0	2.0	0.4	12/012004	-22.0	0010	0.0	6.33	0100	0.0	-22.2	9700	0.0

MAG FM1 Performance Trend

Curtis

MAG Open Issues

- MAG currently has ETU thermal blankets installed
 - Flight blankets in fabrication
 - Must remove MAG sensor from boom to install blankets

IMPACT FM1 BOOM

FM1 Boom Test History

- 09 Jan 2004 Assembly Begins.
- 14 Jun 2004 Assembly Completed.
- June 2004 Magnetometer and STE-U Installed.
- 28 Jun 2004 Vibration Test. Completed. Loose Pin found (PFR-1010)
- 30 Jun 2004 STE-U Uninstalled.
- 1-16 Jul 2004 Thermal Vacuum Test. Completed.
- 16 Jul 2004 Bakeout Qualification. Completed.
- Oct 2004 STE-U Installed.
- 18 Oct 2004 1 Nov 2004
- EMC test with the full IMPACT Suite. Completed.
- EMC test exceedances have been accepted by the EMC committee; the official waiver is in process.
- 03 Mar 2005 SWEA Harness Failure (PFR-1038).
- 17 Mar 2005 SWEA Final Integration. Boom Complete.

	Verification Matrix for STEREO/IMPACT/Boom Revision Date: 1/6/2004																			
	Verification Matrix for STEREO/IMPACT/Boom															Rev	ision Date: 1/6/2004			
																				Revision Number: 5
	Hardware Description			1		-	-			Te	est	-	-						-	
Level of Assembly	ltem	Deploy Test, Room Temperature	Deploy Test, Thermal Vac	Stiffness, Proof Load	Vibration, Sinusoidal	Vibration, Random	Self Shock	Acoustics	Alignment	Force Margin Deployment	Thermal Vacuum	Thermal Cycle	Thermal Balance	End-to-End Conductance Test	EMC/EMI	Magnetics	Bakeout	Deployment Contamination	Contamination Inspection	Comments
С	Proto	Ρ		Ρ																
С	EM	Ρ		Ρ														Ρ		Qual levels
С	PF/FS	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ		Ρ	Ρ	Ρ	Ρ	Ρ	Ρ		Ρ				Protoflight levels
С	FM1	Ρ		Ρ					Ρ			Ρ		Ρ		Ρ			Ρ	Protoflight levels
С	FM2	Ρ		Ρ					Ρ			Ρ		Ρ		Ρ			Х	Protoflight levels
S	FM1		Ρ		Ρ	Ρ	S			Ρ	Ρ	Ρ			Ρ		Ρ			Protoflight levels
S	FM2		Ρ		Ρ	Ρ	S			Ρ	Ρ	Ρ					Ρ			Protoflight levels
Leg	gend:																			
	Level of Assembly	Uni	t Ty	pe								Sta	tus							
	C = Component	PT	=	Pro	toty	ре						Х=	Tes	t rea	quire	ed				
	S1 = with MAG, STE-U	PF/	/FS	Pro	tofli	ght /	Flig	ght S	Spar	е		A =	Ana	alysi	s					
	S = with all instruments	FM	1 =	Flig	ht u	nit #	ŧ1					P =	Pe	rfor	mea	k				
		FM	2 =	= Flight unit #			ŧ2													
									7	1										

Boom Verification Matrix

Boom FM1 Problem/Failures

- PFR1010, FM1 Vibration Loose Pin
 - Locating Pin found in the bagging between vibration runs
 - Replaced Magnetometer Tray Locating Pin
 - Staked FM 1 and 2 pins
 - This PFR has been signed-off and closed
- PFR1028, FM1 SWEA Harness Fault
 - SWEA clocking intermitent following installation
 - Harness checked and fault localized
 - Harness opened and checked, wires fell apart at solder joint
 - New soldering procedure used to rejoin AWG 36 Coax to lead wire
 - This PFR has been signed-off and closed

FM1 Boom Related Waivers

- 460-42, Combined Signal and Power Harness
 - Closed 2002
- 463-116, Cork Brake Pad Contamination Waiver
 - Closed 03 FEB 2004
 - Complete Material List approved

FM1 Boom Test Procedures

- Test Plans/Procedures can be found at:
 - <u>http://sprg.ssl.berkeley.edu/impact/dwc/TestProcs/</u>
 - EMC: <u>http://sprg.ssl.berkeley.edu/impact/dwc/TestProcs/IMPACT-EMC_C.pdf</u>
 - CPT: <u>http://sprg.ssl.berkeley.edu/impact/dwc/TestProcs/IMPACT-IDPU-CPT_H.pdf</u>
 - Vibration: <u>http://sprg.ssl.berkeley.edu/impact/dwc/TestProcs/IMP-562-DOC-</u> <u>A%20Vibration%20Test%20Procedure.pdf</u>
 - Tvac: <u>http://sprg.ssl.berkeley.edu/impact/dwc/TestProcs/IMP-563-DOC-</u> <u>A%20Thermal%20Vac%20Cycliing%20Test%20Plan.pdf</u>
 - <u>TBal:</u>

http://sprg.ssl.berkeley.edu/impact/dwc/TestProcs/BOOMTBTESTPLANFINAL. pdf

FM1 Boom Test Reports

- Test Reports can be found at:
 - <u>http://sprg.ssl.berkeley.edu/impact/dwc/TestReports/</u>
 - EMC: <u>http://sprg.ssl.berkeley.edu/impact/dwc/TestReports/02-15-05%20UCBerkeley%20Stereo%20Impact%20Prep%20TR.pdf</u>
 - Tvac: <u>http://sprg.ssl.berkeley.edu/impact/dwc/TestReports/IMP-579-DOC-RB%20STEREO%20Boom%20FM1%20Thermal%20Cycling%20Report.pdf</u>
 - Tbal: <u>http://sprg.ssl.berkeley.edu/impact/dwc/TestReports/BOOMThermalTestandAn</u> <u>alysisReport.pdf</u>
 - Magnetics: <u>http://sprg.ssl.berkeley.edu/impact/dwc/TestReports/IMPACT-BOOM-Magnetics-Report.pdf</u>
 - Vibration: <u>http://sprg.ssl.berkeley.edu/impact/dwc/TestReports/IMP-578-DOC%20STEREO%20Boom%20FM1%20Vibration%20Report%20RA.pdf</u>
 - Alignement: <u>http://sprg.ssl.berkeley.edu/impact/dwc/TestReports/IMP-592-</u> DOC-R-%20STEREO%20Boom%20FM%20Alignment%20Test%20Report.pdf
 - Stiffness: <u>http://sprg.ssl.berkeley.edu/impact/dwc/TestReports/IMP-614-DOC-</u> <u>R-%20STEREO%20Boom%20FM%20Stiffness%20Test%20Report.pdf</u>
 - Mass Properties: <u>http://sprg.ssl.berkeley.edu/impact/dwc/TestReports/IMP-617-DOC%20STEREO%20Boom%20FM1%20Mass%20Properties%20R-1.pdf</u>

FM1 Boom Mass Properties Testing

- Mass: 14.04 kg
- CG: X, Y, Z =
 -462 mm, -135 mm, -102 mm
- MOI:
 - Ixx = 0.130 kg m²
 - lyy = 4.668 kg m^2
 - Izz = 4.852 kg m^2

FM1 Boom Magnetic Testing

- Part level magnetic survey was conducted for the Boom. The two "hot" items are:
 - Flyweight Brake Mechanism: ~100 nT @ 5" (1.2 m from Magnetometer when stowed, 4.4 m from Magnetometer when deployed resulting in 0.003 nT field at Magnetometer)
 - Preload Spring: ~100 nT @ 5" (1.1 m from Magnetometer when stowed, 4.3 m from Magnetometer when deployed resulting in 0.003 nT field at Magnetometer)

Boom Functional Test

- Boom functional testing
 - Deployments were performed to ensure proper functionality
 - Full deployment is defined as:
 - actuation via powering the SMAR (Shape Memory Alloy Release) pin puller,
 - Stacer initiation via Deployment Assist Device (DAD),
 - full deployment via Stacer,
 - extension of all Tubes
 - and locking of all Lock Pins
 - A total of four (4) full deployments will be made to verify the functionality of the Boom
 - One deployment remains TBC at Spacecraft EMC

FM1 Boom Deployment Test History

Imber	Date	Time	Deploy	Actuation	Mass Dummies	Test Purpose	Time	Comments:
T1	26-May-04	12:55 PM	FULL	Actuated	Yes	Tuning - Cable length, harness braid	7.53 s	Force Margin met, Alignment met, Stiffness File: ImpBoomFM1Deploy1_XYPlane, XZPlane
1	10-Jun-04	2:15 PM	FULL	Actuated	Yes	Functionality Test	6.85 s	Harness installed, Force Margin me Alignment met, Stiffness File: ImpBoomFM1 Deploy2_XYPlane, XZPlane
2	14-Jul-04	10:05 AM	FULL	Actuated	SWEA MD	Thermal Vacuum Hot, Post- vibration	5.56 s	FM1 Mag installed, Force Margin m Alignment met, Stiffness File: ImpBoomFM1 DeployTVHot_XZPlan XYPlane (1&2)
3	16-Jul-04	8:00 PM	FULL	Actuated	SWEA MD	Thermal Vacuum Cold	5.64 s	FM1 Mag installed, Force Margin m Alignment met, Stiffness File: ImpBoomFM1 DeployTVCold_XZPlane,XYPlan (1&2)
4				Actuated	FM1 Instruments	EMC Deployment		Integrated with S/C, Blankets Install

FM1 Boom Pre Ship Review 2005 March 31

Boom Alignment Test

- Alignment
 - Alignment was verified on Flight Model Booms after each deployment using a digital inclinometer with resolution of 0.01 degree
 - Requirement: 52.5 arcmin
 - FM1 maximum: 11.8 arcmin

FM1 Boom Pre Ship Review 2005 March 31

Boom Stiffness Test

- Stiffness
 - Stiffness was verified for each Flight Model Boom.
 - Requirement: > 0.5 Hz and not coincident with another device (i.e., solar cells, SWAVES antennas)
 - Fundamental Frequency: ~1.9 Hertz

STEREO Boom FM1 Hot Deploy XZ

STEREO Boom FM1 Cold Deploy XZ

FM1 Boom Vibration Test

- Vibration
 - Boom was vibrated to levels specified in Environmental Spec (Sine Sweep, Random) at Quanta Laboratories, Santa Clara, CA
 - Vibration spectra are notched per the PF Control Envelopes (next slides, approved by T. Betenbaugh, 08 March 2004)
 - Boom was vibrated powered as in launch: survival heaters on
 - Boom was vibrate with FM1 STE-U and FM1 MAG installed
 - An instrument CPT was performed before and after vibration
 - A harness connectivity test was conducted before and after vibration
 - A full deployment was conducted to verify functionality after vibration. This deployment occured as the hot deployment of thermal vacuum cycling, thus following the "test as you fly" philosophy.
- PFR1010, found a loose pin inside bagging between axes

Boom Random Vibration Test, Notched Spectra, Example

Curtis

Boom Thermal Vacuum Test

- Test Plan:
 - Preliminary bakeout, up to 48 hours at +40C
 - Thermal vac
 - 7+ survival cycles: +40C to -33C
 - One hour soak minimum
 - Flight thermistor used as reference
 - Temperatures from verified thermal model, with at least 10C margins.
 - MAG CPT on each operational cycle
 - Deployment on seventh hot soak and seventh cold soak
 - Qualification bake-out

, AnaWin2 - [R	tamp Soak Ec	dit]												
ile System C	hannel Setup	Recipe Log	s Trend Plot	: View Help	1									
ast Recipe Downloaded Login														
2.2							Logout		<u> </u>					
Save Ready			P	rofile : STER	EO TV 3.0									
Spin	40-				1			74						
Left Bight								1						
Show Seas					<u>\</u>									
Seas Displayed														
					-V			1						
First 1				20										
First 1	-40		- I I-		<u> </u>	1	11							
First 1 Last 6	-40 ^L 00:0	, 10 01:05 0)2:10_03:1	4 04:19 0:	5:24 06:29	9 07:34 08	; 138-09:43	3 10:48						
First 1 Last 6 Segment #)0 01:05 0)2:10 03:1 3	4 04:19 0:	5:24 06:29 5	9 07:34 08	3:38 09:43 7	 3 10:48 8	T					
First 1 Last 6 Segment # Name	-40 00:0)0 01:05 0 2 r_rt>hot	12:10 03:1 3 hot soak	4 04:19 0 4 r_hot>cold	5:24 06:29 5 cold soak	9 07:34 08 6 r_cold>rt	338 09:43 7	3 10:48	L					
First 1 Last 6 Segment # Name Seg Time	-40- 00:0 1 startup 00:00	00 01:05 0 2 r_rt>hot 00:04	12:10 03:1 3 hot soak 05:00	4 04:19 0: 4 r_hot>cold 00:24	5:24 06:29 5 cold soak 05:00	07:34 08 6 r_cold>rt 00:20	1 1 3:38 09:43 7	3 10:48	F					
First 1 Last 6 Segment # Name Seg Time Total Time	-40- 00:0 1 startup 00:00 00:00	0 01:05 0 2 r_rt>hot 00:04 00:04	12:10 03:1 3 hot soak 05:00 05:04	4 04:19 0: 4 r_hot>cold 00:24 05:28	5:24 06:29 5 cold soak 05:00 10:28	3 07:34 08 6 r_cold≻rt 00:20 10:48	1 338 09:43 7	3 10:48						
First 1 Last 6 Segment # Name Seg Time Total Time Setpoint	-40- 00:0 1 startup 00:00 00:00 27	2 r_rt>hot 00:04 00:04 40	12:10 03:1 3 hot soak 05:00 05:04 40	4 04:19 0: 4 04:19 0: 7_hot>cold 00:24 05:28 -33	5:24 06:29 5 cold soak 05:00 10:28 -33	6 107:34 08 6 r_cold>rt 00:20 10:48 27	1.38 09:43 7	3 10:48						
First 1 Last 6 Segment # Name Seg Time Total Time Setpoint Tolerance	-40- 00:0 1 startup 00:00 00:00 27 0	0 01:05 0 2 r_rt>hot 00:04 00:04 40 0	2:10 03:1 3 hot soak 05:00 05:04 40 0	4 04:19 0: 4 04:19 0: 1 hot>cold 00:24 05:28 -33 0	5:24 06:29 5:24 06:29 cold soak 05:00 10:28 -33 0	6 r_cold>rt 00:20 10:48 27 0	;:38 09:43 7	3 10:48						
First 1 Last 6 Segment # Name Seg Time Total Time Setpoint Tolerance Trigger #1	-40- 00:0 1 startup 00:00 00:00 27 0 NONE	00 01:05 0 r_rt>hot 00:04 00:04 40 0 NONE	2:10 03:1 3 hot soak 05:00 05:04 40 0 NONE	4 04:19 0: 4 04:19 0: 1 hot>cold 00:24 05:28 -33 0 NONE	5:24 06:29 cold soak 05:00 10:28 -33 0 NONE	6 r_cold>rt 00:20 10:48 27 0 NONE	;38 09:43 7	3 10:48						
First 1 Last 6 Segment # Name Seg Time Total Time Setpoint Tolerance Trigger #1 Trigger #2	-40- 00:0 1 startup 00:00 00:00 27 0 NONE NONE	00 01:05 0 r_rt>hot 00:04 00:04 40 0 NONE NONE	2:10 03:1 3 hot soak 05:00 05:04 40 0 NONE NONE	4 04:19 0: 4 04:19 0: 1 4 1 hot>cold 00:24 05:28 -33 0 NONE NONE	5:24 06:29 cold soak 05:00 10:28 -33 0 NONE NONE	07:34 08 <u>6</u> <u>r_cold≻rt</u> 00:20 10:48 27 0 NONE NONE	+ + 3:38 09:43 7	3 10:48 8						
First 1 Last 6 Segment # Name Seg Time Total Time Setpoint Tolerance Trigger #1 Trigger #2 Event #1	-40- 00:0 1 startup 00:00 00:00 27 0 NONE NONE NONE	00 01:05 0 r_rt>hot 00:04 00:04 40 0 NONE NONE NONE	2:10 03:1 3 hot soak 05:00 05:04 40 0 NONE NONE NONE	4 04:19 0: 4 04:19 0: 4 04:19 0: 1 00:24 00:24 05:28 -33 0 NONE NONE NONE	5:24 06:29 cold soak 05:00 10:28 -33 0 NONE NONE NONE	07:34 08 <u>r</u> cold≻tt 00:20 10:48 27 0 NONE NONE NONE	1 1 338 09:43 7	8 10:48 8						
First 1 Last 6 Segment # Name Seg Time Total Time Setpoint Tolerance Trigger #1 Trigger #2 Event #1 Event #2	-40- 00:0 1 startup 00:00 00:00 27 0 NONE NONE NONE NONE	2 r_rt>hot 00:04 00:04 00:04 40 0 0 NONE NONE NONE NONE	2:10 03:1 3 hot soak 05:00 05:04 40 0 NONE NONE NONE NONE	4 04:19 0: 4 04:19 0: 4 04:19 0: 1 00:24 05:28 -33 0 NONE NONE NONE NONE NONE	5:24 06:29 cold soak 05:00 10:28 -33 0 NONE NONE NONE NONE	6 107:34 08 1 cold>rt 00:20 10:48 27 0 NONE NONE NONE NONE	1 1 3:38 09:43 7	8 8						
First 1 Last 6 Segment # Name Seg Time Total Time Setpoint Tolerance Trigger #1 Trigger #2 Event #1 Event #2 Event #3	-40- 00:0 1 startup 00:00 00:00 27 0 NONE NONE NONE NONE NONE	2 r_rt>hot 00:04 00:04 00:04 40 00:04 40 0 NONE NONE NONE NONE NONE	2:10 03:1 3 hot soak 05:00 05:04 40 0 NONE NONE NONE NONE NONE	4 04 19 0 4 04 19 0 1 hot>cold 00:24 05:28 -33 0 NONE NONE NONE NONE NONE NONE	5:24 06:29 5:00 05:00 10:28 -33 0 NONE NONE NONE NONE NONE NONE	3 07:34 08 6 r_cold>rt 00:20 10:48 27 0 NONE NONE NONE NONE NONE NONE	1 1 3:38 09:43 7	8 8 8						
First 1 Last 6 Segment # Name Seg Time Total Time Setpoint Tolerance Trigger #1 Trigger #2 Event #1 Event #2 Event #3 Event #4	-40- 00:0 1 startup 00:00 00:00 27 0 NONE NONE NONE NONE NONE NONE	00 01:05 0 r_rt>hot 00:04 00:04 40 0 NONE NONE NONE NONE NONE NONE NONE NONE	2:10 03:1 3 hot soak 05:00 05:04 40 0 NONE NONE NONE NONE NONE NONE	4 04:19 0 4 04:19 0 1 hot>cold 00:24 05:28 -33 0 NONE NONE NONE NONE NONE NONE NONE NONE NONE	5:24 06:29 5:24 06:29 cold soak 05:00 10:28 -33 0 NONE NONE NONE NONE NONE NONE NONE	9 07:34 08 6 r_cold>rt 00:20 10:48 27 0 NONE NONE NONE NONE NONE NONE NONE NONE	+ + 3:38 09:43 7	8 8						

Boom Thermal Vacuum Test, Actuator Current

- SMAR deploy voltage was monitored for thermal dependence
- Voltage:
 - 28V is armed
 - ~17V is firing
 - 0V is fired
- Actuation time:
 - 30ms hot
 - 60ms cold

Boom Qualification Bake-out Test

Hourly Average Rate (Hz/hr)

TQCM data taken for 8 consecutive hours with the chamber at 40C and the TQCM at -20C

Final Rate: 40 Hz/hr

Other Boom Environmental Tests

- Thermal Balance
 - Thermal balance was completed for Protoflight and was not repeated for the Flight Models (Waiver submitted)

- EMC with the suite
 - Described in SWEA section
- Acoustic Testing
 - No foils or other acoustic sensitivities
 - Built into the vibration spec (APL 9003)

FM1 Boom Test Results

- The FM1 Boom has been deployed 4 times. 3 were full deployments (all subsystems were included)
- The structure has been shown repeatedly to have a first frequency of ~1.9 Hz.
- The structure is stable in thermal cycling.
- The actuation and deployment systems function at survival temperatures.
- The structure, actuation and deployment systems function after sinusoidal and random vibration.
- Vibration levels were determined for all attached instruments.
- The Boom has been found to align the Magnetometer to within 11.8 arcmin (root of sum of squares) in the XY and XZ spacecraft planes. (The requirement is 52.5 arcmin.)
- The deployment system functions with adequate force margin.

Boom Handling

- The Flight Model Booms must be stored in a Class 10,000 cleanroom at all times.
 - The Flight Hardware shall be doublebagged with Llumalloy bagging material or equivalent whenever outside a Class 10,000 clean room following thermal vacuum bakeout.
- The Boom Stowing Procedure, IMP-449-DOC, has been designated a hazardous procedure due to physical contact with the stacer.
 - Basic precautions are required, i.e., experienced personnel must complete this operation and stowing GSE should be utilized.

Quality Assurance

- IMPACT Suite QA Issues worked through Ron Jackson at UCB
 - UCB Independent Inspections by Jeremiah Tolbert,
 - Supported by GSFC QA
 - Signs off on work orders, inspections, parts & materials lists, etc.
- Parts Lists
 - All Boom Parts Lists approved
 - Parts qualification, screening (including radiation) completed
- UCB Materials Lists Approved
- Boom FM1 PFRs Closed
 - PFRs can be found at: <u>http://sprg.ssl.berkeley.edu/impact/dwc/Problems/</u>
- Boom related Waivers Closed
 - Except FM1 Suite EMC Test Results waiver
 - Waivers can be found at: <u>http://sprg.ssl.berkeley.edu/impact/dwc/Waivers/</u>
- Acceptance Data Package Prepared and reviewed

FM1 Boom Outstanding Issues

- IMPACT FM1 EMC Waiver not signed off
 - Official waiver should be into approval cycle shortly
- Thermal Blankets and Taping to be applied after Spacecraft EMC
 - Including STE Silver-Teflon
- PFR1038, SWEA Harness Fault awaiting signatures
- Cow Catcher ESC Closeout

FM1 Boom Pre Ship Review 2005 March 31

Boom Suite

FM1 Boom Suite Limited Life Items

•	Boom Deployments:	
	 Qual boom deployments: 	28
	 FM1 boom deployments to date: 	4
	 Anticipated boom deployment in spacecraft I&T: 	1
	 Anticipated boom deployments on orbit: 	1
•	SWEA Door Actuations	
	 Actuator life (manufacturer): 	100
	 FM1 door actuations to date: 	14
	 Anticipated actuations in spacecraft I&T: 	2
	 Anticipated actuations in orbit: 	1
•	STE Door Actuations (count motions)	
	 ETU Life test, (ambient / cold vacuum): 	8,000 / 1,100
	 STE-U FM1 door actuations to date: 	520 / 119
	 STE-D FM1 door actuations to date: 	128 / 46
	 Anticipated actuations in spacecraft I&T (2 per CP1 	r): ~20
	 Anticipated actuations on-orbit: 	~58
	 2-year mission 	

Boom Suite Safety

- Premature boom deployment
 - Possible personnel hazard, probably damage to unit
 - APL actuation safeing plug
 - Deployment prevention pin will remain in place most of the time
- Radiation sources
 - STE units have very weak calibration radiation sources in their doors
 - Radiation Safety paperwork has been submitted
- SWEA High Voltage
 - No personnel hazard completely contained, but can damage instrument if powered on except in vacuum
 - Enable plug will not be installed except for thermal vac and launch
 - Delivered with test plug installed in place of flight plug

FM1 Boom Suite Delivery

- FM1 Boom Suite integrated, tested, ready to ship
- Deliver to APL April 6
 - Shipped on same flight we are taking
 - Double-bagged in lumalloy
 - Bags are sealed, dry N2 back-filled.
 - Shock-mounted inside the boom shipping coffin
 - Shock and humidity monitors will be included
 - Project to provide paperwork and advance warning to TSA, Airlines
 - Unit will be driven directly from the airport to APL
 - Arrangements have been made for late arrival at APL

FM1 Boom-Suite Post-Delivery Plans

- On arrival at APL, unit will return to purge
- Unit will go a radiation safety wipe-test, bench test, and contamination inspection prior to mating with the spacecraft
- An APL procedure will be used for spacecraft mating
- A safe-to-mate will be performed prior to electrical mating
- A post-mating functional will be run using the POC/MOC/Spacecraft/IDPU
- The SEP instruments will be shipped and integrated at a later date
 - SEP Suite is still in environmental tests
- The boom will be deployed for spacecraft-level EMC tests
 - UCB to provide off-load fixture
 - Verifies no interference to deployment from spacecraft
 - Boom will be removed for stowing after EMC